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Teaching Electromagnetic Field Theory Using

Differential Forms
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Abstract

The calculus of differential forms has significant advantages over traditional methods as a tool for teaching
electromagnetic (EM) field theory: First, forms clarify the relationship between field intensity and flux
density, by providing distinct mathematical and graphical representations for the two types of fields. Second,
Ampere’s and Faraday’s laws obtain graphical representations that are as intuitive as the representation
of Gauss's law. Third, the vector Stokes theorem and the divergence theorem become special cases of
a single relationship that is easier for the student to remember, apply, and visualize than their vector
formulations. Fourth, computational simplifications result from the use of forms: derivatives are easier to
employ in curvilinear coordinates, integration becomes more straightforward, and families of vector identities
are replaced by algebraic rules. In this paper, EM theory and the calculus of differential forms are developed
in parallel, from an elementary, conceptually-oriented point of view using simple examples and intuitive
motivations. We conclude that because of the power of the calculus of differential forms in conveying the
fundamental concepts of EM theory, it provides an attractive and viable alternative to the use of vector

analysis in teaching electromagnetic field theory.
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I. INTRODUCTION

Certain questions are often asked by students of electromagnetic (EM) field theory: Why does one need
both field intensity and flux density to describe a single field? How does one visualize the curl operation? Is
there some way to make Ampere’s law or Faraday's law as physically intuitive as Gauss’s law? The Stokes
theorem and the divergence theorem seem vaguely similar; do they have a deeper connection? Because
of difficulty with concepts related to these questions, some students leave introductory courses lacking a
real understanding of the physics of electromagnetics. Interestingly, none of these concepts are intrinsically
more difficult than other aspects of EM theory; rather, they are unclear because of the limitations of the
mathematical language traditionally used to teach electromagnetics: vector analysis. In this paper, we show
that the calculus of differential forms clarifies these and other fundamental principles of electromagnetic field
theory.

The use of the calculus of differential forms in electromagnetics has been explored in several important
papers and texts, including Misner, Thorne, and Wheeler [1], Deschamps (2], and Burke [3]. These works
note some of the advantages of the use of differential forms in EM theory. Misner et al. and Burke treat the
graphical representation of forms and operations on forms, as well as other aspects of the application of forms
to electromagnetics. Deschamps was among the first to advocate the use of forms in teaching engineering
electromagnetics.’

Existing treatments of differential forms in EM theory either target an advanced audience or are not
intended to provide a complete exposition of the pedagogical advantages of differential forms. This paper
presents the topic on an undergraduate level and emphasizes the benefits of differential forms in teaching
introductory electromagnetics, especially graphical representations of forms and operators. The calculus
of differential forms and principles of EM theory are introduced in parallel, much as would be done in a
beginning EM course. We present concrete visual pictures of the various field quantities, Maxwell’s laws,
and boundary conditions. The aim of this paper is to demonstrate that differential forms are an attractive

and viable alternative to vector analysis as a tool for teaching electromagnetic field theory.

~A. Development of Differential Forms

Cartan and others developed the calculus of differential forms in the early 1900’s. A differential form is a
quantity that can be integrated, including differentials. More precisely, a differential form is a fully covariant,
fully antisymmetric tensor. The calculus of differential forms is a self-contained subset of tensor analysis.

Since Cartan's time, the use of forms has spread to many fields of pure and applied mathematics, from
differential topology to the theory of differential equations. Differential forms are used by physicists in general
relativity (1], quantum field theory [4], thermodynamics [5], mechanics [6], as well as electromagnetics. A

section on differential forms is commonplace in mathematical physics texts (7], [8]. Differential forms have
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been applied to control theory by Hermann [9] and others.

B. Differential Forms in EM Theory

The laws of electromagnetic field theory as expressed by James Clerk Maxwell in the mid 1800’s required
dozens of cquations. Vector analysis offered a more convenient tool for working with EM theory than
earlier methods. Tensor analysis is in turn more concise and general, but is too abstract to give students a
conceptual understanding of EM theory. Weyl first expressed Maxwell’s laws using differential forms shortly
after Cartan’s work. Applied to electromagnetics, differential forms combine much of the generality of tensors
with the simplicity and concreteness of vectors.

General treatments of differential forms and EM theory include papers [2], [10], (11], [12], [13], and [14].
Ingarden and Jamiotkowksi [15] is an electrodynamics text using a mix of vectors and differential forms.
Parrott [16] employs differential forms to treat advanced electrodynamics. Thirring [17] is a classical field
theory text that includes certain applied topics such as waveguides. Bamberg and Sternberg [5] develop a
range of topics in mathematical physics, including EM theory via an interesting discussion of discrete forms
and circuit theory. Burke [3] treats a range of physics topics using forms, shows how to graphically represent
forms, and gives a useful discussion of twisted differential forms. The general relativity text by Misner,
Thorne and Wheeler [1] has several chapters on EM theory and differential forms, emphasizing the graphical
representation of forms. Flanders [6] treats the calculus of forms and various applications, briefly mentioning
electromagnetics. «

We note here that many authors, including most of those referenced above, give the spacetime formulation
of Maxwell’s laws using forms, in which time is included as a differential. We use only the (3+1) representation
in this paper, since the spacetime representation is treated in many references and is not as convenient for
various elementary and applied topics. Still other formalisms for EM theory are available, including bivectors,
quaternions, spinors, and higher Clifford algebras. None of these offer the combination of concrete graphical
representations, ease of presentation, and close relationship to traditional vector methods that the calculus
of differential forms brings to undergraduate-level electromagnetics.

The tools of applied electromagnetics have begun to be reformulated using differential forms. The au-
thors have developed a convenient representation of electromagnetic boundary conditions [18]. Thirring [17]
treats several applications of EM theory using forms. Reference [19] treats the dyadic Green function using

differential forms. Work is also proceeding on the use of Green forms for anisotropic media {20].

C. Pedagogical Advantages of Differential Forms

As a language for teaching electromagnetics, differential forms offer several important advantages over
vector analysis. Vector analysis allows only two types of quantities: scalar fields and vector fields (ignoring

inversion properties). In a three-dimensional space, differential forms of four different types are available.
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This allows flux density and field intensity to have distinct mathematical expressions and graphical repre-
sentations, providing the student with mental pictures that clearly reveal the different properties of each
type of quantity. The physical interpretation of a vector field is often implicitly contained in the choice of
operator or integral that acts on it. With differential forms, these properties are directly evident in the type

of form used to represent the quantity.

The basic derivative operators of vector analysis are the gradient, curl and divergence. The gradient and
divergence lend themselves readily to geometric interpretation, but the curl operation is more difficult to
visualize. The gradient, curl and divergence become special cases of a single operator, the exterior derivative
and the curl obtains a graphical representation that is as clear as that for the divergence. The physical
meanings of the curl operation and the integral expressions of Faraday’s and Ampere’s laws become so
intuitive that the usual order of development can be reversed by introducing Faraday’s and Ampere’s laws

to students first and using these to motivate Gauss’s laws.

The Stokes theorem and the divergence theorem have an obvious connection in that they relate integrals
over a boundary to integrals over the region inside the boundary, but in the language of vector analysis they
appear very diffcrent. These theorems are special cases of the generalized Stokes theorem for differential

forms, which also has a simple graphical interpretation.

Since 1992, we have incorporated short segments on differential forms into our beginning, intermediate, and
graduate electromagnetics courses. In the Fall of 1995, we reworked the entire beginning electromagnetics
course, changing emphasis from vector analysis to differential forms. Following the first semester in which
the new curriculum was used, students completed a detailed written evaluation. Out of 44 responses, four
were partially negative; the rest were in favor of the change to differential forms. Certainly, enthusiasm of
students involved in something new increased the likelihood of positive responses, but one fact was clear:

pictures of differential forms helped students understand the principles of electromagnetics.

D. Outline

Section II defines differential forms and the degree of a form. Graphical representations for forms of
each degree are given, and the differential forms representing the various quantities of electromagnetics
are identified. In Sec. III we use these differential forms to express Maxwell's laws in integral form and
give graphical interpretations for each of the laws. Section IV introduces differential forms in curvilinear
coordinate systems. Section V applies Maxwell’s laws to find the fields due to sources of basic geometries.
In Sec. VI we define the exterior derivative, give the generalized Stokes theorem, and express Maxwell’s laws
in point form. Section VII treats boundary conditions using the interior product. Section VIII provides a

summary of the main points made in the paper.
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1I. DIFFERENTIAL FORMS AND THE ELECTROMAGNETIC FIELD

In this section we define differential forms of various degrees and identify them with field intensity, flux
density, current density, charge density and scalar potential.

A differential form is a quantity that can be integrated, including differentials. 3z dz is a differential
form, as are z?ydz dy and f(z,y,2)dydz + g(z,y,z)dzdz. The type of integral called for by a differential
form determines its degree. The form 3z dx is integrated under a single integral over a path and so is a
1-form. The form z?ydz dy is integrated by a double integral over a surface, so its degree is two. A 3-form
is integrated by a triple integral over a volume. O-forms are functions, “integrated” by evaluation at a point.
Table I gives examples of forms of various degrees. The coefficients of the forms can be functions of position,

time, and other variables.

TABLE I
DIFFERENTIAL FORMS OF EACH DEGREE.
[ Degree Region of Integration Example General Form
0-form Point 3z f(z,y,2,...)
1-form Path y?dz + zdy oy dr + azdy + oz dz
2-form  Surface evdydz +e*gdzdz P dydz + B dzdr + fzdzdy
3-form Volume (z +y)dzdydz gdz dydz

A. Representing the Electromagnetic Field with Differential Forms

From Maxwell’s laws in integral form, we can readily determine the degrees of the differential forms that

will represent the various field quantities. In vector notation,

fE-dl = —Q/B-dA
at J,

P
H-d = 2fD-atA+/J-dA
P Ot Ja A

fD-dS = /qdv
s v

fB'dS =0
s

where A is a surface bounded by a path P, V is a volume bounded by a surface S, g is volume charge density,
and the other quantities are defined as usual. The electric field intensity is integrated over a path, so that
it becomes a 1-form. The magnetic field intensity is also integrated over a path, and becomes a 1-form as
well. The electric and magnetic flux densities are integrated over surfaces, and so are 2-forms. The sources
are electric current density, which is a 2-form, since it falls under a surface integral, and the volume charge

density, which is a 3-form, as it is integrated over a volume. Table II summarizes these forms.
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TABLE II
THE DIFFERENTIAL FORMS THAT REPRESENT FIELDS AND SOURCES.

| Quantity Form Degree Units Vector/Scalar |

Electric Field Intensity E 1-form
Magnetic Field Intensity H 1-form
Electric Flux Density D 2-form
Magnetic Flux Density B 2-form
Electric Current Density J 2-form
Electric Charge Density p 3-form

argar<
=a
SIE- AR R

B. 1-Forms; Field Intensity

The usual physical motivation for electric field intensity is the force experienced by a small test charge
placed in the field. This leads naturally to the vector representation of the electric field, which might be called
the “force picture.” Another physical viewpoint for the electric field is the change in potential experienced
by a charge as it moves through the field. This leads naturally to the equipotential representation of the
field, or the “energy picture.” The energy picture shifts emphasis from the local concept of force expenenced
by a test charge to the global behavior of the field as manifested by change in energy of a test charge as it
moves along a path.

Differential forms lead to the “energy picture” of field intensity. A 1-form is represented graphically as
surfaces in space [1], [3]. For a conservative field, the surfaces of the associated 1-form are equipotentials. The
differential dz produces surfaces perpendicular to the z-axis, as shown in Fig. la. Likewise, dy has surfaces
perpendicular to the y-axis and the surfaces of dz are perpendicular to the z axis. A linear combination of
these differentials has surfaces that are skew to the coordinate axes. The coefficients of a 1-form determine
the spacing of the surfaces per unit length; the greater the magnitude of the coefficients, the more closely
spaced are the surfaces. The 1-form 2 dz, shown in Fig. 1b, has surfaces spaced twice as closely as those of
dz in Fig. la.

In general, the surfaces of a 1-form can curve, end, or meet each other, depending on the behavior of
the coefficients of the form. If surfaces of a 1-form do not meet or end, the field represented by the form
is conservative. The field corresponding to the 1-form in Fig. 1a is conservative; the field in Fig. lc is
nonconservative.

Just as a line representing the magnitude of a vector has two possible orientations, the surfaces of a 1-form
are oriented as well. This is done by specifying one of the two normal directions to the surfaces of the form.
The surfaces of 3 dz are oriented in the +z direction, and those of —3 dz in the —z direction. The orientation
of a form is usually clear from context and is omitted from figures.

Differential forms are by definition the quantities that can be integrated, so it is natural that the surfaces

of a 1-form are a graphical representation of path integration. The integral of a 1-form along a path is the
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Fig. 1. (a) The 1-form dx, with surfaces perpendicular to the z axis and infinite in the y and z directions.
(b) The 1-form 2dz, with surfaces perpendicular to the z-axis and spaced two per unit distance in the
2 direction. (c) A general 1-form, with curved surfaces and surfaces that end or meet each other.

number of surfaces pierced by the path (Fig. 2), taking into account the relative orientations of the surfaces
and the path. This simple picture of path integration will provide in the next section a means for visualizing

Ampere’s and Faraday’s laws.

The 1-form E; dz + E, dy + E3 dz is said to be dual to the vector field E; %+ Eo + E32. The field intensity
" 1-forms E and H are dual to the vectors E and H.

Following Deschamps, we take the units of the electric and magnetic field intensity 1-forms to be Volts
and Amps, considering the differentials to have units of length, as shown in Table II. Other field and source
quantities are assigned units according to this same convention. Alternative conventions are available;
Bamberg and Sternberg [5] and others take the units of the electric and magnetic field intensity 1-forms to
be V/m and A/m, the same as their vector counterparts, so that the differentials carry no units and the
integration process itself is considered to provide a factor of length. If this convention is chosen, the basis

differentials of curvilinear coordinate systems (see Sec. IV) must also be taken to carry no units. This leads
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Fig. 2. A path piercing four surfaces of a 1-form. The integral of the 1-form over the path is four.

to confusion for students, since these basis differentials can include factors of distance. The advantages of
this convention are that it is more consistent with the mathematical point of view, in which basis vectors
and forms are abstract objects not associated with a particular system of units, and that a field quantity
has the same units whether represented by a vector or a differential form. The possibility of confusion when
using curvilinear coordinates seems to outweigh these points, and we choose Deschamps’ convention.

With this convention, the electric field intensity 1-form can be taken to have units of energy per charge,
or J/C. This supports the “energy picture,” in which the electric field represents the change in energy
experienced by a charge as it moves through the field. One might argue that this motivation of field intensity
is less intuitive than the concept of force experienced by a test charge at a point. While this may be true,
the graphical representations of Ampere’s and Faraday’s laws that will be outlined in Sec. III favor the
differential form point of view. Furthermore, the simple correspondence between vectors and forms allows
both to be introduced with little additional effort, providing students a more solid understanding of field

intensity than they could obtain from one representation alone.

C. 2-Forms; Fluz Density and Current Density

Flux density or flow of current can be thought of as tubes that connect sources of flux or current. This
is the natural graphical representation of a 2-form, which is drawn as sets of surfaces that intersect to form
tubes. The differential dz dy is represented by the surfaces of dz and dy superimposed. The surfaces of dx
perpendicular to the z-axis and those of dy perpendicular to the y-axis intersect to produce tubes in the z
direction, as illustrated by Fig. 3a. (To be precise, the tubes of a 2-form have no definite shape: tubes of
dzdy have the same density those of [.5 dz][2dy].) The coefficients of a 2-form give the spacing of the tubes.

The greater the coefficients, the more dense the tubes. An arbitrary 2-form has tubes that may curve or
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converge at a point.

Z

N

—_——md— - - -
N
~

Y (a (b)

Fig. 3. (a) The 2-form dx dy, with tubes in the z direction. (b) Four tubes of a 2-form pass through a
surface, so that the integral of the 2-form over the surface is four.

The direction of flow or flux along the tubes of a 2-form is given by the right-hand rule applied to the
orientations of the surfaces making up the walls of a tube. The orientation of dz is in the +z direction, and
dy in the +y direction, so the flux due to dzdy is in the +z direction.

As with 1-forms, the graphical representation of a 2-form is fundamentaily related to the integration
process. The integral of a 2-form over a surface is the number of tubes passing through the surface, where
each tube is weighted positively if its orientation is in the direction of the surface’s oriention, and negatively
if opposite. This is illustrated in Fig. 3b.

As with 1-forms, 2-forms correspond to vector fields in a simple way. An arbitrary 2-form D; dydz +
D, dzdz + D3 dz dy is dual to the vector field D% + D2 + D32, so that the flux density 2-forms D and B

are dual to the usual flux density vectors D and B.

D. 8-Forms; Charge Density

Some scalar physical quantities are densities, and can be integrated over a volume. For other scalar
quantities, such as electric potential, a volume integral makes no sense. The calculus of forms distinguishes
between these two types of quantities by representing densities as 3-forms. Volume charge density, for

example, becomes
p=gqdrdydz (1)

where ¢ is the usual scalar charge density in the notation of [2].
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Fig. 4. The 3-form dz dydz, with cubes of side equal to one. The cubes fill all space.

A 3-form is represented by three sets of surfaces in space that intersect to form boxes. The density of the
boxes is proportional to the coefficient of the 3-form; the greater the coefficient, the smaller and more closely
spaced are the boxes. A point charge is represented by an infinitesimal box at the location of the charge.
The 3-form dz dydz is the union of three families of planes perpendicular to each of the z, y and z axes.
The planes along each of the axes are spaced one unit apart, forming cubes of unit side distributed evenly
throughout space, as in Fig. 4. The orientation of a 3-form is given by specifying the sign of its boxes. As

with other differential forms, the orientation is usually clear from context and is omitted from figures.

E. 0-forms; Scalar Potential

O-forms are functions. The scalar potential ¢, for example, is a 0-form. Any scalar physical quantity that

is not a volume density is represented by a 0-form.

F. Summary

The use of differential forms helps students to understand electromagnetics by giving them distinct mental
pictures that they can associate with the various fields and sources. As vectors, field intensity and flux
density are mathematically and graphically indistinguishable as far as the type of physical quantity they
represent. As differential forms, the two types of quantities have graphical representations that clearly
express the physical meaning of the field. The surfaces of a field intensity 1-form assign potential change to
a path. The tubes of a flux density 2-form give the total flux or flow through a surface. Charge density is

also distinguished from other types of scalar quantities by its representation as a 3-form.
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III. MAXWELL'S LAWS IN INTEGRAL FORM

In this section, we discuss Maxwell’s laws in integral form in light of the graphical representations given

in the previous section. Using the differential forms defined in Table II, Maxwell’s laws can be written

ad
fr = -z/®
0
H —/D+/J
ﬁ Ot Ja A
o= |
s v

}(SB = 0. (2)

The first pair of laws is often more difficult for students to grasp than the second, because the vector picture

of curl is not as intuitive as that for divergence. With differcntial forms, Ampere’s and Faraday’s laws are
graphically very similar to Gauss’s laws for the electric and magnetic fields. The close relationship between

the two sets of laws becomes clearer.

A. Ampere’s and Faraday’s Laws

Faraday’s and Ampere’s laws equate the number of surfaces of a 1-form pierced by a closed path to the
number of tubes of a 2-form passing through the path. Each tube of J, for example, must have a surface
of H extending away from it, so that any path around the tube pierces the surface of H. Thus, Ampere’s
law states that tubes of displacement current and electric current are sources for surfaces of H. This is
illustrated in Fig. 5a. Likewise, tubes of time—varying magnetic flux density are sources for surfaces of E.

The illustration of Ampere’s law in Fig. 5a is arguably the most important pedagogical advantage of the
calculus of differential forms over vector analysis. Ampere’s and Faraday’s laws are usually considered the
more difficult pair of Maxwell’s laws, because vector analysis provides no simple picttire that makes the
physical meaning of these laws intuitive. Compare Fig. 5a to the vector representation of the same field in
Fig. 5b. The vector field appears to “curl” everywhere in space. Students must be convinced that indeed the
field has no curl except at the location of the current, using some pedagogical device such as an imaginary
paddle wheel in a rotating fluid. The surfaces of H, on the other hand, end only along the tubes of current;
where they do not end, the field has no curl. This is the fundamental concept underlying Ampere’s and

Faraday’s laws: tubes of time varying flux or current produce field intensity surfaces.

B. Gauss’s Laws

Gauss’s law for the electric field states that the number of tubes of D flowing out through a closed surface
must be equal to the number of boxes of p inside the surface. The boxes of p are sources for the tubes of D,
as shown in Fig. 6. Gauss’s law for the magnetic flux density states that tubes of the 2-form B can never

end—they must either form closed loops or go off to infinity.
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Fig. 5. (a) A graphical representation of Ampere’s law: tubes of current produce surfaces of magnetic field
intensity. Any loop around the three tubes of J must pierce three surfaces of H. (b) A cross section of
the same magnetic field using vectors. The vector field appears to “curl” everywhere, even though the
field has nonzero curl only at the location of the current.

Fig. 6. A graphical representation of Gauss’s law for the electric flux density: boxes of p produce tubes of
D.

Comparing Figs. 5a and 6 shows the close relationship between the two sets of Maxwell’s laws. In the same
way that flux density tubes are produced by boxes of electric charge, field intensity surfaces are produced by
tubes of the sources on the right-hand sides of Faraday’s and Ampere’s laws. Conceptually, the laws only

differ in the degrees of the forms involved and the dimensions of their pictures.

C. Constitutive Relations and the Star Operator

‘The usual vector expressions of the constitutive relations for an isotropic medium,

D = ¢E
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B = uH,

involve scalar multiplication. With differential forms, we cannot use these same relationships, because D
and B are 2-forms, while E and H are 1-forms. An operator that relates forms of different degrees must be
introduced.

The Hodge star operator [5], [17] naturally fills this role. As vector spaces, the spaces of 0-forms and
3-forms are both one-dimensional, and the spaces of 1-forms and 2-forms are both three-dimensional. The
star operator * is a set of isomorphisms between these pairs of vector spaces.

For 1-forms and 2-forms, the star operator satisfies

xdr = dydz
xdy = dzdx
*xdz = dxdy.
0-forms and 3-forms are related by
*1 = dxdydz.

In R3, the star operator is its own inverse, so that x *a = a. A 1-form w is dual to the same vector as the
2-form *w.
Graphically, the star operator replaces the surfaces of a form with orthogonal surfaces, as in Fig. 7. The

1-form 3 dz, for example, has planes perpendicular to the z-axis. It becomes 3 dy dz under the star operation.

This 2-form has planes perpendicular to the y and the z axes.

Fig. 7. The star operator relates 1-form surfaces to perpendicular 2-form tubes.
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Using the star operator, the constitutive relations are
D = exE 3)
B = uxH (4)
where € and p are the permittivity and permeability of the medium. The surfaces of E are perpendicular to

the tubes of D, and the surfaces of H are perpendicular to the tubes of B. The following example illustrates

the use of these relations.

Example 1. Finding D due to an electric field intensity.
Let E = (dz + dy)e™*(@=¥ V be the electric field in free space. We wish to find the flux
due to the field. Using the constitutive relationship between D and E,
D €0 * (dz + dy)e (=¥

€0e* V) (x dz + * dy)

€0e* ¥ (dydz + dzdz) C.

While we restrict our attention to isotropic media in this paper, the star operator applies equally well to
anisotropic media. As discussed in Ref. [5] and elsewhere, the star operator depends on a metric. If the
metric is taken to be the permittivity or the permeability tensor, anisotropic star operators are obtained, and
the constitutive relations become D = . E and B = %, H [20]. Graphically, an anisotropic star operator acts

on 1-form surfaces to produce 2-form tubes that intersect the surfaces obliquely rather than orthogonally.

D. The Exterior Product and the Poynting 2-form

Between the differentials of 2-forms and 3-forms is an implied exterior product, denoted by a wedge A.
The wedge is nearly always omitted from the differentials of a form, especially when the form appears under
an integral sign. The exterior product of 1-forms is anticommutative, so that de A dy = —dy A dz. As a
consequence, the exterior product is in general supercommutative:

aAB=(-1)*BAa (5)
where a and b are the degrees of a and S, respectively. One usually converts the differentials of a form to
right—cyclic order using (5).

As a consequence of (5), any differential form with a repeated differential vanishes. In a three-dimensional
space each term of a p-form will always contain a repeated differential if p > 3, so there are no nonzero
p-forms for p > 3.

The exterior product of two 1-forms is analogous to the vector cross product. With vector analysis, it
is not obvious that the cross product of vectors is a different type of quantity than the factors. Under
coordinate inversion, a x b changes sign relative to a vector with the same components, so that a x b is a

pseudovector. With forms, the distinction between a A b and a or b individually is clear.
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The exterior product of a 1-form and a 2-form corresponds to the dot product. The coefficient of the
resulting 3-form is equal to the dot product of the vector fields dual to the 1-form and 2-form.
Combinations of cross and dot products are somewhat difficult to manipulate algebraically, often requiring
the use of tabulated identities. Using the supercommutativity of the exterior product, the student can easily
manipulate arbitrary products of forms. For example, the identities
A-BxC)=C-(AxB)=B - (CxA)
are special cases of
ANBAC=CANAANB=BACAA
where A, B and C are forms of arbitrary degrees. The factors can be interchanged easily using (5).
Consider the exterior product of the 1-forms E and H,
EAH = (Eidz+ Eydy+ Esdz) A (Hydz + Hydy + H3 dz)
= E,H,dxds+ E\Hydzdy + E1Hsdzdz
+EyH,dydz + EoHo dydy + EoHs dydz
+E3H dzdz + E3sHodzdy + EsHz dzdz
= (EHs — E3H,)dydz + (EsHy — E\Hs)dzdz + (E\Hy — ExHy)dzdy.
This is the Poynting 2-form S. For complex fields, S = E A H*. For time-varying fields, the tubes of this
2-form represent flow of electromagnetic power, as shown in Fig. 8. The sides of the tubes are the surfaces
of E and H. This gives a clear geometrical interpretation to the fact that the direction of power flow is

orthogonal to the orientations of both E and H.

Example 2. The Poynting 2-form due to a plane wave.
Consider a plane wave propagating in free space in the z direction, with the time-harmonic
electric field E = Eodx V in the z direction. The Poynting 2-form is
S = EANH

= Eodx/\g)-dy
To

2
= -E—Odzdy w
Mo

where 17 is the wave impedance of free space.

E. Energy Density
The exterior products E A D and H A B are 3-forms that represent the density of electromagnetic energy.
The energy density 3-form w is defined to be
w=%(E/\D+H/\B) 6)

The volume integral of w gives the total energy stored in a region of space by the fields present in the region.
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Fig. 8. The Poynting power flow 2-form S = E A H. Surfaces of the 1-forms E and H are the sides of the
tubes of S.

Fig. 9 shows the energy density 3-form between the plates of a capacitor, where the upper and lower plates
are equally and oppositely charged. The boxes of 2w are the intersection of the surfaces of E, which are
parallel to the plates, with the tubes of D, which extend vertically from one plate to the other.

IV. CURVILINEAR COORDINATE SYSTEMS

In this section, we give the basis differentials, the star operator, and the correspondence between vectors
and forms for cylindrical, spherical, and generalized orthogonal coordinates.
A. Cylindrical Coordinates

The differentials of the cylindrical coordinate system are dp, pdé and dz. Each of the basis differentials

is considered to have units of length. The general 1-form

Adp + Bpdeé + Cdz (M
is dual to the vector
Ap+ B¢ + Ca. (8)
The general 2-form
Apdep A dz+ Bdz A dp+CdpApdg (9)

is dual to the same vector. The 2-form dp d@, for example, is dual to the vector (1/p)dz.
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Fig. 9. The 3-form 2w due to fields inside a parallel plate capacitor with oppositely charged plates. The
surfaces of E are parallel to the top and bottom plates. The tubes of D extend vertically from charges
on one plate to opposite charges on the other. The tubes and surfaces intersect to form cubes of 2w, one
of which is outlined in the figure.

Differentials must be converted to basis elements before the star operator is applied. The star operator in

cylindrical coordinates acts as follows:

*dp = pdoA dz
*pdp = dzAdp
*dz = dpApde.

Also, 1 = p dpdpdz. As with the rectangular coordinate system, +x = 1. The star operator applied to
d¢ dz, for example, yields (1/p) dp.

Fig. 10 shows the pictures of the differentials of the cylindrical coordinate system. The 2-forms can be
obtained by superimposing these surfaces. Tubes of dz A dp, for example, are square rings formed by the

union of Figs. 10a and 10c.

B. Spherical Coordinates

The basis differentials of the spherical coordinate system are dr, rdf and rsin 8 d¢, each having units of
length. The 1-form
Adr + Brdf + Crsinfdg (10)
and the 2-form

Ardf Arsin@d¢ + Brsinfde A dr + Cdr Ardb (11)
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Fig. 10. Surfaces of (a) dp, (b) d¢ scaled by 3/x, and (c) d=.

are both dual to the vector
At +BO+Cé (12)

so that d@ d¢ is dual to the vector #/(r? sin ).

As in the cylindrical coordinate system, differentials must be converted to basis elements before the star

operator is applied. The star operator acts on 1-forms and 2-forms as follows:

*dr = rdfdArsinfdeo
*7 df

rsinfde A dr
*rsinfd¢ = drArdd

Again, +x = 1. The star operator applied to one is x1 = r?sin 6 dr df d¢. Fig. 11 shows the pictures of the
differentials of the spherical coordinate system; pictures of 2-forms can be obtained by superimposing these

surfaces.
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Fig. 11. Surfaces of (a) dr, (b) df scaled by 10/, and (c) d¢ scaled by 3/7.

C. Generalized Orthogonal Coordinates

Let the location of a point be given by (u,v,w) such that the tangents to each of the coordinates are

mutually orthogonal. Define a function hy such that the integral of h; du along any path with v and w
constant gives the length of the path. Define hy and h3 similarly. Then the basis differentials are

hydu, hodv, hsdw. (13)
The 1-form Ah; du + Bhy dv + Chg dw and the 2-form Ahohsz dv A dw + Bhshy dw A du+ Chihe du A dv are
both dual to the vector Aft + BY + CW. The star operator on 1-forms and 2-forms satisfies
«(Ahy du + Bha dv + Chy dw) = Ahzhs dv A dw + Bhshydw A du+ Chihadu A dv (14)
For O-forms and 3-forms, x1 = hyhahs du dv dw.

V. ELECTROSTATICS AND MAGNETOSTATICS

In this section we treat several of the usual elementary applications of Maxwell’s laws in integral form.
We find the electric flux due to a point charge and a line charge using Gauss’s law for the electric field.

Ampere’s law is used to find the magnetic fields produced by a line current.
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A. Point Charge
By symmetry, the tubes of flux from a point charge @ must extend out radially from the charge (Fig. 12),
so that
D = Dyr?sin0df d¢ (15)
To apply Gauss law fs D= fv p, we choose S to be a sphere enclosing the charge. The right-hand side of

Gauss’s law is equal to @, and the left-hand side is

2n T
f D = / / Dyr?sin@df do
S 0 0

= 4nr?Dyg.
Solving for Dy and substituting into (15),
_ @ :
D= 4M21"d0 rsinfdy C (16)

for the electric flux density due to the point charge. This can also be written
D= 427; sinf df d¢ C. (17)
Since 47 is the total amount of solid angle for a sphere and sinfdf d¢ is the differential element of solid

angle, this expression clearly matches Fig. 12 in showing that the amount of flux per solid angle is constant.

Fig. 12. Electric flux density due to a point charge. Tubes of D extend away from the charge.

B. Line Charge

For a line charge with charge density p; C/m, by symmetry tubes of flux extend out radially from the line,

as shown in Fig. 13. The tubes are bounded by the surfaces of d¢ and dz, so that D has the form

D = Dydédz. (18)
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Let S be a cylinder of height b with the line charge along its axis. The right-hand side of Gauss’s law is

b
o= [
\4 0

= bpl.
The left-hand side is
b p2nm
?{ D = / Dod¢dz
s o Jo
= 27TbD0.
Solving for Dy and substituting into (18), we obtain
PL
D= —d¢dz C 1
2w ¢ dz (19)

for the electric flux density due to the line charge.
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Fig. 13. Electric flux density due to a line charge. Tubes of D extend radially away from the vertical line
of charge.

C. Line Current
If a current I; A flows along the z-axis, sheets of the H 1-form will extend out radially from the current,
as shown in Fig. 14. These are the surfaces of d¢, so that by symmetry,
H = Hydg (20)
where Hp is a constant we need to find using Ampere’s law. We choose the path P in Ampere’s law

§oH =2 [,D+ [,J to be aloop around the z-axis. Assuming that D = 0, the right-hand side of
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Ampere’s law is equal to J;. The left-hand side is the integral of H over the loop,

2w
f H Hydo
P

0
27THO.

The magnetic field intensity is then
I
= — A 1
o do (21)

for the line current source.

\ /
/ T

Fig. 14. Magnetic field intensity H due to a line current.

VI. THE EXTERIOR DERIVATIVE AND MAXWELL'S LAWS IN PoINT FORM

In this section we introduce the exterior derivative and the generalized Stokes theorem and use these to
express Maxwell’s laws in point form. The exterior derivative is a single operator which has the gradient,
curl, and divergence as special cases, depending on the degree of the differential form on which the exterior
derivative acts. The exterior derivative has the symbol d, and can be written formally as
3

S~ dz. (22)

o %}

The exterior derivative can be thought of as implicit differentiation with new differentials introduced from

the left.
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A. Egzterior Derivative of 0-forms

Consider the 0-form f(z,y,z). If we implicitly differentiate f with respect to each of the coordinates, we
obtain
f dz + 8—Ji f d
62

which is a 1-form, the exterior derivative of f . Note that the differentials dz, dy, and dz are the exterior

a
df = z. (23)
derivatives of the coordinate functions z, ¥, and z. The 1-form df is dual to the gradient of f.
If ¢ represents a scalar electric potential, the negative of its exterior derivative is electric field intensity:
E = —dg.
As noted earlier, the surfaces of the 1-form E are equipotentials, or level sets of the function ¢, so that the

exterior derivative of a O-form has a simple graphical interpretation.

B. Exterior Derivative of 1-forms

The exterior derivative of a 1-form is analogous to the vector curl operation. If E is an arbitrary 1-form

E, dz + E» dy + E3 dz, then the exterior derivative of E is
dE =(%&m+%m@+%&w)m
+( —E’—E2d$+5(3—E2dy+§;E2dz ) dy
+(3&m+ 2 Ey dy + £ ma)u

Using the antisymmetry of the exterior product, this becomes
O0E; OF; 3E1 BEB OE, 6E'1
—_— dyd —— — —)dzd — — —)dzd
(O - SRy dyds + (5 = G dedo+ (= G iy (24)
which is a 2-form dual to the curl of the vector ﬁeld Elx + B>y + Esz.
Any 1-form E for which dE = 0 is called closed and represents a conservative field. Surfaces representing
different potential values can never meet. If dE # 0, the field is non-conservative, and surfaces meet or end

wherever the exterior derivative is nonzero.

C. Exterior Derivative of 2-forms

The exterior derivative of a 2-form is computed by the same rule as for 0-forms and 1-forms: take partial
derivatives by each coordinate variable and add the corresponding differential on the left. For an arbitrary
2-form B,

aB = ( £Bidz+&Bidy+ 3Bz ) dydz
+( &Bedu+ Body+ £ Badz ) dada
+( &Bsdo+ EBody+ £Bsdz ) dudy

8B, 0B, 633

= (-gﬁ— By aZ)dscdydz
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where six of the terms vanish due to repeated differentials. The coefficient of the resulting 3-form is the

divergence of the vector field dual to B.

D. Properties of the Exterior Dertvative

Because the exterior derivative unifies the gradient, curl, and divergence operators, many common vector
identities become special cases of simple properties of the exterior derivative. The equality of mixed partial
derivatives leads to the identity

dd =0, (25)
so that the exterior derivative applied twice yields zero. This relationship is equivalent to the vector rela-
tionships V x (Vf) =0 and V- (V x A) = 0. The exterior derivative also obeys the product rule

dlaAB)=daAB+(—1)PaAdb (26)
where p is the degree of a. A special case of (26) is
V- (AxB)=B:(VxA)—-A (VxB).
These and other vector identities are often placed in reference tables; by contrast, (25) and (26) are easily
remembered.

The exterior derivative in cylindrical coordinates is

9] o) a
d—a—pdp+a—¢d¢+£dz (27)

which is the same as for rectangular coordinates but with the coordinates p, ¢, z in the place of z,y, z. Note
that the exterior derivative does not require the factor of p that is involved in converting forms to vectors

and applying the star operator. In spherical coordinates,

g 5} 0
d——é7d7'+a—9d9+%d¢ (28)

where the factors r and r sin # again are not found in the exterior derivative operator. The exterior derivative
is
é] 7] 0
d= —du+ —dv+ —dw 29
ou v w (29)
in general orthogonal coordinates. The exterior derivative is much easier to apply in curvilinear coordinates
than the vector derivatives; there is no need for reference tables of derivative formulas in various coordinate

systems.

E. The Generalized Stokes Theorem

The exterior derivative satisfies the generalized Stokes theorem, which states that for any p-form w,

/de:ﬁde (30)

where M is a (p+ 1)-dimensional region of space and bd M is its boundary. If w is a 0-form, then the Stokes

theorem becomes f: df = f(b) — f(a). This is the fundamental theorem of calculus.
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If wis a 1-form, then bd M is a closed loop and M is a surface that has the path as its boundary. This
case is analogous to the vector Stokes theorem. Graphically, the number of surfaces of w pierced by the loop

equals the number of tubes of the 2-form dw that pass through the loop (Fig. 15).

(a) (b)

Fig. 15. The Stokes theorem for w a 1-form. (a) The loop bd M pierces three of the surfaces of w. (b) Three
tubes of dw pass through any surface M boundecd by the loop bd M.

If wis a 2-form, then bd M is a closed surface and M is the volume inside it. The Stokes theorem requires
that the number of tubes of w that cross the surface equal the number of boxes of dw inside the surface, as

shown in Fig. 16. This is equivalent to the vector divergence theorem.

Compared to the usual formulations of these theorems,

baf
o -1 = [ Ga
f E.-dl = /VXE-dA
bd A A
D-dS = /V~de
bdV v

the generalized Stokes theorem is simpler in form and hence easier to remember. It also makes clear that the
vector Stokes theorem and the divergence theorem are higher-dimensional statements of the fundamental

theorem of calculus.
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(a) (b)

Fig. 16. Stokes theorem for w a 2-form. (a) Four tubes of the 2-form w pass through a surface. (b) The
same number of boxes of the 3-form dw lie inside the surface.

F. Faraday’s and Ampere’s Laws in Point Form

prz—%/AB. (31)

Using the Stokes theorem, taking M to be the surface A, we can relate the path integral of E to the surface

ﬁE:/AdE. (32)

o
dE = —— B. 33
/A 5/ (33)

For sufficiently regular forms E and B, we have that

Faraday’s law in integral form is

integral of the exterior derivative of E,

By Faraday’s law,

3
dE = - B (34)

since (33) is valid for all surfaces A. This is Faraday’s law in point form. This law states that new surfaces
of E are produced by tubes of time-varying magnetic flux.

Using the same argument, Ampere’s law becomes

d
-9 : 5
dH = 2D+ J (35)

Ampere’s law shows that new surfaces of H are produced by tubes of time-varying electric flux or electric

current.
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G. Gauss’s Laws in Point Form

Gauss’s law for the electric flux density is

?(SDz/Vp. ) (36)

The Stokes theorem with M as the volume V and bd M as the surface .S shows that

72 D= /V dD. (37)
/V dD = /V p. (38)

dD = p. (39)

Using Gauss’s law in integral form (36),

We can then write

This is Gauss’s law for the electric field in point form. Graphically, this law shows that tubes of electric flux

density can end only on electric charges. Similarly, Gauss’s law for the magnetic field is
dB = 0. (40)

This law requires that tubes of magnetic flux density never end; they must form closed loops or extend to
infinity.
H. Poynting’s Theorem

Using Maxwell’s laws, we can derive a conservation law for electromagnetic cnergy. The exterior derivative

of S is

das

d(E A H)

(dEYANH — EA(dH)

~ Using Ampere’s and Faraday’s laws, this can be written

3] 5}
=-—BAH-EA=D-E
ds 5 A A 8tD AT (41)
Finally, using the definition (6) of w, this becomes
Sw
dS=—-——-EAJ.
T E (42)

At a point where no sources exist, a change in stored electromagnetic energy must be accompanied by tubes

of S that represent flow of energy towards or away from the point.
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I Integrating Forms by Pullback

We have seen in previous sections that differential forms give integration a clear graphical interpretation.
The use of differential forms also results in several simplifications of the integration process itself. Integrals
of vector fields require a metric; integrals of differential forms do not. The method of pullback replaces
the computation of differential length and surface elements that is required before a vector field can be
integrated.

Consider the path integral

E - dl (43)
The dot product of E with dl produces a 1-form vfr’ith a single differential in the parameter of the path P,
allowing the integral to be evaluated. The integral of the 1-form E dual to E over the same path is computed
by the method of pullback, as change of variables for differential forms is commonly termed. Let the path P
be parameterized by

z = pi(t), y = p2(t), z =ps(t)
for a < t < b. The pullback of E to the path P is denoted P*E, and is defined to be
P*E = P*(FEidz+ Eydy + Eszdz)

Ey(p1,p2,p3)dp1 + E2(p1, p2, p3)dp2 + E3(p1, p2,p3)dps.

<E (p1,p2, ps)%pTl + Ez(Pl,m»Ps)%’% + ES(P17P27P3)‘%‘> dt.
Using the pullback of E, we convert the integral over P to an integral in ¢ over the interval [a, b],

[5=[ s 0
Components of the Jacobian matrix of the coordinate transform from the original coordinate system to the
parameterization of the region of integration enter naturally when the exterior derivatives are performed.
Pullback works similarly for 2-forms and 3-forms, allowing evaluation of surface and volume integrals by the

same method. The following example illustrates the use of pullback.

Example 3. Work required to move a charge through an electric field.

Let the electric field intensity be given by E = 2zydr + z°dy —dz. A chargeof ¢=1C'is
transported over the path P given by (z =2, y =t, z=1~-1¢%) fromt =0tot =1. The
work required is given by

W = —q/ 2zy dx + 22 dy — dz (45)
which by Eq. (44) is equal to :

= —q/ P*(2zydx + 2° dy — dz)
where P*E is the pullback of the field 1-form to the path P,

P*E = 2(t2)(t)2tdt + (t2)2dt — (—3t%)dt

(5t* + 3t2) dt.
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Integrating this new 1-form in ¢ over [0,1], we obtain
1
W= —/ (5t* + 3t*)dt = -2 J
0

as the total work required to move the charge along P.

J. Summary

Throughout this section, we have noted various aspects of the calculus of differential forms that simplify
manipulations and provide insight into the principles of electromagnetics. The exterior derivative behaves
differently depending on the degree of the form it operates on, so that physical properties of a field are
encoded in the type of form used to represent it, rather than in the type of operator used to take its
derivative. The generalized Stokes theorem gives the vector Stokes theorem and the divergence theorem
intuitive graphical interpretations that illuminate the relationship between the two theorems. While of
lesser pedagogical importance, the algebraic and computational advantages of forms cited in this section also

aid students by reducing the need for reference tables or memorization of identities.

VII. THE INTERIOR PRODUCT AND BOUNDARY CONDITIONS

Boundary conditions can be expressed using a combination of the exterior and interior products. The
same operator is used to express boundary conditions for field intensities and flux densities, and in both

cases the boundary conditions have simple graphical interpretations.

A. The Interior Product

The interior product has the symbol J. Graphically, the interior product removes the surfaces of the first
form from those of the second. The interior product dzJdy = 0, since there are no dy surfaces to remove.
The interior product of dz with itself is one. The interior product of dz and dzdy is drxldrdy = dy. To
compute the interior product dyldzdy, the differential dy must be moved to the left of dzdy before it can

be removed, so that

dyJdz dy —dyldydz

= —dz.
The interior prodnct of arbitrary 1-forms can be found by linearity from the relationships
drldr =1, dxldy=0, dzldz=0
dylde =0, dyldy=1, dyldz=0 (46)
dzldr =0, dzJldy=0, dzldz=1
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The interior product of a 1-form and a 2-form can be found using

drldyA dz=0, dxldzAdz=-—-dz, dzldzAdy= dy
dyldy A dz=dz, dyldzAdz=0, dyldzA dy = —dx (47)
dzldy A dz = —dy, dzldzA dz = dz, dzldxz A dy = 0.

The following examples illustrate the use of the interior product.

Example 4. The Interior Product of two 1-forms
The interior product of @ = 3zdr — ydz and b =4dy + 5dz is
aldb = (Bzdr—ydz)J(4ddy+5dz)

= 12zdzldy + 15zdz)dz — 4ydz)dy — Sydzldz
= —S'y

which is the dot product a - b of the vectors dual to the 1-forms a and b.

Example 5. The Interior Product of a 1-form and a 2-form
The interior product of a = 3zdz — ydz and ¢ = 4dzdz + 5dzdy is
ale = (3xdz —ydz)l(4dzdz +5dzdy)

— 12zdzldzdz + 15z dz) dedy — 4ydz)dzdz — Sydzldz dy

—12zdz + 15z dy — 4y dx

which is the 1-form dual to —a x ¢, where a and ¢ are dual to a and c.

The interior product can be related to the exterior product using the star operator. The interior product
of arbitrary forms a and b is
alb = x(xbAa) (48)
which can be used to compute the interior product in curvilinear coordinate systems. (This formula shows
the metric dependence of the interior product as we have defined it; the interior product is usually defined
to be the contraction of a vector with a form, which is independent of any metric.) The interior and exterior
products satisfy the identity
a=nA{(nla)+nl(nAa) (49)
where « is an arbitrary form.
The Lorentz force law can be expressed using the interior product. The force 1-form F'is
F =q(E-v]B) (50)
where v is the velocity of a charge g, and the interior product can be computed by finding the 1-form dual
to v and using the rules given above. F is dual to the usual force vector F. The force 1-form has units of

energy, and does not have as clear a physical interpretation as the usual force vector. In this case we prefer
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to work with the vector dual to F, rather than F itself. Force, like displacement and velocity, is naturally a

vector quantity.

B. Boundary Conditions

A boundary can be specified as the set of points satisfying f(z,vy,z) = 0 for some suitable function f. The

surface normal 1-form is defined to be the normalized exterior derivative of f,

af

" anap

The surfaces of 7 are parallel to the boundary. Using a subscript 1 to denote the region where f >0, and a

(51)

subscript 2 for f < 0, the four electromagnetic boundary conditions can be written (18]

ndlnA(E1—Eq)) = 0
nd(nA(Hy— Hg)) = Js
nld(nA (D1 —D2)) = ps

n_l(n/\(31 —Bg)) = 0
where J, is the surface current density ?!form and p, is the surface charge density 2-form. The operator

nJnA projects an arbitrary form to its component that has nonzero integral along the boundary.

C. Surface Current

The field intensity boundary conditions can be stated simply: surfaces of the 1-form H; — Hj end along
lines of the surface current density 1-form Js. Surfaces of E; — E; cannot intersect a boundary at all.

The action of the operator ninA can also be interpreted graphically. Consider the field discontinuity
H, — Hy shown in Fig. 17a. The exterior product of n and H; — Hz is a 2-form with tubgs that run parallel
to the boundary, as shown in Fig. 17b. The component of H; — H, with surfaces parallel to the boundary
is removed. The interior product nl(n A (H1 — H2)) removes the surfaces parallel to the boundary, leaving
only surfaces perpendicular to the boundary, as in Fig. 17¢. Current flows along the lines where the surfaces
intersect the boundary. The direction of flow along the lines of the 1-form can be found using the right-hand
rule on the direction of H; — Hj in region 1 above the boundary.

Unlike other electromagnetic quantities, J, is not dual to the vector J,. The direction of J, is parallel to the
lines of J, in the boundary, as shown in Fig. 17c. (J;s is a twisted differential form, so that under coordinate
inversion it transforms with a minus sign relative to a nontwisted 1-form. This property is discussed in detail
in Refs. [3], [18], [21]. Operationally, the distinction can be ignored as long as one remains in right-handed
coordinates.) .J, is natural both mathematically and geometrically as a representation of surface current

density. The cxpression for current through a path using the vector surface current density is

I:/PJS-(ﬁxdl) | (52)
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Fig. 17. (a) The 1-form H; — Ha. (b) The 2-form n A (Hy — Hz). (c) The 1-form J,, represented by lines
on the boundary. Current flows along the lines.

where @i is a surface normal. This simplifies to

I= /P J, (53)

using the 1-form J;. Note that Js changes sign depending on the labeling of regions onc and two; this
ambiguity is precisely equivalent to the existence of two choices for fi in Eq. (52).

The following example illustrates the boundary condition on the magnetic field intensity.

Example 6. Surface current on a sinusoidal surface
A sinusoidal boundary given by z = cosy has magnetic field intensity H, = dz A above
and zero below. The surface normal 1-form is
" sinydy + dz
V1 +sin®y
By the boundary conditions given above,

J, = nd(nA dzx)
1
= l—m(sinydy + dz)J(sinydydz + dzdz)
dz + sin? y dx
1+sin’y
= dz A.

The usual vector Jg is —\/(_~"—1".i=‘—"_2L'——)- which clearly is not dual to dz. The direction of the
sin? y

vector is parallel to the lines of J; on the boundary.
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D. Surface Charge

‘The flux density boundary conditions are equally intuitive: tubes of the difference D) — Da in electric flux
densities on either side of a boundary intersect the boundary to form boxes of surface charge density. Tubes
of the discontinuity in magnetic flux density cannot intersect the boundary.

Figure 18a shows the 2-form D, — Ds. The exterior product n A (Dy — D) yields boxes that have sides
parallel to the boundary, as shown in Fig. 18b. The component of Dy — D, with tubes parallel to the
boundary is removed by the exterior product. The interior product with n removes the surfaces parallel to
the boundary, leaving tubes perpendicular to the boundary. These tubes intersect the boundary to form
boxes of charge (Fig. 18c). This is the 2-form p, = nd(n A (D1 — Da)).

The sign of the charge on the boundary can be obtained from the direction of Dy — D; in region 1 above
the boundary, which must point away from positive charge and towards negative charge. The integral of ps
over a surface,

Q= / Ps (54)
yields the total charge on the surface. Note that p;s chsanges sign depending on the labeling of regions one
and two. This ambignity is equivalent to the existence of two choices for the area element dA and orientation
of the area A in the integral [ 4 @s dA, where ¢, is the usual scalar surface charge density. In many cases, the

sign of the value of the integral is known before it is integrated, and this subtlety goes unnoticed.

Fig. 18. (a) The 2-form Dy — Ds. (b) The 3-form n A (D1 — Dy), with sides perpendicular to the boundary.
(c) The 2-form ps, represented by boxes on the boundary.
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VIII. CONCLUSION

The primary pedagogical advantages of differential forms are the distinct representations of field intensity
and flux density, intuitive graphical representations of each of Maxwell’s laws, and a simple picture of elec-
tromagnetic boundary conditions. Differential forms provide visual models that can help students remember
and apply the principles of electromagnetics. Computational simplifications also result from the use of
forms: derivatives are easier to employ in curvilinear coordinates, integration becomes more straightforward,
and families of related vector identities are replaced by algebraic rules. These advantages over traditional
methods make the calculus of differential forms ideal as a language for teaching electromagnetic field theory.

The reader will note that we have omitted important aspects of forms. In particular, we have not discussed
forms as linear operators on vectors, or covectors, focusing instead on the integral point of view. Other aspects
of electromagnetics, including the vector potentials, Green functions, and wave propagation also benefit from
the use of differential forms.

Ideally, the electromagnetics curriculum set forth in this paper wounld be taught in conjunction with calculus
courses employing differential forms. A unified curriculum, although desirable, is not necessary in order for
students to profit from the use of differential forms. We have found that because of the simple correspondence
between vectors and forms, the transition from vector analysis to differential forms is generally quite easy
for students to make. Familiarity with vector analysis also helps students to recognize and appreciate the
advantages of the calculus of differential forms over other methods.

We hope that this attempt at making differential forms accessible at the undergraduate level helps to fulfill
the vision expressed by Deschamps [2] and others, that students obtain the power, insight, and clarity that

differential forms offer to electromagnetic field theory and its applications.
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