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We present the first complete optimization of quantum tomography, for states, positive operator value
measures, and various classes of transformations, for arbitrary prior ensemble and arbitrary representation,
giving corresponding feasible experimental schemes in terms of random Bell measurements.
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A crucial task in quantum-information theory is the
precise determination of states and processes using a finite
amount of measurement data. Achieving this task is the
aim of quantum tomography [1-3], whose framework can
be briefly summarized as follows. A quantum measure-
ment is generally described by a positive operator value
measure (POVM), i.e., a collection of positive operators
P; € B(H) satisfying the normalization 3 ,P; = I [4].
The probability of measurement outcome i is given by
the Born statistical formula

pi = Ti[pP;] (1)

Tomographing an unknown state p of a quantum system
means performing a suitable POVM {P;} such that the
expectation value of an arbitrary operator A can be eval-
uated from the probability distribution p; = Tr{pP;]. The
expectation value of A can be obtained when it is possible
to expand A over the POVM as follows:

A= filAlP; 2)

fi[A] denoting suitable expansion coefficients. The expec-
tation (A) = Tr[pA] is then given by (A) = 3. f,[AKP;).
For tomography expansion (2) must hold for all operators
in B(H )—i.e., B(H) = span{P;}—and the POVM {P;}
is called informationally complete [5,6].

It is convenient to associate every operator A € B(H )
to a bipartite vector in 4 ® F in the following way:

d d
A= 3 Aplm)nl = 1A) = > A, lmn).  (3)

m,n=1 m,n=1

Information completeness of the POVM along with con-
vergence of the series (2) are equivalent to the condition
allAl3 = S 1P IAYP = blIAIZ, V A € B(H), with
0 <a = b <o, Sets of vectors |P;)) satisfying this con-
dition are known as frames [7]. This condition is equivalent
to invertibility of the frame operator F = Y ;|P))(P;l.
The expansion in Eq. (2) can be written as follows:

|A)) = Y (Di|ANIP,)), (4)
where {D;} is a dual frame, namely, a set of operators
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satisfying the identity Y ,|P;)){{D;| = I. For linearly de-
pendent frame {P;} the dual {D;} is not unique.

The request for the POVM {P;} to be informationally
complete can be relaxed if we have some prior information
about the state p. If we know that the state belongs to a
given subspace V C B(JH) the expectation value is

(4) = Ti[pA] = ((plA)) = (plQv|A)), (&)

Q~ orthogonal projector on V, whence the set {P,} is
required to span only V.

In estimating the expectation (A), optimality means
minimum variance 6(A) of the random variable f;[A] =
({D;]A)) with probability distribution p; = Tr{pP;], i.e.,

8(A) == Z|<<D,»|A>>|2Tr[pP,»] — | TlpAll%.  (6)

In a Bayesian scheme the state p is randomly drawn from
an ensemble S = {p,, pi} of states p, with prior probabil-
ity py, with the variance averaged over S, leading to

85(A) = Y [UDJANIP TrlpsP;] — > pil Tl pr ATl
i k

)

where ps = Y, prpi. Moreover, a priori we can be inter-
ested in some observables more than other ones, and this
can be specified in terms of a weighted set of observables
G ={A,, q,}, with weight g, > 0 for the observable A,,.
Averaging over G we have

85,6 = D UDIGID)) T psP] = > pra,| T piA, 112,
i k,n

®)

where G = Y, q,|A,)){(A,|. The weighted set G yields a
representation of the state, given in terms of the expecta-
tion values (A,,). The representation is faithful when {A,,} is
an operator frame, e.g., when it is made of the dyads |i){j|
corresponding to the matrix elements (j|p|i).

Notice that only the first term of 8¢ depends on {P;}
and {D,}.If p; € "V for all states p; € S, by making use of
Eq. (5) the first term of Eq. (8) becomes

n =Y (D;|0vGOID) TrpsP;]. )

i
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We now generalize this approach to tomography of
quantum operations, keeping generally different input
and output Hilbert spaces H;, and H ,, respectively.
This has the remarkable advantage that the usual tomog-
raphy of states comes as the special case of one-
dimensional F;,, whereas tomography of POVMs corre-
sponds to one-dimensional FH .

A quantum operation is a trace nonincreasing com-
pletely positive (CP) map T : B(H;,) — B(H ). In
order to gather information about a quantum operation
T, the most general procedure consists in (i) preparing a
state p € B(H ;, ® H ,) where H, is an ancillary sys-
tem with the same dimension of JH,,, (ii) performing a
POVM {P;} on the state (T ® I,)(p). The probability of
obtaining a generic outcome i is given by

pi =Til(T ® 1,)(p)P;], (10)
which, using the Choi-Jamiotkowski isomorphism [§]

Ry =T o IUDXU,  T(p) = Tri[(Uow ® p")R7],
(1

becomes

pi = Tr{P; Try,[(Iyy ® p%)(Ry ® 1)} = TR, 1)),
(12)

where 6, denotes partial transposition on JH ;,, and
T = Try[(P; @ L) Lo ® p)] (13)

It is convenient to use here the notion of a fester along with
the theoretical framework introduced in [9]. A tester is the
natural generalization of the concept of POVM from states
to transformations, and is represented by a set of positive
operators I1; € B(H ,,, ® H;,) with

S, =1, ®oa, Tr{o] = 1. (14)

As one can see from Eq. (12), the probability distribution
gets the form of a new kind of Born rule, with the tester
{I1,} in place of {P;}, and the operator R in place of p. On
the other hand, it is possible to prove [9] that the general-
ized Born rule p; = Tr[R11;] always arises from a physi-
cal scheme of measurement on the state (7" ® J,)(»):

pi =TiR7I] =TT ® I,(»)P,], (15)
with entangled state ¥ and POVM {P;} given by

v = Voo,

Pi = (Iout ® U_I/Z)Hi(lout ® 0-_1/2)-
(16)

This method allows a straightforward generalization of
tomography from states to transformations. Now tomo-
graphing a quantum operation means using a suitable tester
{I1,} such that the expectation value of any other possible
measurement can be inferred by the probability distribu-
tion p; = Tr[R;II;]. To achieve this task we have to

require that {II,} is an operator frame for B(H ., ®
JH ), i.e., any operator A can be expanded as

A=A lapTT, A€ B(H o Hy) (A7)

where {A;} is a possible dual of the frame {II,}; that is, the
condition Y;|TI,)({A;| = I,y ® I;, holds.

Optimizing the tomography of quantum operations
means minimizing the statistical error 5(A) in the determi-
nation of the expectation (A) = Tr{R;A] of an arbitrary
operator A as in Eq. (17), given by

8(4) = 3 KANANP TR L] — ITR7AIP. (18)

Averaging 8(A) over an ensemble £ = {R,, p;} of pos-
sible transformations and a weighted set G = {A,, ¢,,} of
possible observables, we then obtain

8e.a = D (AIGIAN THRT] = D piq, | TR A, I
i k,n

19)

Optimizing this figure of merit means (i) optimizing the
choice of the dual frame {A;}, (ii) optimizing the choice of
the tester {I1,}. The optimization of the tester {I1,} amounts
to both choosing the best input state for the quantum
operation and the best final measurement.

In the following, for the sake of clarity we will consider
dim(H ;) = dim(H ) := d and focus on the “symmet-
ric” case G = [; this happens, for example, when the set
{A,} is an orthonormal basis, whose elements are equally
weighted. Moreover, we assume that the averaged channel
of the ensemble £ is the maximally depolarizing channel,
whose Choi operator is Rg = d~'I ® I. With these as-
sumptions the relevant term in 8¢ 2 becomes

1= (A1A))d ™ TH{IT;] (20)

Since Rg is invariant under the action of SU(d) X SU(d)
we now show that it is possible to impose covariance on the
tester without increasing the value of 7. Let us define

I, = (U, ® VOIL(UL @ V), 1)

Ajon = (U, ® VAU ® V. (22)

It is easy to check that A, ., is a dual of II; , , by evaluat-
ing the group average after the sum over i. Then we

observe that the normalization of II; ., gives

> f dgdhll;,, =d 'I1®1, (23)

corresponding to o = d~'I in Egs. (14) and (16); namely,
one can choose v = d~'|I)){{I|. In the last identity dg and
dh are invariant measures normalized to unit. Moreover,
the figure of merit for {II;,,} is the same as for {Il},

010404-2



PRL 102, 010404 (2009)

PHYSICAL REVIEW LETTERS

week ending
9 JANUARY 2009

whence without loss of generality we optimize the cova-
riant tester {II, , ,}. The condition that the covariant tester
is informationally complete with respect to the subspace of
transformations to be tomographed will be verified after
the optimization.

A generic covariant tester is obtained by Eq. (21), with
the operators II; becoming ‘“seeds” of the covariant
POVM, and the normalization condition (14) becoming

[analogous of covariant POVM normalization in [4,10]].
The problem of optimization of the dual frame has been
solved in [11]. With the optimal dual, the figure of merit
simplifies as

n=TiX ] (25)
where
o dITL; o MU g
X = [dgdh £ &
Z Tr[Hi,g,h]
= f dgdhW, ,XW},, (26)
with W h = U ®U*®Vh®Vh and X =

ZidIHi»((H |/Tr[Hl] Using Schur’s lemma we have
[12]

X =P, + AP, + BP; + CP,, P = Q38 0y
Py = (I3 — Q43) ® Qyy, Py = Q38 (Ihy — Qy),
Py = (I3 — Q3) ® (I, — Qo)

27
having posed Q = |I)){{I|/d and
_ 1 Tl (Tr,[11,])?] _
A= d*— I{Z Tr[11;] 1}’
_ 1 T (T [11,])7]
= 1{2 il I1,] 1}’ e
1 drT(II7] B
== 1)2{2 ] @ DA+ B) 1}.
One has
(d® — 1)
17 _ 2 _
T8 1] =1+ (d 1)[A Foh ] (29)

We note that if the ensemble of transformations is con-
tained in a subspace V C B(H ,, ® H;,), the figure of
merit becomes 1 = Tr[X*Q~,], where X* is the Moore-
Penrose pseudoinverse. We now carry on the minimization
for three relevant subspaces:

Q. = B(g-[out ® g-[in)!
U={R € Q TrouR] =

corresponding, respectively, to quantum operations, gen-
eral channels, and unital channels. The subspaces C and ‘U
are invariant under the action of the group {W, ,}, and thus
the respective projectors decompose as

QC=P1+P2+P4, QU=P1+P4. (31)

= {R S Q! Trout[R] = Iin}’
Iinr Trin[R] = Iout}’ (30)

Without loss of generality we can assume the operators
{I1,} to be rank 1. In fact, suppose that II; has rank higher
than 1. Then it is possible to decompose it as I1; = > .11 Al
with I, ; rank 1. The statistics of II; can be completely
achleved by II; ; through a suitable postprocessing. For the
purpose of optimization it is then not restrictive to consider
rank 1 II;, namely, IT; = ;[T )){(¥;], with ¥ ;a;

Notice that all multrple seeds of this form lead to testers
satisfying Eq. (24).

In the three cases under examination, the figure of merit

is then

2 _ 12
o = THX =1+ (- 1)[% + (Cf_—zz],
2 2
ne = Ti[X*Qcl =1+ (d* — 1)[% + %] (32)
2 2
mu = TRyl = 1+ @ - [ ]

Where 0=A= (- 1)""{ZaT(¥,¥H2] -1} =
o +1 < . The minimum can simply be determined by deri-
vation Wrth respect to A, obtaining A = 1/(d*> + 1) for
quantum operations, A = 1/[+/2(d*> — 1) + 2] for general
channels, and A = 0 for unital channels. The correspond-
ing minimum for the figure of merit is

no = d° +d* — &,
ne=do + (2v2 = 3)d* + (5 — 4V2)d® +2(+2 - 1),
u=@—-13+1 (33)

The same result for quantum operations and for unital
channels has been obtained in [13] in a different
framework.

These bounds are simply achieved by a single seed
I, = d|V)){(V¥|, with

2d 2d*—-1)+3
&+ 1 d22—-1)+2]

respectively, for quantum operations, general channels,
and unital channels, namely, with

W =[a"'(1 =PI+ Bly Xyl 35)

where B8 =+/(d + 1)/(d*> + 1) for quantum operations,
B =1{(d— D[2+ +2(d* — 1)]}""/2 for general channels,

Tr[(PP1)] = (34)
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FIG. 1. Physical implementation of optimal quantum trans-

formation tomography. The two measurements are Bell’s mea-
surements preceded by a random unitary. The state |¥)) depends
on the prior ensemble.

and B = 0O for unital channels, and |) is any pure state.
Informational ~completeness of the tester II,, =
(U, ® U WNPI(U, ® Uj)T is thus verified as in [10].

The same procedure can be carried on when the operator
G has the more general form G = g, P| + g,P, + g3P5 +
g4P,, where P; are the projectors defined in (27). In this
case Eq. (29) becomes

. d>—1)g
NG = o+ ( — [82+83+( 4]’
Tr[X 'G]=g, + (d*— 1) ~ 3 C

(36)

which can be minimized along the same lines previously
followed. G has this form when optimizing measuring
procedures of this kind: (i) preparing an input state ran-
domly drawn from the set {ngU;.f}, (ii) measuring an
observable chosen from the set {U,AU ): I3

We now show how the optimal measurement can be
experimentally implemented. Referring to Fig. 1, the bi-
partite system carrying the Choi operator of the transfor-
mation is indicated with the labels S; and S,. We prepare a
pair of ancillary systems A; and A, in the joint state
| WW(W|, then we apply two random unitary transforma-
tions U; and U, to Sy and S5, finally we perform a Bell
measurement on the pair A;S; and another Bell measure-
ment on the pair A,S,. This experimental scheme realizes
the continuous measurement by randomizing among a
continuous set of discrete POVM; this is a particular ap-
plication of a general result proved in [14]. The scheme
proposed is feasible using, e.g., the Bell measurements
experimentally realized in [15] and the pseudorandom
circuits proposed in [16]. We note that choosing |V))
maximally entangled (as proposed, for example, in [17])
is generally not optimal, except for the unital case.

With the same derivation starting from Eq. (20), but
keeping dim(FH ;,) # dim(H ), one obtains the optimal
tomography for general quantum operations. The special
case of dim(J;,) = 1 [one has P; = P, = 0 in Eq. (27)]
corresponds to optimal tomography of states, whereas case
dim(H ) = 1 (P, = P4 = 0) gives the optimal tomog-

raphy of POVMs. The corresponding experimental
schemes are obtained by removing the upper (lower)
branch for POVMs (states), respectively. In the remaining
branch the bipartite detector becomes a monopartite, per-
forming a von Neumann measurement for the qudit, pre-
ceded by a random unitary in SU(d). Moreover, for the
case of POVM, the state |'¥)) is missing, whereas, for state
tomography, both bipartite states are missing. The optimal
n in Eq. (9) is given by n = d*> + d* — d, in both cases
(for state-tomography compare with Ref. [18]).

In conclusion, we presented a general method for opti-
mizing quantum tomography, based on the new notion of
tester. The method is very versatile, allowing one to con-
sider arbitrary prior ensemble and representation. We pro-
vided the optimal experimental schemes for tomography of
states and various kinds of process tomography, giving the
corresponding performance, all schemes being feasible
with the current technology.
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