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1 Introduction

In quantum mechanics we call \observable" any physical quantity that can be

represented by numbers. An observable is associated in a one-to-one way with a

selfadjoint operator

^

X acting on the Hilbert space H

S

of the quantum system S, and

the spectrum of

^

X represents the set of all possible readings from the measurement.

Let us consider, for example, an observable with spectrum equal to whole real line R,

and with spectral decomposition

^

X =

Z

xd

^

E(x) : (1)

If the operator

^

X is non degenerate, the spectral measure d

^

E(x) is simply the projector

on the eigenvector jxi of

^

X, namely

d

^

E(x) = dxjxihxj ;

^

X jxi = xjxi ; hxjx

0

i = �(x� x

0

) : (2)

Eqs. (1) and (2) supply the physical observable with the minimal mathematical out�t

that is needed for stating the basic rule of quantum mechanics|the Born's rule|

which at the same time provides the probabilistic interpretation of physical \state".

The Born's rule can be enunciated as follows: \If we know in advance that the system

is in a (pure) state described by the vector j i 2 H

S

, we can predict a priori the

probability dP (x) that the experimental reading will fall in the range [x; x+ dx) by

means of the formula

dP (x) = h jd

^

E(x)j i : (3)

The Born's statistical formula (3) can be further generalized in two ways: i)

considering a prior undetermined \mixed" state described by a density operator �̂;

ii) embracing also the description of joint measurements of compatible observables.

Compatible observables correspond to commuting operators

^

X

i

(i = 1; : : : ; n) that

share an orthogonal spectral decomposition d

^

E(x) � jxihxjdx as follows

^

X

i

=

Z

x

i

d

^

E(x) ; (4)

where x = (x

1

; : : : ; x

n

) denotes the vector of simultaneous eigenvalues x

i

of

^

X

i

with

common eigenvector jxi. Including both generalizations, the statistical formula (3)
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now reads

dP (x) = hxj�̂jxi � Tr[�̂d

^

E(x)] : (5)

The Born's rule is very basic: it provides only the interpretation of \observables"

and \states" in quantum mechanics. It assumes that one knows in advance what a

measuring instrument is and which observables are measured. However, despite any

experimental evidence, this assumption cannot be granted from start, because the

measuring instrument is a special physical system and, as such, it is itself submitted

to the laws of quantum mechanics. In most cases the measuring apparatus is a very

complicated system, and some interpretation is already needed to understand what it

is and how it works. The Born's rule makes no attempt to provide answers to more

\operational" issues as: 1) Given a physical parameter|on the basis of its classical

de�nition, or of the procedure for measuring it|which selfadjoint operator describes

the measurement? 2) How to describe the measurement of a physical quantity that

apparently does not match any selfadjoint operator? [this is the case of the phase of

the electromagnetic �eld]; 3) How to describe joint measurements of non compatible

observables? 4) How to describe instrumental precision/resolution? 5) In which way

the state of the system changes after the measurement?

The above issues urge a further generalization of the Born's rule (5) in a way

that can be easily recognized at the mathematical level. If a quantum mechanical

instrument is to provide information about a physical system S, the probability dP (x)

must be governed only by the state of the system, which is represented by a density

operator �̂. However complex the system-apparatus interaction is, quantummechanics

must provide a prevision of the result of the measurement in terms of operators acting

on the Hilbert space H

S

of the system S only. Depending on the measurement result

x, an operator d

^

�(x) will furnish the required probability dP (x) through a rule of

the general form

dP (x) = Tr[�̂d

^

�(x)] : (6)

In order to have dP (x) as a genuine probability, the operators d

^

�(x) in Eq. (6) must

be nonnegative (hence selfadjoint)

d

^

�(x) � 0 ; (7)

as a consequence of positivity of density operators �̂. Normalization of probability

dP (x) is guaranteed by the completeness relation

Z

d

^

�(x) =

^

1 : (8)

The trace rule (6) is intimately connected with the probabilistic interpretation of

physical states and their description in terms of density operators. In fact, the linear

functional \Tr" guarantees propagation of convex linear combinations from density
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operators toward probabilities. In mathematical terms, the set of operators d

^

�(x)

form a mapping that is a positive operator measure|more precisely, a probability-

operator measure (POM)|on R

n

. Generally speaking, if �;�

i

� R

n

denote possible

experimental \events", the following map

^

�(�) =

Z

�

d

^

�(x) (9)

satis�es the abstract axioms of POM

^

�(;) = 0 ;

^

�(�) � 0 ;

^

�(R

n

) =

^

1 ;

(10)

^

�([

i

�

i

) =

X

i

^

�(�

i

) for \

i

�

i

= ; :

Axioms (10) can be stated more generally for a probability space 
 in place of R

n

,

with 
 playing the role of the spectrum of a set of commuting selfadjoint operators in

the old Born's rule (5). For simplicity of notation in the following I will consider the

case 
 � R

n

, whereas the integration set will be not explicitly written when integrals

are extended to the whole space, as in Eq. (8); it is implicit that integrals must be

replaced by sums whenever 
 is a discrete set.

Eq. (5) is only a particular case of Eq. (6) with d

^

�(x) � d

^

E(x) orthogonal POM.

In the following we will be interested mostly in nonorthogonal POM's d

^

�(x)d

^

�(x

0

) 6=

0 for x 6= x

0

. How nonorthogonal POM's enters the quantum description of a physical

system? As we will see shortly, this happens when a part P of the apparatus|so

called \probe"or \ancilla"|itself enters the quantum description of the measurement

by its own Hilbert space H

P

. Then, if one considers the customary measurement of

commuting observables

^

X

i

now acting on the extended Hilbert space H

S


H

P

in the

uncorrelated joint state �̂

S


 �̂

P

, the Born's rule reads

dP (x) = Tr

S+P

[�̂

S


 �̂

P

jxihxj]dx : (11)

The trace in (11) can be evaluated in two successive steps as follows

dP (x) = Tr

S

f�̂

S

Tr

P

[�̂

P

jxihxj]gdx : (12)

From the point of view of an observer who ignores (deliberately or not) the apparatus

P , the Born's rule (12) has to involve operators on the Hilbert space H

S

of the system

only, and hence it is written in the form (6) as follows

dP (x) = Tr

S

[�̂

S

d

^

�(x)] : (13)

Comparing Eq. (12) with Eq. (11) leads to the following POM

d

^

�(x) = Tr

P

[�̂

P

jxihxj] : (14)

The operator d

^

�(x) in Eq. (14) is the partial trace Tr

P

over H

P

of an operator acting

on H

S


H

P

, an hence it is an operator acting on H

S

only. By de�nition, d

^

�(x) in
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Eq. (14) is positive and normalized to identity, i.e. it satis�es the axioms of a POM.

It is also clear that for a given probe state �̂

P

the POM d

^

�(x) in Eq. (14) is generally

not orthogonal.

This is the way in which nonorthogonal POM's enter the quantum mechanical

description of a measurement, namely through the measuring apparatus. The POM

d

^

�(x) depends on the considered experimental setup: for a �xed state �̂

S

of the system

one can have di�erent probability distributions dP (x) by changing the detector and/or

on the detector preparation �̂

P

. As we will see in the following, the correspondence

between detectors and POM's is not one-to-one, namely there are many detectors

described by the same POM. The notion of POM provides a new concept of physical

observable that is more \operational" than the original one, because it is based on the

de�nition of the procedure for performing the measurement. We will examine POM's

further in the following sections.

We are now in position to understand what is the meaning of the title of these

lectures: \Quantum estimation theory" [1]. Quantum estimation theory analyzes

POM's at a purely abstract level. With the purpose of seeking the best strategy

for estimating one or more parameters of the system in a �xed state, the theory

looks for the pertaining class of POM's, and then seeks the POM that is optimal

according to some pre-chosen goodness criterion [for example: maximum likelihood,

minimum r.m.s. noise, etc.] In this way the theory allows one to �nd the best or

\ideal" detector for such measurement. Quantum optics is an ideal lab for testing the

theory of quantum measurements: in these lectures we will examine some examples

of application in this �eld. In the tool-box of quantum optics we can �nd simple yet

concrete devices for measuring a variety of observables of the electromagnetic �eld: the

homodyne detector, which measures any linear combination of a couple of canonically

conjugated observables of the �eld|the socalled quadratures; the heterodyne detector,

which jointly measures a couple of conjugated (hence non compatible) quadratures;

�nally, high-sensitive interferometry, which poses the problem of measuring the

phase of the �eld, a quantity with well de�ned physical meaning, however with no

corresponding selfadjoint operator.

After giving an introductory classi�cation of di�erent types of POM's, in Sect.

2, we will analyze the Naimark's theorem, which assures that every POM can be

obtained from conventional observables that involve the measuring apparatus itself.

Applications to quantum optics are analyzed in details in Sect. 3, with special

emphasis on the heterodyne detector, which achieves the joint measurement of non-

commuting observables. Joint measurements are then analyzed in Sect. 4, where

general measurements in the phase space are studied, including the measurement of

the phase of the �eld. Quantum estimation theory is reviewed in Sect. 5: here, as a

relevant application, a long subsection is devoted to the method for �nding the ideal

measurement of the phase. The last section 6 analyzes the notion of \instrument",

which is more powerful that the concept of POM, as it describes also the back-action

on the system after the measurement: the so called \state reduction". Here we will

analyze in detail the general scheme for indirect measurements, with two examples|
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the von Neumann and the Arthurs-Kelly measurements.

2 Probability operator measures (POM)

In this section I brie
y analyze the di�erent classes of POM's. The following

classi�cation is only for didactic reasons, with the purpose of understanding step

by step the new conceptual issues in the generalization from orthogonal spectral

resolutions to noncommuting POM's.

2.1 Orthogonal POM's

Within our general framework, conventional measurements correspond to orthogonal

projection-valued measures

d

^

�(x)d

^

�(y) = d

^

�(x)�(x� y)dy ; (15)

with

R

d

^

�(x) =

^

1. Ideal perfectly resolved measurements are non degenerate, namely

d

^

�(x) = dxjxihxj is a one-dimensional projector on the Hilbert space. On the other

hand, non-ideal unresolved measurements carry some degeneration: this is the case,

for example, of a set of orthogonal operators

^

�

n

�

^

�(�

n

) de�ned as in Eq. (9), with

the subsets �

n

exhaustive and disjoint.

Example

An obvious example of orthogonal POM is the spectral resolution of a selfadjoint

operator

^

X with spectrum R. One has

d

^

�(x) = �(x�

^

X)dx � jxihxjdx : (16)

As a concrete example, in Sect. 3.2 we will analyze the homodyne detector, with

^

X

representing a quadrature of the electromagnetic �eld.

2.2 Commuting POM's

A trivial generalization to nonorthogonal POM's is the case of commuting measures,

namely

[d

^

�(x);d

^

�(x

0

)] = 0 : (17)

As the operators d

^

�(x) are selfadjoint and commute at di�erent x, an orthogonal basis

jzihzj exists that diagonalizes all of them simultaneously for all x [here I distinguish

between di�erent sets of states only by changing their label, as, for example, jxi and

jzi]. Hence, d

^

�(x) must be of the form

d

^

�(x) =

Z

dzm(xjz)jzihzj : (18)



Quantum Estimation Theory and Optical Detection 7

From the POM axioms it follows that the coe�cients m(xjz) in Eq. (18) are

probability densities, namely

m(xjz) � 0 ;

Z

dxm(xjz) = 1 : (19)

More precisely, m(xjz) can be interpreted as the conditional probability density

of getting outcome x given that the system is known to be exactly in the state

jzihzj. Therefore, the present kind of measurement describes again a conventional

measurement, however with an additional imprecision (or extrinsic noise) that makes

the outcome x unpredictable even when it is known a priori that the system is exactly

in an eigenstate jzi of the measured observable.

Example

As an example, consider the following function of the operator

^

X

d

^

�(x) =

1

p

2��

2

exp

(

�

(x�

^

X)

2

2�

2

)

dx ; (20)

It is easy to see that d

^

�(x) in Eq. (20) is the Gaussian convolution of the orthogonal

projector jxihxj. A concrete example will be given in Sect. 3.2, where we will analyze

the homodyne detector with nonunit quantum e�ciency.

2.3 Noncommuting POM's

The truly nontrivial generalization of the projector spectral decomposition d

^

E(x) is

the case of a non commuting POM d

^

�(x), namely

[d

^

�(x);d

^

�(x

0

)] 6= 0 : (21)

Here, there is no longer an orthogonal basis that diagonalizes all operators d

^

�(x)

simultaneously: hence, no interpretation is possible in terms of compatible observ-

ables, nor the noise can be considered as an additional instrumental imprecision that

is added to an ideally sharp measurement. Due to nonorthogonality, the resulting

probability distribution is always unsharp for any state �̂

S

of the system. Therefore,

the only possible interpretation of the noise from such measurement is as an \intrinsic

unavoidable quantum-mechanical imprecision". As we will see soon, this is the case

of the noise arising when one jointly measures two noncommuting observables, or,

more generally, when the measuring procedure involves a joint measurement, as in

the case of the phase of the electromagnetic �eld. However, there is no \canonical"

measurement of noncommuting observables that corresponds to a given POM, and for

this reason the noncommuting POM is usually referred to as generalized observable.

It is obvious that, similarly to the classi�cation of commuting POM's, also in

the case of noncommuting POM's one could distinguish between: i) ideal resolved
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measurements|when d

^

�(x) is a 1-dim projector, now ranging over a nonorthogonal

(overcomplete) set; ii) unresolved measurements|when the POM is degenerate; iii)

measurements with instrumental imprecision, when the POM is convolved with a

conditional probability density. However, in the present case, this classi�cation is

mostly academic.

At this point one could notice that POM's provide also new selfadjoint operators

available to the theory. Hence, why we do not use them? For example, the following

operator is manifestly selfadjoint

^

X =

Z

xd

^

�(x) : (22)

Hence,

^

X admits also an orthogonal spectral resolution in terms of eigen-vectors

jxihxj. The operator

^

X, however, does not describe the same measurement of d

^

�(x),

apart from giving the correct expectation value

R

xdP (x) � Tr(�̂

^

X)|and, in fact,

the corresponding probability distribution hxj�̂jxi is di�erent from the experimental

one dP (x)

:

= Tr[�̂d

^

�(x)]. Di�erences are evident already from the second moment,

where one has

^

X

2

:

=

�

Z

xd

^

�(x)

�

2

6=

Z

x

2

d

^

�(x) ; (23)

as a consequence of non orthogonality of d

^

�(x). From the following generalized

Schwartz inequality

Z

x

2

d

^

�(x) �

�

Z

xd

^

�(x)

�

2

; (24)

one has

�x

2

� h�

^

X

2

i ; (25)

where the over-bar denotes the experimental average f

:

=

R

f(x)dP (x), whereas

brackets denote the ensemble average h

^

f i = Tr[

^

f�̂]. It follows that the \true" variance

�x

2

is larger than the one resulting from the selfadjoint operator

^

X , despite

^

X

provides the correct average x � h

^

Xi for all states �̂. In other words, nonorthogonal

POM's introduce an additional noise that arises from violations of the operator

function calculus, namely

^

f =

Z

f(x) d

^

�(x) 6= f(

^

X) ; where

^

X =

Z

xd

^

�(x) : (26)

According to Eq. (26), in order to describe the experimental probability distribution

dP (x) = Tr[�̂d

^

�(x)] for any �̂, one would need the in�nite set of selfadjoint operators

d

X

n

=

Z

x

n

d

^

�(x) 6=

^

X

n

: (27)
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But, why do we use the POM d

^

�(x) instead of the selfadjoint operator

^

X, considering

that the latter can have sharp probabilities? Simply because

^

X does not describe

the measurement of the physical parameter that we meant. Moreover, notice that

the selfadjoint operators de�ned in Eq. (22) do not solve the problem of joint

measurements, because they generally do not commute, namely

^

X

i

:

=

Z

x

i

d

^

�(x) ; [d

^

�(x);d

^

�(x

0

)] 6= 0 =) [

^

X

i

;

^

X

j

] 6= 0 : (28)

Example

In the following a and a

y

will represent the usual annihilation and creation operators

of a selected mode of the electromagnetic �eld, with commutation relation [a; a

y

] = 1,

and with vacuum vector j0i, i.e. aj0i = 0. It is convenient to adopt the complex

notation f = f(z; z) to denote generic functions of z 2 C (z and z are treated as

independent variables).

Consider the following POM

d

^

�(z; z) =

d

2

z

�

jzihzj ; z 2 C : (29)

In Eq. (29) jzi denotes the customary coherent state

jzi

:

=

^

D(z)j0i

:

= exp(za

y

� za)j0i ; (30)

which is obtained by displacing the vacuum j0i by the operator

^

D(z). It is obvious

that d

^

�(z; z) is not commutative, just because hzjz

0

i 6= hz

0

jzi. In Sect. 3.3 we will see

that the POM (29) describes the ideal heterodyne detector, which provides the optimal

joint measurement of a couple of conjugated quadratures|the optical equivalent of

position and momentum of an harmonic oscillator. For the moment, just notice the

following identities

^

X =

Z

d

^

�(z; z)Rez =

1

2

�

a+ a

y

�

;

^

Y =

Z

d

^

�(z; z) Imz =

i

2

�

a

y

� a

�

; (31)

with

^

X and

^

Y having commutation [

^

X;

^

Y ] = i=2.

2.4 Naimark's theorem

In the introductory section we have already seen how nonorthogonal/noncommuting

POM's arise in a measurement description that involves the apparatus. In this case,

the POM just plays the role of the customary projector in the Born's rule used by an

observer who ignores the apparatus. Let us recall in formulas this Born's rule

dP (x) = Tr

S+P

[�̂

S


 �̂

P

jxihxj] = Tr

S

[�̂

S

d

^

�(x)] ; (32)
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with �̂

S

and �̂

P

denoting the states of the system S and the probe P respectively,

and

^

X

i

denoting the observables that are measured, with

^

X

i

=

R

x

i

jxihxjdx acting on

H

S


H

P

. The POM is given by

d

^

�(x) = Tr

P

[

^

1

S


 �̂

P

jxihxj]dx ; (33)

namely, the POM is the partial trace over H

P

of the probe preparation �̂

P

with the

projector of the S + P observables. It is very remarkable that every POM can be

always represented as in Eq. (33): this is the statement of the Naimark's theorem

[2], namely \Given a POM d

^

�(x) in the system Hilbert space H

S

, there is always an

extension H

S


H

P

of the Hilbert space, a pure state j 

P

i, and an orthogonal POM

jxihxjdx, such that

d

^

�(x) = Tr

P

[

^

1

S


 j 

P

ih 

P

j jxihxj]dx : (34)

As a consequence, using POM's in quantum mechanics is not in con
ict with the

dictum that \only observables can be measured", because every POM corresponds

to a customary observable in a larger Hilbert space. But such an observable is

not unique, and may have \unnatural" physical meaning, because it involves the

measuring apparatus itself. For the proof of the Naimark theorem the reader is

addressed to the original papers [2] or to Ref. [3] (a sketch of the proof is also

reported in the Helstrom's book [1] and in the book of A. Peres [4]). In the following,

I will illustrate the theorem on the basis of two examples (collected from the same

Ref. [1]), which I think can be interesting for applications to quantum optics.

2.4.1 Example 1: the quantum roulette wheel

Consider the following (generally non commutative) POM

^

�

m

=

M

X

i=1

�

i

^

E

(i)

m

; m = 1; : : : ; n ; (35)

where

�

i

� 0 ;

M

X

i=1

�

i

= 1 ;

^

E

(i)

m

^

E

(i)

n

= �

mn

^

E

(i)

m

;

n

X

m=1

^

E

(i)

m

=

^

1

S

: (36)

For �xed i the projectors

^

E

(i)

m

give an orthogonal resolution of the identity. The

physical meaning of

^

�

m

is clear: the POM (35) describes a measuring apparatus

where one of M di�erent observables is selected at random at every measurement

step, with �

i

as the probability of the i-th observable.

The Naimark's extension of the POM (35) can be obtained as follows. Consider an

M -dimensional Hilbert spaceH

P

, with fj!

i

ig

i=1;:::;M

as an orthonormal basis spanning
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H

P

. A set of orthogonal projectors

^

E

m

^

E

n

= �

nm

^

E

m

in the extended Hilbert space is

given by

^

E

m

=

M

X

i=1

^

E

(i)

m


 j!

i

ih!

i

j : (37)

The Naimark extension of the POM (35) is given by the projectors in Eq. (37), with

the following state preparation of the probe

j 

P

i =

M

X

i=1

�

1=2

i

j!

i

i : (38)

In fact, one can immediately check that

Tr

P

[

^

1
 j 

P

ih 

P

j

^

E

m

] =

M

X

i=1

�

i

^

E

(i)

m

�

^

�

m

: (39)

In this example, the probe P plays the role of a random device corresponding to a

sort of \quantum roulette" wheel.

2.4.2 Example 2: commuting POM's

Let us consider M elements

^

�

k

of a �nite commuting POM. Upon denoting by fjmig

their common orthonormal set of eigenvectors, one has

^

�

k

=

X

m

�

(k)

m

jmihmj ; k = 1; : : : ;M ; (40)

and, as already mentioned, �

(k)

m

� 0 are interpreted as conditional probabilities,

with

P

M

k=1

�

(k)

m

= 1. As in the previous example, let us consider a probe in an

M -dimensional Hilbert space H

P

with fj!

k

ig

k=1;:::;M

denoting an orthonormal basis.

The following linear combinations

j�

m

i =

M

X

k=1

[�

(k)

m

]

1=2

j!

k

i ; (41)

can be written in terms of unitary transformations of a �xed probe vector j 

P

i � j!

1

i

as follows

j�

m

i =

^

U

m

j 

P

i ; (42)

where

^

U

m

are unitary operators. With the probe preparation j 

P

i � j!

1

i, the Naimark

extension of the POM (40) is given by the orthogonal projectors

^

E

k

=

X

m

jmihmj 


^

U

y

m

j!

k

ih!

k

j

^

U

m

: (43)
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In fact, it is easy to check the following steps

Tr

P

[j!

1

ih!

1

j

^

E

k

] =

X

m

jmihmjTr

P

[j!

1

ih!

1

j

^

U

y

m

j!

k

ih!

k

j

^

U ]

=

X

m

jmihmjTr

P

[

^

U

m

j!

1

ih!

1

j

^

U

y

m

j!

k

ih!

k

j] =

X

m

jmihmjjh�

m

j!

k

ij

2

(44)

=

X

m

jmihmj�

(k)

m

�

^

�

k

:

3 POM's in quantum optics

In this section I illustrate some applications of POM's to quantum optics, where we

a

�

a

0

u j0i

6

- -

Figure 1: Equivalence of a nonideal (� < 1)

detector with an ideal one preceded by a beam

splitter of transmissivity �.

have detectors for measuring observ-

ables of the electromagnetic �eld, with

spectrum either discrete|as for the

number of photons|or continuous|as

for the quadrature of the �eld. We

will see that by homodyne detection

we can measure any linear combina-

tion of a couple of canonically conjug-

ated observables|the so called quad-

ratures of the �eld: this is a fortu-

nate situation, which does not occur

in the quantum mechanics of massive

particles, and that makes possible to

detect even the state itself of the �eld

[for this topic see my other set of lectures in this same book [5]]. A long subsec-

tion is devoted to the heterodyne detector, which jointly measures two conjugated

quadratures of the �eld. Joint measurements will be analyzed in more detail in Sect.

4.

3.1 Direct detection

The photon-count distribution for a photodetector (with a photo-tube small with

respect to the coherence length of radiation) is given by the Mandel-Kelley-Kleiner

formula [6, 7]

P

�

(n) =

*

:

(�a

y

a)

n

n!

exp(��a

y

a) :

+

; (45)

where :: denotes normal ordering, and � is the overall quantum e�ciency of the

detector (0 � � � 1). For simplicity, I consider only monochromatic �elds, with

a denoting the annihilator of the nonvacuum mode: however, Eq. (45) can be written

more generally in the wideband case, where instead of the operator a

y

a one has the
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Pointing 
ux operator (with time-ordering and integration over the detector time). A

simple derivation of Eq. (45) can be found in Ref. [8]. For � = 1 Eq. (45) gives the

POM of ideal photon-number detection. In fact, from the identity

j0ih0j = lim

�!1

1

X

l=0

(��)

l

l!

(a

y

)

l

a

l

� lim

�!1

(1� �)

a

y

a

; (46)

and exploiting the recurrence

: (a

y

a)

n

:= a

y

a(a

y

a� 1) : : : (a

y

a� n+ 1) ; (47)

one obtains

P

�

(n) =

1

X

k=n

P (k)

 

k

n

!

�

n

(1� �)

k�n

; (48)

where

P (n) � P

1

(n) = h jnihnj i : (49)

In Eq. (49) jni denotes the photon-number eigenstate a

y

ajni = njni. In other words,

the POM for � = 1 is given by

^

�

1

(n) = jnihnj ; (50)

whereas, more generally, for � < 1, using Eqs. (46) and (47) one can see that the

probability distribution resulting from Eq. (45) is a Bernoulli convolution of the ideal

probability (49), namely the detector POM is given by

^

�

�

(n) =

1

X

k=n

 

k

n

!

�

n

(1� �)

k�n

jkihkj : (51)

- -

6

6

a

b

d

c

Figure 2: Field modes at a beam splitter.

Eq. (51) provides an example of a

nonorthogonal commuting POM, with

a form similar to Eq. (18) (here for

a discrete spectrum) with conditional

probability density m(xjz) given by a

Bernoulli distribution.

Now I show that a detector with

quantum e�ciency � < 1 is equi-

valent to an ideal detector preceded

by a beam splitter of transmissiv-

ity �. Such a \quantum-equivalence"

between devices is schematically depicted in Fig. 1, and is relevant for detection the-

ory in quantum optics. We have just to remind that, apart from trivial phase changes,
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a beam splitter of transmissivity � a�ects the unitary transformation of �elds (see Fig.

2)

 

c

d

!

=

^

U

y

 

a

b

!

^

U =

 

�

1=2

(1� �)

1=2

�(1 � �)

1=2

�

1=2

! 

a

b

!

; (52)

where all �eld modes are considered at the same frequency. Hence, the output mode

a

0

in Fig. 1 is given by the linear combination

a

0

= �

1=2

a+ (1 � �)

1=2

u : (53)

The mode a is entangled with the vacuum mode u, which here plays the role of a

\probe" mode. The POM is obtained by partially tracing over the u mode as follows

^

�

�

(n) = Tr

u

[

^

1

a


 j0ih0j

u

jnihnj

a

0

] =

u

h0j : exp(�a

0

y

a

0

)(�a

0

y

a

0

)

n

=n! : j0i

u

: (54)

Eq. (54) gives

^

�

�

(n) in form of a normal-ordered expectation between coherent

(vacuum) states. Here we can use the following identity valid for any function of a

linear combination Ka+Hb of two modes a and b

b

h�j : f

�

Ka+Hb; (Ka+Hb)

y

�

: j�i

b

=: f(Ka+H�;Ka

y

+H�) : ; (55)

with j�i

b

denoting a coherent state for mode b only. Using Eq. (55) we immediately

obtain

^

�

�

(n) =: exp(��a

y

a)

(�a

y

a)

n

n!

: ; (56)

which gives the probability (45).

3.2 Balanced homodyne detection

-

6

-

6

a

b (LO)

d

c

^

I

D

Figure 3: Scheme of the balanced homo-

dyne detector.

The scheme of a balanced homodyne

detector is depicted in Fig. 3. The \signal"

mode a is combined by means of a 50-50

beam splitter with a \local oscillator" (LO)

mode b operating at the same frequency of a,

and prepared in an \intense" coherent state

jzi. The signal mode a here plays the role

of the \system" S, whereas mode b is the

\probe" P . The �eld at the output of the

beam splitter is described by a \sum" mode

c = (a + b)=

p

2 and a \di�erence" mode

d = (a � b)=

p

2, according to Eqs. (52) for

� = 0:5. These output modes are detected by two identical photodetectors, and



Quantum Estimation Theory and Optical Detection 15

�nally the di�erence of photocurrents (at zero frequency) is rescaled by 2jzj. Thus,

the output of the detector is given by the following operator

^

I

D

=

c

y

c� d

y

d

2jzj

=

a

y

b+ b

y

a

2jzj

: (57)

Our intent is to evaluate the POM of the detector, or, in other words, to obtain the

probability distribution of the output photocurrent

^

I

D

for any generic state �̂ of the

signal mode a. It is easier to evaluate the generating function of the moments of

^

I

D

�(�) =

D

e

i�

^

I

D

E

ab

; (58)

and then obtain the probability distribution of I

D

as the Fourier transform of �(�),

namely

dP (I) = dI

Z

+1

�1

d�

2�

e

�i�I

D

e

i�

^

I

D

E

ab

: (59)

Using the Backer-Campbell-Hausdor� (BCH) formula [9] for the SU(2) group, namely

exp

�

�a

y

b� �b

y

a

�

= e

�b

y

a

�

1 + j�j

2

�

1

2

�

b

y

b�a

y

a

�

e

��a

y

b

; � =

�

j�j

tan j�j ; (60)

one can normal-order the exponential in Eq. (58) with respect to mode b as follows

�(�) =

*

exp

"

i tan

 

�

2jzj

!

b

y

a

# "

cos

 

�

2jzj

!#

a

y

a�b

y

b

exp

"

i tan

 

�

2jzj

!

a

y

b

#+

ab

: (61)

The partial trace over b can be evaluated easily as follows

�(�) =

*

exp

"

i tan

 

�

2jzj

!

za

# "

cos

 

�

2jzj

!#

a

y

a

exp

"

i tan

 

�

2jzj

!

za

y

#+

a

�

*

z

�

�

�

�

�

"

cos

 

�

2jzj

!#

�b

y

b

�

�

�

�

�

z

+

; (62)

with the probe mode b is in the coherent state jzi. Using now the customary BCH

formula valid for [

^

A; [

^

A;

^

B]] = [

^

B; [

^

A;

^

B]] = 0

exp

^

A exp

^

B = exp

�

^

A+

^

B +

1

2

[

^

A;

^

B]

�

; (63)

one can recast Eq. (62) in normal-order with respect to a, namely [10]

�(�) = (64)

*

: exp

"

iz sin

 

�

2jzj

!

a

y

#

exp

"

�2 sin

2

 

�

4jzj

!

(a

y

a+ jzj

2

)

#

exp

"

iz sin

 

�

2jzj

!

a

y

#

:

+

a

:
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Eq. (64) simpli�es greatly in the strong-LO limit z !1, where only the lowest order

terms in �=jzj are retained, and a

y

a is neglected with respect to jzj

2

. One has

lim

z!1

�(�) =

*

: exp

"

i

�

2

e

i�

a

y

#

exp

"

�

�

2

8

#

exp

"

i

�

2

e

�i�

a

y

#

:

+

a

= hexp[i�â

�

]i

a

; (65)

with � = argz and â

�

=

1

2

(a

y

e

i�

+ ae

�i�

) denoting the so called \quadrature" of the

�eld mode a at phase � with respect to the LO. The generating function in Eq. (65)

is equivalent to the POM

d

^

�(x) = dx

Z

+1

�1

d�

2�

e

�i�x

exp[i�â

�

] = dx �(x� â

�

) : (66)

Hence, in conclusion, the balanced homodyne detector in the strong LO limit achieves

the ideal measurement of the quadrature â

�

.

It is easy to take into account nonunit quantum e�ciency at detectors. According

to Eq. (53) one performs the substitutions

c =) �

1=2

c+ (1� �)

1=2

u ; u; v vacuum modes (67)

d =) �

1=2

d+ (1 � �)

1=2

v ; (68)

and now the output current is rescaled by 2jzj�, thus obtaining

^

I

D

= â

�

+

s

(1� �)

2�

(û

�

� v̂

�

) +O(jzj

�1

) ; (69)

with O(jzj

�1

) denoting terms vanishing as jzj

�1

. Then, by tracing-out the vacuum

modes u and v, one obtains

d

^

�

�

(x) = dx

Z

d�

2�

e

�i�x

e

i�â

�

jh0je

i�

q

1��

2�

u

�

j0ij

2

= dx

Z

d�

2�

e

�i�(x�â

�

)

e

��

2

1��

8�

= dx

1

q

2��

2

�

exp

"

�

(x� â

�

)

2

2�

2

�

#

; (70)

where

�

2

�

=

1 � �

4�

: (71)

Thus, in the nonideal case the POM is the convolution of the ideal POM with a

Gaussian conditional probability: as in the case of photodetection, again nonunit

quantum e�ciency makes the POM nonorthogonal.
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3.3 Heterodyne detector

Heterodyne detection provides a method to perform joint measurements of two

conjugated quadratures of the �eld [11]. The detector and the relevant �eld modes

involved in the measurement are outlined in Fig. 4. The input �eld

^

E

in

impinges

into a beam splitter with transmissivity �, and has nonzero photon number only

at frequency !

0

+ !

IF

. The LO works at a di�erent frequency !

0

, and the output

photocurrent

^

I

out

is measured at the intermediate frequency !

IF

. In the time-domain

the measured photocurrent is given by

^

I

out

(t) =

^

E

�

out

(t)

^

E

+

out

(t) ; (72)

where

^

E

�

denote the usual positive and negative frequency components of the

�eld, containing the annihilation and creation operators, respectively. The output

photocurrent analyzed at frequency !

IF

is given by

^

I

out

(!

IF

) =

Z

dt

^

I

out

(t)e

i!

IF

t

=

Z

d!

2�

^

E

�

out

(! + !

IF

)

^

E

+

out

(!) : (73)

The only �eld modes that are nonvacuum are the signal mode a

s

at frequency

-

6 6

-

6

-

6

-

-

^

E

in

a

s

(!

0

+ !

IF

)

a

i

(!

0

� !

IF

)

b

l

(!

0

)

b

i

(!

0

� !

IF

) b

s

(!

0

+ !

IF

)

^

E

out

cos(!

IF

t)

sin(!

IF

t)

Re

^

Z

Im

^

Z

Figure 4: Scheme of the heterodyne detector and relevant �eld modes involved in the measurement.

Dashed lines denote vacuum modes. Signal input modes are denoted by a, LO modes by b. The

subindices s, l, and i refer to the frequency of modes: s is for signal band around !

0

+ !

IF

, l is for

LO band around !

0

, and i is for image band around !

0

� !

IF

. The output photocurrent is detected

at the intermediate frequency !

IF

.

! + !

IF

and the LO b

l

at frequency !

0

. The integral in Eq. (73) involves modes

at all frequencies: the terms that survive in the strong-LO limit are those linear in

b

l

or b

y

l

, namely b

y

l

a

i

and b

l

a

y

s

, both having frequency di�erence equal to !

IF

(all

other nonvacuum modes depicted in Fig. 4 do not involve the LO in Eq. (73)). The

detector behaves ideally in the combined limits of strong-LO z ! 1 and perfect
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transparency � ! 1, with 


:

= jzj

q

�(1� �) kept as constant. In fact, the output

rescaled photocurrent

^

Z

^

Z = lim

� ! 1; jzj ! 1


 = cost.




�1

^

I

out

(!

IF

) ; (74)

is given by

^

Z = jzj

�1

(a

y

s

b

l

+ a

i

b

y

l

) +O(jzj

�1

) ; (75)

and after re-phasing the �eld modes

^

Z becomes

^

Z = a

y

s

+ a

i

: (76)

The complex operator

^

Z is equivalent to a couple of commuting selfadjoint operators

^

Z =

^

Z

R

+ i

^

Z

I

; [

^

Z;

^

Z

y

] = [

^

Z

R

;

^

Z

I

] = 0 ; (77)

and is described by a quantum mechanical probability density in the complex plane

p(z

R

; z

I

) � p(z; z). The probability density is the Fourier transform of the generating

function of the moments of

^

Z, and in complex notation is

p(z; z) =

Z

d

2

�

�

2

he

�

^

Z

y

��

^

Z

i

si

e

�z��z

; (78)

where h: : :i

si

denotes the ensemble average on both modes a

s

and a

i

. In the present

case the signal mode a

s

represents the \system", whereas the image-band mode a

i

is

the \probe". The partial trace over the probe is carried out as follows

D

e

�

^

Z

y

��

^

Z

E

si

= Tr

s

h

�̂

s

^

D

s

(�)

i

h0j

^

D

i

(��)j0i

i

= Tr

s

h

�̂

s

^

D

s

(�)

i

e

�

1

2

j�j

2

� Tr

s

h

�̂

s

:

^

D

s

(�) :

A

i

; (79)

where

^

D(�) = exp(�a

y

��a) denotes the usual displacement operator, and sub-indices

s; i pertain signal and image modes, respectively. Anti-normal ordering ::

A

in Eq. (79)

follows from the customary BCH formula (63) applied to the displacement operator.

Comparing Eqs. (78) and (79) the POM of the detector is obtained in the form

d

^

�(z; z) =

Z

d

2

�

�

2

e

�z��z

:

^

D

s

(�) :

A

d

2

z ; (80)

and with a little algebra one has

1

d

^

�(z; z) =

d

2

z

�

jzihzj : (81)

1

Here is the proof:

Z

d

2

�

�

:

^

D(�) :

A

=

Z

d

2

�

�

e

�j�j

2

e

�a

y

e

��a

=

Z

dj�j

2

2

e

�j�j

2

1

X

n=0

(�)

n

(n!)

2

j�j

2n

(a

y

)

n

a

n

=

1

X

n=0

(�)

n

n!

(a

y

)

n

a

n

;
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Hence, the POM of the ideal heterodyne detector is the coherent-state projector.

It is not di�cult to take into account nonunit quantum e�ciency at photodetectors.

For simplicity we consider the case of � constant versus ! within the considered

frequency band. Similarly to the case of the homodyne detector, we add a vacuum

mode to both a

s

and a

i

a

s

! �

1=2

a

s

+ (1� �)

1=2

u ; (82)

a

i

! �

1=2

a

i

+ (1 � �)

1=2

v ; (83)

with u and v denoting the vacuum modes at frequencies !

0

+ !

IF

and !

0

� !

IF

respectively. Upon rescaling the output photocurrent by an additional factor �

1=2

, we

obtain

^

Z = a

s

+

s

1� �

�

u+ a

y

i

+

s

1 � �

�

v

y

: (84)

The two modes u and v enter the de�nition of the new enlarged \probe" of the detector,

and must be traced out. In this way one obtains the POM

d

^

�

�

(�;�) = d

2

�

Z

d

2

�

�

2

e

�����

:

^

D

s

(�) :

A uv

h0j

^

D

u

(�

�

)

^

D

v

(��

�

)j0i

uv

; (85)

where �

�

=

q

1��

�

�. The POM (85) is the Gaussian convolution of the ideal POM

d

^

�

�

(�;�) = d

2

�

Z

d

2

�

�

2

e

�����

:

^

D

s

(�) :

A

e

�j�

�

j

2

=

Z

d

2

z

��

2

�

e

�

jz��j

2

�

2

�

d

^

�(z; z) ; (86)

where �

2

�

=

1��

�

.

Before continuing further, it is instructive to see an alternative derivation of the

heterodyne POM (81). We have seen that the the heterodyne detector measures the

complex photocurrent

^

Z = a

s

+ a

y

i

, with a

i

playing the role of the probe. This

assertion is translated into mathematical terms as follow

d

^

�(z; z) = d

2

z

i

h0j�

2

(z �

^

Z)j0i

i

; (87)

and using the identity (46) one has

Z

d

2

�

�

:

^

D(�) :

A

= j0ih0j :

Using the last equation we obtain

Z

d

2

�

�

e

�����

:

^

D(�) :

A

=

Z

d

2

�

�

e

�j�j

2

e

�(a

y

��)

e

��(a��)

=

^

D

y

(��)j0ih0j

^

D(��) = j�ih�j :
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where �

2

is the Dirac delta in the complex plane

�

2

(�� �) =

Z

d

2

�

�

2

e

(���)��(���)�

: (88)

The form of Eq. (87) does not depend on the operator ordering, because [

^

Z;

^

Z

y

] = 0.

In particular, we can use normal ordering with respect to a

i

, corresponding to anti-

normal ordering with respect to a

s

. Then, the vacuum expectation is evaluated just

upon setting a

i

to zero, namely

d

^

�(z; z) = d

2

z : �

2

(z � a

s

) :

A

: (89)

By de�nition, one has

: �

2

(z � a

s

) :=

Z

d

2

�

�

2

e

(z�a

s

)��(z�a

y

s

)�

:

A

=

Z

d

2

�

�

2

: e

z��z�

:

^

D

s

(�) :

A

; (90)

namely Eq. (81).

4 Joint measurements

From the derivation of the POM of the heterodyne detector we can understand the

basis of a joint measurement of two non commuting observables. The heterodyne

detector performs a joint measurement of any couple of conjugated quadratures, say

for example

^

X =

1

2

(a

s

+ a

y

s

) ;

^

Y =

i

2

(a

y

s

� a

s

) ; (91)

with

[

^

X;

^

Y ] =

i

2

: (92)

The method for jointly measuring

^

X and

^

Y consists of making a conventional

measurement of two commuting currents

^

Z

R

and

^

Z

I

that have the same expectation

values of

^

X and

^

Y , namely

h

^

Xi = h

^

Z

R

i ; h

^

Y i = h

^

Z

I

i ; (93)

or, in complex notation

ha

s

i = h

^

Zi : (94)

Eq. (94) emphasizes the fact that measuring

^

X and

^

Y jointly is equivalent to

\measuring the complex operator" a

s

. Now we will see that the price to pay for

jointly measuring non commuting observables is an additional noise. In fact, let us
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evaluate the r.m.s. 
uctuations for

^

X ,

^

Y , and for

^

Z

R

,

^

Z

I

, and then compare the

respective results. One has

h�

^

Z

2

R

i = h�

^

X

2

i+ h�

^

X

2

i

i = h�

^

X

2

i +

1

4

; (95)

and, similarly

h�

^

Z

2

I

i = h�

^

Y

2

i + h�

^

Y

2

i

i = h�

^

Y

2

i+

1

4

; (96)

where

^

X

i

and

^

Y

i

are the same quadratures as in Eq. (91), but for the image-band

mode a

i

. It follows that the experimental probability distribution of the photocurrent

^

Z has the same average of the complex �eld a

s

, but with an additional noise. From

Eqs. (95) and (96) we deduce the \experimental" Heisenberg relation [12, 13]

h�

^

Z

2

R

ih�

^

Z

2

I

i �

1

4

; (97)

which should be compared with the customary inequality

h�

^

X

2

ih�

^

Y

2

i �

1

4

jh[

^

X;

^

Y ]ij

2

�

1

16

: (98)

Notice that the usual Heisenberg relation pertains the intrinsic uncertainties of a

couple of conjugated observables, and thus can be used only to analyze conventional

measurements of one of the two observables at a time (the uncertainty of the other

observable refers to a \preparation" before the measurement). On the other hand,

the case of joint measurements is described by the new Heisenberg inequality (98):

here, the \experimental" noise is double than the \theoretical" one, and their relative

factor 2 is usually referred to as \the additional 3 decibels (3dB) noise due to the

joint measure". Such noise is of quantum origin, and is unavoidable. This can be

easily understood with the aid of the following argument. The 3dB noise originates

from the vacuum 
uctuations of the image-band mode, which is needed in order to

have a commuting current

^

Z. For this purpose one needs to add a

y

i

|not a

i

|to the

signal annihilator a

s

, and this produces the anti-normal ordering for the POM, which

corresponds to the 3dB Gaussian convolution

d

^

�(z; z) = d

2

z

i

h0j�

2

(z �

^

Z)j0i

i

= d

2

z : �

2

(z � a

s

) :

A

=

Z

d

2

�

�

2

e

z��z�

e

�

1

2

j�j

2

^

D

s

(�) : (99)

In the following we will see that the 3dB additional noise is equivalent to measuring

each quadrature with e�ective quantum e�ciency � =

1

2

.
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4.1 Marginal joint measurements

It is clear that once a method for measuring the complex �eld a is given, then any

function of the �eld can be measured. Such measuring scheme resembles a \classical"

measurement in the phase space, where one jointly measures the canonical pair and

then evaluates functions of it. Operatively, the measurement works similarly to the

classical case, namely, after detecting the complex photocurrent

^

Z and obtaining the

reading z 2 C, one evaluates the function w = f(z; z). What is the POM that gives

the probability distribution for w? The answer is simple: the probability density for

w is just the marginal probability of p(z; z), namely

p(w) =

Z

d

2

z p(z; z) �(w � f(z; z)) : (100)

Hence, the POM is the marginal POM of d

^

�(z; z)

d

^

�(w) = dw

Z

d

^

�(z; z) �(w � f(z; z)) : (101)

The Dirac delta function in Eq. (101) must be de�ned carefully on the complex

plane, depending on the particular analytic form of the function f . Using Eq. (87)

one obtains

d

^

�(w) = dsdw

i

h0j�(w � f(

^

Z;

^

Z

y

))j0i

i

= dw : �(w � f(a; a

y

)) :

A

: (102)

In the following we will examine some relevant choices for the function f .

4.1.1 Field quadrature

Field quadrature corresponds to the function f(z; z) = Re(ze

�i�

) of the �eld. In this

way, from a joint measurement of any couple of conjugated quadratures, one obtains

a marginal probability distribution for any desired single quadrature â

�

. In fact, from

Eq. (102) one has

d

^

�(x) = dx : �(x� â

�

) :

A

= dx

Z

+1

�1

d�

2�

e

i�x

e

�

1

8

j�j

2

e

�i�â

�

= dx

2

p

�

exp [�2(x� â

�

)] ; (103)

which is a Gaussian with variance �

2

=

1

4

, as expected from Eq. (95): this is just

the 3dB noise due to the joint measure. Comparing Eq. (103) with Eq. (71) we

immediately recognize that this noise corresponds to an e�ective quantum e�ciency

� =

1

2

.
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4.1.2 Field intensity

This case corresponds to the function f(z; z) = jzj

2

. One has

d

^

�(w) = dw : �(w � a

y

a) :

A

= dw

Z

d�

2�

e

�i�w

: e

i�a

y

a

:

A

= dw

Z

d�

2�

e

�i�w

(1� i�)

�a

y

a�1

=

w

a

y

a

(a

y

a)!

e

�w

dw : (104)

The POM (104) is an unsharp version of the ideal POM (50). Notice that the function

in Eq. (104) is not a Poisson, because here it is regarded as a function of w|not

versus a

y

a.

4.1.3 Phase of the �eld

This case is particularly interesting, as in practice it is the only way to de�ne a

quantum mechanical measurement of the phase of the �eld, namely through the

measurement of the polar angle of a complex photocurrent. It is instructive to analyze

brie
y the experimental procedure for obtaining the marginal phase distribution.

This is illustrated in Fig. 5, where, as an example, a computer simulation of the

experimental procedure is illustrated for a squeezed state. Each experimental event

consists of a reading of the complex heterodyne photocurrent, which is represented by

a point plotted in the complex plane of the �eld amplitude. The phase value inferred

from the event is the polar angle of the point itself. The experimental histogram of the

phase distributions is obtained upon dividing the plane into \in�nitesimal" angular

bins of equal width ��, from �� to �, then counting the number of points which

fall into each bin. In Fig. 5 the simulated experimental histogram (10

4

events) is

compared with the theoretical probability as obtained from the marginal phase POM

of the heterodyne detector. Formally, the marginal phase POM is given by

d

^

�(�) = d� : �(�� arga) :

A

; (105)

where the meaning of the � function is the marginal integral of the �

2

distribution over

the polar modulus on the complex plane, namely

�(�� argz) =

Z

1

0

�d� �

2

(�e

i�

� z) =

Z

1

0

dr

Z

C

d

2

�

2�

2

exp

h

p

r(e

i�

� z)� � c:c:

i

: (106)

One has

d

^

�(�) =

d�
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Z

1

0

dr

Z

C

d

2

�

�

e

p

r(e

i�

��e

�i�

�)

e

��a

e

�a

y

=

d�

2�

Z

C

d

2

�

�

e

�

1

2

j�j

2

^

D(�)

[Im(�e

�i�

)� i0

+

]

2

: (107)

Equivalently, evaluating the marginal POM of the coherent-state projector, one has
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Figure 5: Computer simulation of a heterodyne phase detection experiment for a squeezed state

with 4.53 squeezing photons and 20 photons in total. The histogram for 5000 events is compared

with the theoretical result from the POM (108).

d

^

�(�) =

d�

2�

Z

1

0

drj

p

re

i�

ih

p

re

i�

j =

d�

2�

1

X

nm=0

e

i(n�m)�

�[

1

2

(n +m) + 1]

p

n!m!

jnihmj :(108)

We will discuss this POM later and compare it with the ideal one coming from

quantum estimation theory.

5 Quantum estimation theory

Quantum estimation theory analyzes POM's at a purely abstract level, with the

purpose of seeking the best strategy for estimating one or more parameters of a

quantum system. The theory looks for the general class of POM's that describe the

speci�c measurement, then optimizes the POM according to some pre�xed goodness

criterion. In general, one can say that the problem resorts to seeking the best strategy

for estimating a set of parameters �� = f�

1

; �

2

; : : : ; �

m

g of the density operator �̂(��)

of the system (for example the position and momentum of a particle, the amplitude

of a �eld mode, etc). The observational strategy for estimating �� is expressed by

a POM that pertains a generic apparatus along with its \data processing rule", i.e.

the evaluation of a function of the experimental result. Let us denote by d

^

�(��) the

generic POM. Generally, the result of the measurement|i.e. the estimated values|

are di�erent from the \true" ones, and we will denote the true values by �� and the

estimated values by ��

�

. Then, the joint conditional probability density p(��

�

j��) of
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estimating ��

�

for true values ��, is given by

p(��

�

j��)d

m

�� = Tr[�̂(��)d

^

�(��

�

)] : (109)

The goodness of the POM is considered on the basis of a cost function C(��

�

; ��),

which assesses the cost of errors in the estimates. Examples of cost functions are the

delta-function cost

C(��

�

; ��) = �

m

Y

k=1

�(�

k�

� �

k

) ; (110)

and the quadratic cost

C(��

�

; ��) = �

m

X

k=1

(�

k�

� �

k

)

2

: (111)

More generally, in Eqs. (110) one could consider di�erent weights for every

component, or one can introduce a positive cost matrix in the quadratic case (111).

We must provide also an a priori probability density z(��) for the estimanda. Then,

the average cost incurred when the strategy represented by d

^

�(��) is employed, is

given by

C =

Z

d

m

�� z(��)C(��

�

; ��)p(��

�

j��) = Tr

Z

^

W(��

�

) d

^

�(��

�

) ; (112)

where

^

W(��) denotes the selfadjoint risk operator

^

W(��

�

) =

Z

d

m

�� z(��)C(��

�

; ��) �̂(��) : (113)

We want now to select the POM that minimizes the average cost C under the

constraints

d

^

�(��) � 0 ;

Z

d

^

�(��) =

^

1 : (114)

This can be done as follows. Both operators d

^

�(��) and

^

W(��) are limited from below:

then the minimum C is achieved when their product d

^

�(��)

^

W(��) under trace and

integration in Eq. (112) is minimum. It follows that the equations for the optimal

POM can be written as follows

[

^

W(��)�

^

Y ]d

^

�

0

(��) = 0 ;

^

W(��)�

^

Y � 0 ; (115)

where

^

Y denotes the minimum risk operator (also called Lagrange operator)

^

Y = min

��

f

^

W(��)g : (116)
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It is clear that the solution of Eqs. (115) minimizes the operator under trace in Eq.

(112). In fact, upon integrating the �rst of Eqs. (115), from the de�nition of

^

Y it

follows that

Z

^

W(��)d

^

�(��) �

^

Y

Z

d

^

�

0

(��) =

^

Y : (117)

Hence,

^

Y is also the minimum integral under trace in Eq. (112), i.e.

^

Y =

Z

^

W(��)d

^

�

0

(��) ; C

min

= Tr

^

Y : (118)

Notice that the Lagrange operator is selfadjoint by de�nition, and hence

^

Y =

Z

^

W(��)d

^

�

0

(��) =

Z

d

^

�

0

(��)

^

W(��) ; (119)

namely the optimal POM also satis�es the hermitian conjugated of equation (115).

In general, solving Eqs. (115) and (118) is a di�cult task. In the following

subsection we will analyze in some detail a relevant example: the canonical

measurement of the phase.

5.1 Canonical measurement of the phase

The estimation problem is the following: to estimate the phase-shift � of a �xed

density matrix �̂

0

undergoing the unitary transformation

�̂(�) = e

�ia

y

a�

�̂

0

e

ia

y

a�

: (120)

First, we observe that � is de�ned on a circle (a 2�-window), because a

y

a is an integer

operator. Then, we notice that the family of states f�̂(�)g is \covariant", namely it

is of the form

�̂(�) =

^

U

�

�̂

0

^

U

y

�

; (121)

where

^

U

�

are unitary operators representing a group|in the present case, the abelian

group U(1) of rotation along one axis. For a covariant estimation problem, the optimal

POM must be itself covariant. This should be true at least if we want a likelihood

p(�j�) which is independent on � [for a general study of covariant estimation problems

see Ref. [14]] i.e.

p(�j�) = Tr[

^

U

�

�̂

0

^

U

y

�

d

^

�(�)] = const. ; (122)

which, due to invariance of trace under cyclic permutations leads to

d

^

�(�) =

^

U

�

d

^

�(0)

^

U

y

�

: (123)
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Hence, the problem is restricted to �nd only the operator d

^

�(0)

:

= d�

^

�

0

=(2�).

Consistently with the assumption of likelihood constant vs �, we consider the case of

a priori unknown parameter �, with uniform probability density z(�) =

1

2�

. For the

moment, we address only the max-likelihood estimation problem, corresponding to

the cost function

C(�

�

; �) = ��

2�

(�

�

� �) ; (124)

where �

2�

denotes the 2�-periodic delta function. With the above choices, the risk

operator is given by

^

W(�

�

) =

Z

d�

2�
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)
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1
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0

^

U

��

�

; (125)

and the Lagrange operator becomes diagonal with a

y

a, namely

^

Y = �

Z

d�

(2�)

2

^

U

�

^

�

0

�̂

0

^

U

y

�

; (126)

hkj
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hkj
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0
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1
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hkj

^

�

0

�̂

0

jki : (127)

Thanks to covariance, the estimation problem resorts to seeking the solution d

^

�(0)

of the following equations only

[

^

W(0)�

^

Y]d

^

�(0) = 0 ;

^

W(0) �

^

Y � 0 : (128)

Notice that from Eq. (125) one has

^

W(0) = �

1

2�

�̂

0

: hence, Eqs. (128) can be written

as follows

[�̂

0

+ 2�

^

Y ]�

0

= 0 ; �̂

0

+ 2�

^

Y � 0 : (129)

The problem is still too di�cult, and we restrict attention to the case of pure states

�̂

0

= j ih j. We seek solutions of Eqs. (129) in the form

d

^

�(0) =

d�

2�

j
ih
j ; (130)

where j
i is a (generally non normalizable) vector in the Hilbert space. The Lagrange

operator has the following nonvanishing matrix elements
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; (131)

where 


k

:

= hkj
i and  

k

:

= hkj i. Completeness of d

^

�(�) implies that
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= hnj
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2�

e
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; (132)
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which requires j


k

j = 1. Moreover, reality of

^

Y needs arg(


k

) = arg( 

k

) for  

k

6= 0.

Hence, we write




k

=

�

 

k

=j 

k

j

:

= e

i�

k

;  

k

6= 0

1 ;  

k

= 0

(133)

leading to
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X

n=0
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n

j : (134)

Now, we only need to check Eqs. (129). The second equation means that for any

vector jvi in the Hilbert space, one has

0 � hvj�̂
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+ 2�
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This bound is satis�ed according to the Schwartz inequality
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n
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1

X

k=0
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j : (136)

It remains to show that the �rst one of Eqs. (129) is also satis�ed. One has

hkj[�̂

0

+ 2�

^

Y]�

0

jmi = hkj ih j
ih
jmi+ 2�hkj

^

Yjkihkj
ih
jmi

= [hkj ih j
i � hkj ih j
ih
jkihkj
i]h
jmi

= hkj ih j
i[1� j


k

j

2

]h
jmi = 0 ; (137)

where we have considered that due to Eq. (119) also the following identity holds true

^

Y = �

1

2�

^

�

0

�̂

0

: (138)

In summary, we have proved the following assertion: the POM for estimating a phase

shift of a pure state j ih j with max-likelihood cost-function is given by

d

^

�(�) =

d�

2�

e

�ia

y

a�

j
ih
je

ia

y

a�

�

d�

2�

1

X

nm=0

e

�i(n�m)�+i(�

n

��

m

)

jnihmj ; (139)

where the phases �

n

depend on the state as follows

�

n

=

�

arg(hnj i) ; hnj i 6= 0

0 ; hnj i = 0

(140)
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In practice, it is not too restrictive to consider states with a well de�ned phase|i.e.

with �

n

= n�|which are just rotated by an angle � of real positive states having all

�

n

= 0. In this case the optimal POM takes the canonical form

d

^

�(�) =

d�

2�

1

X

nm=0

e

�i(n�m)�

jnihmj : (141)

We have �nd the optimal POM according to the max-likelihood criterion that

corresponds to a �-like cost function. However, the same POM is optimal for any

cost-function of the form C(�

�

; �) = C(� � �

�

) where C(�) is an even 2�-periodic

function on R satisfying

Z

1

0

C(�) cos k�d� � 0 ; k = 1; 2 : : : (142)

In fact, any function C(�) satisfying Eq. (142) has Fourier series of the form

C(�) = c

0

�

1

X

k=0

c

k

cos k� ; c

k

� 0 : (143)

Then, consider a general covariant POM

d

^

�(�) =

d�

2�

1

X

nm=0

e

�i(n�m)�

�

nm

jnihmj ; (144)

with �

nm

= hnj

^

�

0

jmi and

^

�

0

a generic selfadjoint operator. The average cost is given

by

2�C = c

0

�

1

X

k=1

c

k

Z

d�

2�

cos k�

1

X

nm=0

e

�i(n�m)�

�

nm

hmj ih jni (145)

= c

0

�

1

X

k=1

c

k

1

2

X

jn�mj=k

h jni�

nm

hmj i : (146)

Positivity of d

^

�(�) implies that j�

nm

j �

p

�

nn

�

mm

= 1, hence

X

jn�mj=k

h jni�

nm

hmj i �

X

jn�mj=k

jh jnijjhmj ij ; (147)

and the equality is achieved only if �

nm

= 


�

n




m

, with j


n

j = 1. It follows that the

minimum cost is

2�C

min

= c

0

�

1

2

1

X

k=1

c

k

1

X

nm=0

jh jnijjhmj ij (148)

and this is attained by the POM (139).

2

2

This is another derivation of the optimal POM for the quantum estimation problem of phase

shift of pure states, but for more general cost functions. The second derivation is due to Holevo [14],

whereas the previous one is an extended version of the Helstrom's proof [1].
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Figure 6: Number and phase probability distribution of optimal phase states with hn̂i = 20 for

ideal and heterodyne phase detection. Optimal states minimize the r.m.s. phase 
uctuations (the

procedure for deriving such states is explained in Ref. [15]).

Notice that in the category (142) one also has the following cost functions

4 sin

2

�

2

= 2� 2 cos � ; (149)

minf�; 2� � �g =

�

2

�

4

�

1

X

k=0

1

X

k=0

cos(2k + 1)�

(2k + 1)

2

; (150)

j sin

�

2

j =

2

�

�

4

�

1

X

k=1

cos k�

4k

2

� 1

; (151)

��

2�

(�) = �

1

2�

�

1

�

1

X

k=0

cos k� : (152)

Minimizing the cost is equivalent to minimize the corresponding periodicized 
uctu-

ations (r.m.s 
uctuations in Eq. (149)), or to maximize the likelihood in Eq. (152).

Notice that the function minf�

2

; (��2�)

2

g does not belong to category (142). As the

optimal POM is rather insensitive to the choice of the cost function, it can deserve

the name \ideal" POM for the phase.

In Fig. 6 I report a numerical comparison between the ideal and the marginal

heterodyne phase detection. For both cases a state with 20 photons is considered that

minimizes the r.m.s. phase deviation �� =

q

h��

2

i of the corresponding detection

probability. It is evident that the ideal POM leads to probability distribution sharper

than the heterodyne POM. Correspondingly, the number probability of optimal states

for ideal detection are slightly broader than the number probability of optimal states
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for heterodyne detection. A more detailed analysis on marginal phase detection can

be found in Ref. [15].

6 Beyond the POM: state reduction and \instru-

ment"

Insofar we have considered only measurements that completely destroy the quantum

mechanical description of the system after the interaction with a macroscopic detector:

this is the case, for example, of photodetection, where radiation is completely

absorbed. We are now interested in a di�erent kind of measurements, which do

not destroy the quantum mechanical description of the system, so that in principle a

second measurement on the system can be performed after the �rst one. We call this

type of measurements \measurements of the �rst kind", generalizing a term introduced

byW. Pauli [16]. Henceforth, the customary measurement|i.e. those that destroy the

state of the system|will be referred to as \measurements of the second kind".

3

More

precisely, the de�nition of measurements of the �rst and second kind are as follows.

For the second kind measurements the quantum mechanical description is provided

just by the Born's rule: hence, these measurements are in one-to-one correspondence

with POM's. For the �rst kind measurements, on the other hand, the description

provides also the \state reduction" �̂ ! �̂

�

, which gives the state �̂

�

immediately

after the measurement, for a given experimental event � and for state �̂ immediately

before the measurement.

4

The \state reduction" is needed in order to evaluate the

statistics of repeated measurements. In the following, we will refer to as \statistics

of the measurements" including both the Born's rule and the state reduction.

5

The

physical design and the preparation of the measuring apparatus determines the whole

statistics of the measurement. In the following we will analyze the mathematical notion

of \instrument", which synthetically describes the statistics of a measurement of the

�rst kind.

6.1 Indirect measurements

The �rst kind measurement can be de�ned as a special type of \indirect" measurement

of the second kind. An indirect measurement is a measurement that, instead of being

performed directly on the system of interest, is carried out on a di�erent system, which

may include also the original system itself. Observables are measured that support

3

This nomenclature has been used by M. Ozawa in Ref. [17]

4

In this way the nomenclature \�rst" and \second kind" can be put into correspondence to the

\levels of description" of Holevo [18]. Here level I of description is the pure probabilistic one provided

by the POM's, level II is the description of state reduction; �nally, level III is the complete unitary

description of the microscopic apparatus.

5

Again this nomenclature is due to Ozawa [17].



32 G. M. D'Ariano, Bilkent lectures, Ankara, July 2-10 1995

informations on the desired quantities (for example, they have the same expectation

values), but are di�erent from them, and hence have di�erent statistical distributions.

�-

�-

? ?

System Probe

Detector

H

S

�̂ H

P

�̂

P

d

^

E

SP

(x)

^

U

Figure 7: General scheme of indirect measurement

of the second kind.

We have already considered this kind

of measurement in these lectures, when

we analyzed joint measurements of

conjugated quadratures of the �eld by

heterodyne detection. The general

scheme of this kind of measurements

is sketched in Fig. 7. There is a

system S and a probe P that interact

(but not necessarily) each other; a

measurement of the second kind is

performed on compatible observables

corresponding to operators acting on

the whole Hilbert space H

S


H

P

. In

this case the state of the system itself

is destroyed, and overall the measurement is of the second kind: the probe P is

needed only in order to make observables compatible. For example, if S + P have

orthogonal projection-valued observables d

^

E

SP

(x) and preparation �̂
 �̂

P

(I drop the

subindex S from the system density matrix) and the measurement is performed after

the interaction

^

U , the Born's rule is given by

dP (x) = Tr

S+P

[

^

U�̂ 
 �̂

P

^

U

y

d

^

E

SP

(x)] = Tr

S

[�̂d

^

�(x)] ; (153)

corresponding to the POM

d

^

�(x) = Tr

P

[�̂

P

^

U

y

d

^

E

SP

(x)

^

U ] : (154)

There is a simple way to change the above scheme in order to make it suited to

�rst kind measurements: just make a second kind measurement only on a probe

observable d

^

E

P

(x) (it is clear that now the interaction

^

U is strictly needed). The

resulting measurement scheme is sketched in Fig. 8. The Born's rule is

dP (x) = Tr

SP

[

^

U�̂
 �̂

P

^

U

y

^

1

S


 d

^

E

P

(x)] = Tr

S

f�̂Tr

P

[�̂

P

^

U

y

^

1

S


 d

^

E

P

(x)

^

U ]g ; (155)

corresponding to the POM

d

^

�(x) = Tr

P

[�̂

P

^

U

y

^

1

S


 d

^

E

P

(x)

^

U ] : (156)

Now, in order to determine the state reduction, one assumes that immediately after

this measurement the system S is subjected to another measurement of an arbitrary

observable of S, say with spectral resolution d

^

E

S

(y).

6

The joint probability for the

6

Here I consider that the second measurement is of the second kind. The argument can be easily

extended to the case that the second measurement is itself of the �rst kind: however, for the present

purpose, this would create a logical loop.
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two combined measurements is

dP (x;y) = Tr

SP

[

^

U�̂
 �̂

P

^

U

y

d

^

E

S

(y)
 d

^

E

P

(x)] : (157)

It is clear that the result would be exactly the same if the measurement described

by d

^

E

S

(y) is performed immediately before|instead of immediately after|the �rst

measurement (however after the interaction

^

U). Hence, there is no causal relation

between the \reading of the result x" and the result y of the second measurement.

Now, let us consider the experiment from the point of view of an observer who ignores

the apparatus. He asserts that the �rst measurement has produced result x according

to the Born's rule

dP (x) = Tr[�̂d

^

�(x)] : (158)

Then, he considers the second measurement as performed \immediately after" the

�-

�-

�

�

System Probe Detector

H
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�̂ H
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�̂

P

d

^

E

P

(x)

^

U

Figure 8: Scheme of an indirect measurement of the �rst kind.

�rst one, described by the Born's rule with POM d

^

E

S

(y), but now the measurement

is performed on a di�erent state, say �̂

x

, that depends on the result x of the �rst

measurement. In formulas, the conditional probability dP (xjy) of obtaining y given

the result of the �rst measurement was x, is given by

dP (xjy) = Tr

S

[�̂

x

d

^

E

S

(y)] ; (159)

and hence the joint probability of obtaining x and y can be written as follows

dP (x;y) = dP (xjy) dP (x) = Tr

S

[�̂

x

d

^

E

S

(y)]Tr

S

[�̂d

^

�(x)] : (160)

On the other hand, the probability (160) must be equal to the probability (157): in

this way the following identity is obtained
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^

E

P

(x)]

: (161)

The arbitrariness of the choice of the second measurement yields the following relation

for any basis fjnig

hnj�̂

x

jmi =

Tr
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U
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jmihnj 
 d

^

E

P

(x)]
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P
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U

y
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1
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(x)]

; (162)
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namely
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=
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=

Tr

P

[
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U�̂
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P

^

U
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^

1

s
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E

P

(x)]
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SP

[

^

U�̂
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P

^

U
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^

1

S


 d

^

E

P

(x)]

: (163)

Notice that the denominator in Eq. (163) is just the trace of the numerator over H

S

.

Hence, we can write Eq. (163) as follows

�̂

x

=

dI(x)�̂

Tr

S

[dI(x)�̂]

; (164)

where the mapping dI(x) is de�ned as

dI(x)�̂ = Tr

P

[

^

U�̂
 �̂

P

^

U

y

^

1

S


 d

^

E

P

(x)] ; (165)

and is called \instrument".

7

Thus we have seen that the description of a �rst kind measurement in terms

of Born's rule and state reduction �̂ ! �̂

x

pertains an observer who ignores the

microscopic description of the apparatus and focuses attention on the system S only.

This also makes clear that the state reduction is not a causal evolution: it is not the

consequence of the �rst observation and of \knowing the result", but just the statistical

correlation between the results of the two measurements due to the interaction of the

system with the probe.

8

Now, let us consider the properties of the map dI(x) more abstractly. The result

of the measurement is not just a point x: more generally, it is a Borel set, practically

an interval � 2R which the readout of the measurement is known to belong to.

The above derivation of the state reduction can be generalized to the following rule

(hereafter we drop the subindex S everywhere)

�̂! �̂

�

=

I(�)�̂

Tr[I(�)�̂]

; I(�) =

Z

�

dI(x) : (166)

6.2 Realizable instruments

Mathematically, the map I(�) is a linear transformation of trace class operators with

the following rules

0 � Tr[I(�)�̂] � 1 ; Tr[I(R)�̂] = 1

7

For many authors [19] the names \instrument" and \POM" are substituted by \operations" and

\e�ects", respectively.

8

In my knowledge, this point was �rst clari�ed by Ozawa [20].
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(167)

Tr[I([

n

�

n

)�̂] =

X

n

Tr[I(�)�̂] ; f�

n

g countable disjoint :

Notice that I(R)�̂ 6= �̂, in general.

9

It is easy to check that the map de�ned in

Eq. (165) along with Eq. (166) satis�es the above axioms.

10

On the other hand, an

abstract map I satisfying Eqs. (167) fully describes the statistics of a measurement

of the �rst kind. It gives both the state reduction and the Born's rule as follows

�̂! �̂

�

=

I(�)�̂

Tr[I(�)�̂]

; P (�) =

Z

�

dP (x) = Tr[I(�)�̂] : (168)

Now we address the problem if an instrument that satis�es axioms (167) can be

physically realized in terms of an indirect measurement involving an interaction with

some probe P , and for a suitable preparation of the probe. In other words, we want

to know if any \mathematically given" instrument dI is \physically realizable" with

a unitary interaction between S and P , as in Eq. (165). To this purpose, �rst notice

that Eq. (165) leads to a property for dI which is stronger than positivity: this is

\complete positivity". We say that an instrument is completely positive if it satis�es

the following requirement: for any �nite sequence of vectors jv

k

i and jw

k

i, k = 1; : : : ; n

one has

n

X

k;l=1

hv

k

j[dI(x)jw

k

ihw

l

j]jv

l

i � 0 : (169)

From Eq. (165) with �̂

P

= j'ih'j pure state we have
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U
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�

�

2

dx � 0 : (170)

9

The map I(R) describes a \measurement without reading": this is the evolution of an \open

system" S in interaction with an \environment" P .

10

In particular, let us check positivity of the map, namely

hvjdI(x)�̂jvi � 0 8v 2 H ; 8�̂ traceclass :

One has

hvjdI(x)�̂jvi = Tr[

^

U�̂ 
 �̂

P

^

U

y

jvihvj 
 d

^

E

P

(x)] :

Both density matrices can be written as convex linear combination of pure states. Hence, it is

su�cient to prove positivity for pure states only, say �̂ � j ih j and �̂

P

� j'ih'j. One has

Tr[

^

U j ih j 
 j'ih'j

^

U

y

jvihvj 
 d

^

E(x)] = dx

�

�

�

�

�

�

(j ih j 
 j'ih'j)

^

U

y

jvijxi
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�
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�

�

2

� 0 :
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Hence, a realizable instrument is completely positive. Remarkably, Ozawa [20]

has proven also the converse assertion, more precisely: Every completely positive

instrument dI(x) is realizable, i.e. there is an extension H
H

P

of the Hilbert space,

a pure state preparation j'i 2 H

P

of the probe, a unitary operator

^

U acting on

H
H

P

, and a selfadjoint operator on H

P

with spectral resolution d

^

E(x), such that

dI(x)�̂ = Tr

P

[

^

U�̂
 j'ih'j

^

U

y

^

1
 d

^

E(x)] : (171)

For the proof of the theorem the reader is referred to the original work of Ozawa [20].

We have seen that every instrument dI(x) is associated to a POM d

^

�(x) by

trace-duality as follows

Tr[d

^

�(x)�̂] = Tr[dI(x)�̂] : (172)

It is also true that for every POM d

^

�(x) there is always at least an instrument

dI(x) that satis�es Eq. (172). As a consequence, every POM can be achieved by a

measurement of the �rst kind, and thus the Ozawa's theorem generalizes the Naimark's

theorem.

I emphasize that an instrument dI(x) unambiguously determines a POM d

^

�(x),

whereas a POM d

^

�(x) can be generally obtained from many di�erent instruments: in

other words, one has the same Born's rule with di�erent state reductions. The POM

does not contain su�cient details on the apparatus to describe the back action on the

system, whereas the instrument provides a complete description of the statistics of

the measurement. On the other hand, there can be still many di�erent apparatus|

i.e. di�erent probes, probe preparations, and system-probe interactions|that are

described by the same instrument dI(x).

11

Now I want to make the relation between instrument and POM more explicit. Let

us consider, for simplicity, the case of continuous spectrum and pure state preparation

j'i for the probe. One has

Z

�

dI(x)�̂ = Tr

P

�

^

U (�̂
 j'ih'j)

^

U
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�

^
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dxjxihxj

��

=
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0

hx

0

j

^
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jxi�(x� x

0

)
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�

dx hxj

^

U j'i �̂ h'j

^

U

y

jxi =

Z

�

dx

^


(x) �̂

^




y

(x) ; (173)

where

^


(x) is the (non-unitary) operator acting on the Hilbert space H of the system

only

^


(x) = hxj

^

U j'i (174)

11

This is the level III of description of Holevo [18].
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which satis�es the completeness relation

12

Z

dx

^




y

(x)

^


(x) =

^

1 : (175)

The POM associated with the instrument can be obtained upon substituting Eq. (174)

into (172), and using invariance of trace under cyclic permutations. One has

d

^

�(x) = dx

^




y

(x)

^


(x) ; (176)

namely

^

�(�) =

Z

�

dx

^




y

(x)

^


(x) : (177)

The generalization of Eq. (177) to the case of discrete spectrum is straightforward.

Now we can immediately see that a way to change the instrument without changing

the POM is the following \local" unitary transformation of operators

^


(x)

^


(x) =)

^

V (x)

^


(x) ;

^

V

y

(x)

^

V (x) =

^

1 : (178)

The transformation (178) does not a�ect the complete positivity of the instrument

dI(x), however it gives a di�erent state reduction (or \back-action") with the same

POM.

6.2.1 Example 1: the standard von Neumann model

As a �rst example, we consider the von Neumann model [21] for a �rst kind

measurement. Originally the model was conceived for the measurement of the position

of a particle: here I translate it in the language of quantum optics, and I will describe

an indirect unsharp measurement of a �eld quadrature. The interaction Hamiltonian

is given by

^

H = 2�h�

^

X

^

Y

P

; (179)

where

^

X =

1

2

(a

y

+ a) and

^

Y

P

=

i

2

(a

y

P

� a

P

) are quadratures of the �eld modes

pertaining the system and the probe, respectively. The quadratures

^

X and

^

Y

P

are the

optical equivalent of position and momentum q̂

1

and p̂

2

of two di�erent interacting

particles, as it was considered in the original von Neumann model. Notice that the

present optical model is given only for the sake of exempli�cation, because is would

be di�cult to achieve the Hamiltonian (179) optically (but also mechanically!) In the

12

I remind that in our notation the domain of the integral, when not speci�ed, is the spectrum

of the considered observable. Also one should keep in mind that vectors jxi and j'i in Eq. (174)

belongs to the Hilbert space H

P

, so that the matrix element of

^

U between them is an operator acting

on H only (

^

U is an operator acting on H
H

P

).
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impulsive case (i.e. for strong coupling and short interaction time � = �

�1

! 0) the

operator

^


(x) in Eq. (174) is given by

^


(x) = hxj exp(�2i

^

X

^

Y

P

)j'i =

Z

dx

0

hxjx

0

i exp

"

�

^

X

d

dx

0

#

'(x

0

) = '(x�

^

X) ; (180)

and hence the instrument is

dI(x)j ih j = dx'(x�

^

X)j ih j'(x�

^

X) : (181)

To obtain the von Neumann state reduction|i.e. the projection over eigenvectors jxi

of

^

X|let us consider the squeezed-vacuum preparation for P

'(x) =

1

(2��

2

)

1=4

exp

 

�

1

4

x

2

�

2

!

: (182)

In the limit of vanishingly small �! 0 (� plays the role of the measurement precision)

the reduced state will localize on a narrower and narrower Gaussian centered around

the value x. Formally, we write the limit as follows

lim

�!0

dI(x)�̂

Tr[dI(x)�̂]

= jxihxj : (183)

6.2.2 Example 2: the Arthurs-Kelly model for joint measurements

The previous example can be easily generalized to the case of a joint measurement of

^

X and

^

Y . In this case we need two di�erent probe modes that commute each other.

Such a measurement model was considered for the �rst time by Arthurs and Kelly

[22]: here I extend their analysis in order to derive also the state reduction of the

model.

The impulsive interaction Hamiltonian can be chosen as follows

^

H = �h(�

1

^

X

^

Y

1

� �

2

^

Y

^

X

2

) ; (184)

where the choice of signs and constants is for later convenience. For simplicity of

notation we set the interaction time � = 1. Let us analyze this model in the Heisenberg

picture. One has

^

X

0

1

=

^

U

y

^

X

1

^

U =

^

X

1

+

1

2

�

1

^

X �

1

8

�

1

�

2

^

X

2

; (185)

^

Y

0

2

=

^

U

y

^

Y

2

^

U =

^

Y

2

+

1

2

�

2

^

Y �

1

8

�

1

�

2

^

Y

1

: (186)

It is convenient to require that the indirect measurement of

^

X and

^

Y be \unbiased",

namely that the time evolved expectation values of

^

X

1

and

^

Y

2

are equal to those of

^

X and

^

Y that we want to measure at t = 0, i.e. h

^

X

0

1

i = h

^

Xi and h

^

Y

0

2

i = h

^

Y i.
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Figure 9: Brownian-motion e�ect on the free

evolution due to the state reduction of the joint

�rst-kind measurement in Eq. (193). This kind

of measurement could account for the trajectory

description of measurements from cloud or bubble

chamber tracks.

This can be accomplished by choos-

ing �

1

= �

2

= 2, and putting

the probe modes into the vacuum

state. However, considering that the

vacuum 
uctuations for each quadrat-

ure is equal to

1

4

, one has h�

^

X

0

1

2

i =

h�

^

Y

0

2

2

i =

9

16

, which is

1

16

larger that

the minimumnoise for a joint measure-

ment. This suggests the further unit-

ary transformation

^

X

1

!

1

p

2

^

X

1

;

^

X

2

!

p

2

^

X

2

;

^

Y

1

!

p

2

^

Y

1

;

^

Y

2

!

1

p

2

^

Y

2

; (187)

which minimizes the noise, and can be

achieved by the unitary operator

^

U

sq

= e

i log 2(

^

X

1

^

Y

1

�

^

X

2

^

Y

2

)

: (188)

The operator (188) squeezes the va-

cuum state of the probe '1' by a factor

two in the

^

X direction, and corres-

pondingly unsqueezes the state of the probe '2' by the same factor. The squeezing

operator

^

U

sq

acts before the interaction Hamiltonian

^

H. Hence, in summary, the

model corresponds to the Hamiltonian (184) with probe preparation given by

�̂

P

=

^

U

sq

j0; 0ih0; 0j

^

U

y

sq

; (189)

and with

^

U

sq

de�ned in Eq. (188). In order to obtain the instrument corresponding

to the present measurement scheme, we evaluate the operators

^


(x) as follows

^


(x; y) =

1

hxj

2

hyj exp[�2i(

^

X

^

Y

1

�

^

Y

^

X

2

)]

^

U

sq

j0; 0i

=

1

hxj

2

hyj

^

D

y

(

^

X

2

+ i

^

Y

1

)

^

U

sq

j0; 0i ; (190)

where

^

D(x+iy) � exp[�2i(x

^

Y �y

^

X)] denotes the displacement operator acting on H

[

^

Y

1

and

^

X

2

can be treated as c-numbers, because they commute each other and with

any system operator]. Using the resolutions of the identity in terms of eigenstates of

^

X

1

and

^

Y

2

we obtain

^


(x; y) =

Z

dx

0

dy

0

1

hxjy

0

i

1 2

hyjx

0

i

2 1

hy

0

j

2

hx

0

j

^

D

y

(

^

X

2

+ i

^

Y

1

)

^

U

sq

j0; 0i

=

Z

dx

0

dy

0

1

�

e

2i(xy

0

�yx

0

)

^

D

y

(x

0

+ iy

0

)

1

hy

0

j

2

hx

0

j

^

U

sq

j0; 0i

=

Z

dx

0

dy

0

�

e

2i(xy

0

�yx

0

)

^

D

y

(x

0

+ iy

0

)

1

p

�

e

�

1

2

(x

0

2

+y

0

2

)

; (191)
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and introducing the complex variables � = x + iy and � = x

0

+ iy

0

we recognize in

Eq. (191) the coherent state projector

^


(x; y) �

^


(�;�) =

1

p

�

Z

d

2

�

�

e

�����

:

^

D

y

(�) :

A

�

1

p

�

j�ih�j : (192)

Hence, the state reduction is given by

�̂

(�;�)

=

j�ih�j�̂j�ih�j

Tr[j�ih�j�̂]

� j�ih�j : (193)

In Fig. 9 the e�ect of the state reduction (193) is illustrated for a freely evolving

�eld mode. The instrument in Eq. (193) reduces the state to a coherent state j�ih�j

that depends only on the outcome � of the measurement, whatever the starting state

�̂ is. Such kind of measurement|where the reduced state is independent on the input

state|is referred to as Gordon-Louisell

13

measurement [23]. In general, a Gordon-

Louisell measurement has an

^


 operator of the form

^


(x) = j 

x

ih'

x

j, where j 

x

i

denotes a normalized state vector that depends on the reading x, and fj'

x

ig is a

complete (generally not normalizable) set of vectors in the Hilbert space.
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