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Abstract

A general matrix approach to study entangled states is presented, based on operator completeness relations. Bases of
unitary operators are considered, with focus on irreducible representations of groups. Bell measurements for teleportation are
considered, and robustness of teleportation to various kinds of non idealities is shown. q 2000 Elsevier Science B.V. All
rights reserved.

1. Introduction

Quantum mechanics builds up systems from sub-
systems in a fascinating way, through the tensor
product, that allows one to set up the so called
entangled states. These are states of the whole sys-
tem that do not correspond to any state of the
subsystems taken separately. This peculiar aspect of
quantum world stands at the foundations of all the
recent developments of quantum information theory,
such as dense coding, teleportation, quantum compu-

w xtation, quantum cryptography, and so on 1 . These
theoretical results have recently entered the realm of

w xexperimental physics 2–6 .
Analogously to what happens for states, also

quantum measurements on composite systems can be
entangled when they are non local, namely they
cannot be considered as a measurement jointly per-
formed on the subsystems. In the general framework

Ž .of positive operator valued measures POVM , en-
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Ž .E-mail address: lopresti@pv.infn.it P. Lo Presti .

tangled measurements correspond to non factorizable
POVM’s. The so called ‘Bell measurements’ are the

w xmost relevant example 7 , corresponding to maxi-
mally entangled POVM’s. Entanglement and Bell
measurements are the basic ingredients of quantum
teleportation.

In this Letter, we present a matrix approach to
address bipartite-system pure states along with gen-
eral operator-completeness relations. These allow us
to write the most general Bell-like POVM in com-
pact form. Bases of unitary operators are considered,
with focus on irreducible representation of groups.
The canonical role of the groups Z =Z andN N

Weyl–Heisenberg is analyzed. We conclude with a
study of robustness of teleportation to different kinds
of non idealities.

2. Operator ‘basis’

� Ž .Consider a set of linear operators B l , lg
4S, S Borel space on a finite dimensional Hilbert

space HH. This set is a ‘spanning set’ for the operator
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space if it satisfies one of the following equivalent
statements:

1. Completeness relation:

X X†Tr B l B l sD l,l ,Ž . Ž . Ž .

where dl D l,lX B l sB l
X ,Ž . Ž . Ž .H

S

†and Tr B l A s0 ;l m As0 . 1Ž . Ž .

2. For any linear operator A on HH,

†dl Tr B l A B l sA . 2Ž . Ž . Ž .H
S

� < :43. Chosen any orthonormal basis i for HH,

² < † < :² < < :dl n B l m l B l k sd d . 3Ž . Ž . Ž .H nk ml
S

4. For any linear operator A on HH,

† w xdl B l A B l sTr A | . 4Ž . Ž . Ž .H
S

Ž .Proof of 1m2. To prove ´ we define Os
w †Ž . x Ž .HTr B l A B l dlyA. Then we evaluate the fol-

lowing trace

X†Tr B l OŽ .

X† †s Tr B l B l Tr B l A dlŽ . Ž . Ž .H
X†yTr B l AŽ .

s0 , 5Ž .
where integration has been carried out by means of

Ž . Ž .the first line of Eq. 1 ; the second line of Eq. 1
completes the proof. Converse implication: the first

Ž .line of Eq. 1 follows immediately by replacing A
Ž X. Ž .with B l in Eq. 2 , whereas the second part is a

Ž .direct consequence of Eq. 2 .
Ž .Proof of 2m3. The proof of ´ is immediate

< :² < Ž .by substituting A with m n in Eq. 2 and taking
² < < :the matrix element between l and k . The con-

verse is also straightforward: multiply both members
Ž . ² < < : < :² <of Eq. 3 by m A n l k and take the sum over

all indices k, l, m, n.

Proof of 3m4. The direct implication is derived
Ž .multiplying both members of Eq. 3 by

² < < : < :² <m A l n k , and summing the result over all the
indices k, l, m, n. To prove the converse, let As
< :² < Ž .m l in Eq. 4 and take the matrix element be-

² < < :tween n and k .
Ž .Note that Eq. 2 is exactly the linear decomposi-

� Ž .4tion of the operator A on a set of operators B l

Ž . w † xinduced by the scalar product B, A sTr B A . For
infinite dimensional Hilbert spaces the previous rela-
tions have meaning for Hilbert–Schmidt operators.
However, they still hold for all linear operators in a
distribution sense.

3. General representation of bipartite-system pure
states

� < : 4 � < : 4Chosen two orthonormal bases i and j1 2

for the Hilbert spaces HH and HH respectively, any1 2
< ::vector c gHH mHH can be written as1 2

< :: < : < : < ::c s c i j ( C . 6Ž .Ý 1 2i j
ij

Ž .Eq. 6 introduces a notation that exploits the corre-
spondence between vectors in HH mHH and N=M1 2

matrices, where N and M are the dimensions of HH1
Ž w x.and HH , respectively cf. Ref. 8 .2

The following relations are an immediate conse-
Ž .quence of Eq. 6

< :: < T:: ²² < :: †w xAmB C s ACB , A B sTr A B ,

Ž .1†< :: ²² <w xTr A B s AB ,Ž .12 122

Ž .2T )< :: ²² <w xTr A B s A B . 7Ž . Ž .12 121

Ž .Notice that the definition of the matrix C in Eq. 6
is base-dependent, hence the transposition and conju-

Ž .gation in Eqs. 7 are referred to the same fixed
basis. These relations are very useful for derivations
and to express the results in an index-free compact
form.

In the following we will focus our attention on
bipartite systems whose Hilbert space is HHmHH,

Ž .with Nsdim HH . As an application of the formal-
ism just introduced, we give a direct proof of the
existence of the Schmidt decomposition for a pure
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state of a bipartite system. Using a polar decomposi-
†'tion AsV A A , with V unitary, which holds for
w xany matrix A 9 , we choose a unitary operator U so

that UA†AU † is diagonal, then we can write

† † T † †' '< :: < :: < ::A s V A A sVU mU U A A U

X XX
< : < :s l i i , 8Ž .(Ý 1 2i

i

< :X † < : < :XX T < :where i sVU i , i sU i and l is the1 1 2 2 i
† < :eigenvalue of A A with eigenvector i .

Ž .Using Eq. 6 , it is straightforward to characterize
maximally entangled states. These are defined as the

< ::states A whose partial trace on each of the two
subsystems is proportional to identity; namely

1
T )< ::²² <w xTr A A sA A s |1 N

1
†< ::²² <w xand Tr A A sAA s | , 9Ž .2 N

hence maximally entangled states are of the form

1
< :: < ::A s U , 10Ž .'N

with U unitary. Two maximally entangled states are
always connected by means of a local unitary trans-
formation. In fact

< :: † < ::U sUV m| V . 11Ž .
� Ž .4Given a spanning set B l , the set of vectors

� < Ž .::4B l spans HHmHH in the sense that

†< :: < ::A s dl Tr B l A B l . 12Ž . Ž . Ž .H
Moreover one has

< ::²² <dl B l B lŽ . Ž .H

< ::²² < †s dl B l m| | | B l m|Ž . Ž .H
< ::²² <w xsTr | |1

s| , 13Ž .
< Ž .::hence the projectors on B l provide a resolution

of the identity and a POVM.

By explicit evaluation of the matrix elements, one
can easily verify the following useful formulas

) < ::²² <dl B l mB l s | | , 14Ž . Ž . Ž .H
† < :: < T::dl B l mB l A s A , 15Ž . Ž . Ž .H

Ž .which are directly equivalent to Eq. 3 of statement
3.

4. Bell measurements

A Bell measurement is a POVM whose elements
are projectors on maximally entangled states. Refer-

Ž . Ž .ring to Eqs. 10 and 13 we argue that any POVM
of this kind corresponds to a spanning set whose
elements are proportional to unitary operators

˜ ˜< ::²² <P dl s U l U l dl , 16Ž . Ž . Ž . Ž .
˜ ˜Ž . Ž . Ž . Ž . Ž .where U l is a basis with U l sa l U l , U l

Ž .unitary, and a l c-number.
w xAs proved in Ref. 10 , Bell measurements are the

only projector valued POVM’s capable of teleporta-
tion in the case of pure preparation of the shared
resource, which turns out to be necessarily in a
maximally entangled state.

In the following we give a brief description of this
kind of teleportation scheme. The Hilbert space HH1

is prepared in an unknown state r Ž1., whereas HH m2
1 < ::HH is in the maximally entangled state | 233 'N

Ž .HH have the same dimension . Upon performing1,2,3
Ž .the measurement described by the POVM 16 on

Ž .HH mHH , the unnormalized state on HH condi-1 2 3

tioned by the outcome l will be

DŽ3.
l̃

Ž .1 ˜< :: ²² < < ::sTr r m | | U23 23 12 1212 l

˜²² <= U m|l 3

Ž .1 Ž1. Ž23.˜< :: ²² < < ::sTr r m | | U m| |23 23 12 1212 l

Ž3. †Ž1. Ž23.˜²² <= | m| U m|l

˜ †Ž1. Ž1. ˜ Ž1.²² < < :: ²² < < ::s | | U r U | |23 1212 l l 23

˜ †Ž3. Ž3. ˜ Ž3.sU r U . 17Ž .l l
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The normalized state writes

D sU † l r U l , 18Ž . Ž . Ž .l

and the teleportation can be completed upon apply-
Ž . Ž .ing the unitary transformation U l on the state 18 .

If the shared entangled resource is prepared in an-
1 < ::other maximally entangled state, i.e. V with23
'N

Ž .V unitary, it is enough to substitute U l with
Ž . )U l V .

²² < < ::Notice that the product | | that appears2312
Ž .in Eq. 17 corresponds to the transfer operator t 31

w x < :of Ref. 11 , which for any vector c of HH1 1

satisfies the relation

< : < :t c s c . 19Ž .1 331

˜� Ž .4If the set U l is an orthonormal operator basis
ŽDirac-like orthonormality relations are allowed in

.the case of infinite dimensional spaces , it is possible
to write the class of Bell observables, i.e. the self-ad-
joint operators that one has to measure in order to
realize the Bell measurement. The Bell observables
can be written as follows

˜ ˜< ::²² <Os f l U l U l dl , 20Ž . Ž . Ž . Ž .H
Ž . Žwhere f l must be an injective function i.e. O is

.non degenerate in order to guarantee a univocal
Ž .correspondence between the read eigenvalue f l

Ž . Ž .and the unitary operator U l of Eq. 18 that com-
pletes the teleportation scheme.

4.1. The role of group representations

Ž .Unitary irreducible representations UIR of
groups provide a method to generate a spanning set

Ž .of unitary operators in the sense of statements 1–4 .
� 4In fact, if U , ggG are the elements of a projec-g

tive UIR of the group G, from the first Schur’s
lemma it follows that

† w xdg U A U sTr A | , 21Ž .H g g
G

Ž .where dg is a suitably normalized group invariant
Ž .measure on G . Recalling Eq. 16 , it follows that the

POVM

< ::²² <P dg s U U dg 22Ž . Ž .g g

describes a Bell measurement. For example, as no-
w xticed in Ref. 11 , the N-dimensional UIR of the

group Z =Z whose elements areN N

2p i k m r N < :² <U m ,n s e k k[n , 23Ž . Ž .Ý
k

generates the Bell measurement corresponding to the
w xteleportation scheme of Ref. 7 .

As an example for the infinite dimensional case,
consider the displacement operators of an electro-

Žw † x .magnetic field mode a a,a s1

D z sexp za† yz )a , zgC . 24Ž . Ž . Ž .

Such operators are the elements of a projective UIR
representation of the Weyl–Heisenberg group WH,
and generate the Bell measurement corresponding to
the Braunstein–Kimble teleportation scheme of Ref.
w x12 .

For Z =Z the class of Bell observables de-N N
Ž .fined by Eq. 20 is given by

< ::²² <Os f g U UŽ .Ý g g
g

s f g U m| U X mU X
) U † m|Ž .Ý Ýg g g g

Xg g

2p i
X XŽ .nm ym n

Ns f m ,n eŽ .Ý Ý
X Xm ,n m ,n

=U mX ,nX mU ) mX ,nXŽ . Ž .

˜ Ž1. Ž2.)s f g U mU , 25Ž . Ž .Ý g g
g

Ž .where we used Eq. 14 along with the relation

U m ,n U mX ,nX U † m ,nŽ . Ž . Ž .
2p i

X XŽ .nm ym n
X XNse U m ,n , 26Ž . Ž .

˜and we introduced the Fourier transform f over the
group

2p i
X XŽ .nm ym n

X XNf̃ m ,n s e f m ,n . 27Ž . Ž . Ž .Ý
X Xm ,n
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Ž .By applying Eq. 14 , the analogous relation for
WH reads as follows:

2 < ::²² <Os d z f z D z D zŽ . Ž . Ž .H
C

s d2 z f z D z m|Ž . Ž .H
C

d2a †
)= D a mD a D z m|Ž . Ž . Ž .H

pC

d2 z
) )2 a z ya z )s d a f z e D a mD aŽ . Ž . Ž .H H

pC C

2 ˜ )s d a f a D a mD a . 28Ž . Ž . Ž . Ž .H
C

However, in this case, one can derive a more explicit
expression for the Bell observables. In fact, from Eq.
Ž .14 one has

d2b
)< :: ²² <| |s D b mD bŽ . Ž .12 12 H 1 2

pC

2d b
† ) ) †s exp ba yb a q b a ybaŽ . Ž .H 1 1 2 2

pC

2d b
† ) Ž2.s exp bZ yb Z (pd Z ,Ž .H 12 12 12

pC

29Ž .
† Ž . †Ž .with Z sa ya . Using the relation D z a D z12 1 2 a a

sayz, one obtains

1
Ž2.< :: ²² <D z D z sd Z yz , 30Ž . Ž . Ž . Ž .12 12 12

p

and finally

1
2 < :: ²² <Os d zf z D z D z s f Z .Ž . Ž . Ž . Ž .H 12 12 12

pC

31Ž .

Hence, in order to realize the Bell measurement
generated by WH, we have to measure an injective
function of the operator Z , or simply Z itself.12 12

This measurement can be easily performed by un-
Ž w x.conventional heterodyne detection cf. Ref. 13,14 .

5. Robustness of ‘pure’ teleportation

‘Pure’ teleportation schemes rely on projector
valued POVM’s and pure preparations for the shared

w xresource. As proved in Ref. 10 , this kind of telepor-
tation works properly if and only if the elements of
the POVM are proportional to projectors on maxi-
mally entangled states and the resource itself is
maximally entangled. However, for practical pur-
poses, one is interested in the evaluation of the
robustness of this kind of schemes to non ideality.

Ž .Looking at Eq. 17 , it is evident that the state on
HH conditioned by the measurement is a continuous3

function of the shared resource preparation and of
the element of the POVM related to the outcome.
Since the teleported state is again a continuous func-
tion of this conditioned state and of the ‘adjusting’
unitary transformation, we conclude that teleporta-
tion is robust to non ideal entanglement preparation,
non ideal measurement, and non ideal adjusting
transformation.

Let’s suppose that before the measurement the
maximally entangled resource evolves according to a
trace preserving CP map EE owing to some kind of
noise. In the following, we will simply evaluate the
state on HH after the measurement in presence of3

such a noise.
w xBy means of the Kraus’s decomposition 15 of

EE, the noisy state of HH mHH can be written as2 3

1
< :: ²² <r sEE | |23 2323 ž /N

1
Ž23. Ž23.†< :: ²² <s A | | A , 32Ž .Ý 23 23m mN

m

where A are operators on HH mHH satisfyingm 2 3

Ý A† A s|.m m m

Ž .For any generally non local operator A acting on
HHmHH one has

T̂ ˆ< :: < :: < ::A | s A s|mA | , 33Ž .

ˆ² < < : ² <² < < : < :where i A j sÝ j i A l l .l
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Therefore it is possible to write

1
< :: ²² <EE | |23 23ž /N

1
Ž23. Ž23.†< :: ²² <s A | | AÝ 23 23m mN

m

1
Ž3. Ž3.†ˆ ˆ< :: ²² <s | mA | | | mAÝ 23 232 m 2 mN

m

1
Ž2. Ž3.ˆ < :: ²² <sII mEE | | , 34Ž .23 23ž /N

ˆwhere EE is the map whose Kraus’s decomposition is
ˆgiven by the operators A . This last equation showsm

how the action of any CP map on a maximally
entangled state of a bipartite system can be written
as the result of the application of a local CP map.

Ž .Recalling Eq. 17 , it results that the local CP
ˆ Ž3.map EE , which describes noise, commutes with all

other maps and with the partial trace, so that the
unnormalized conditioned state after the measure-
ment, in presence of such a noise, can be simply
written as

†Ž3. Ž3.ˆD sEE U l r U l . 35Ž . Ž . Ž .˜ Ž .l

Now, we will restrict our attention to qubit tele-
< ::portation with non ideal resource preparation S ,23

it is possible to give an explicit expression for the
minimum fidelity achieved by teleportation on pure
states.

< :If c is the original state, apart from a normal-
ization factor, the teleported state will be

< : T † < :c sU S U c , 36Ž .l l l

where U is the unitary operator related to the out-l

come l. The minimum fidelity achieved by telepor-
tation can be written as follows

<² < T † < : < 2c U S U cl l
F s minmin

) † T †² < < :c U S U U S U c< :c gHH l l l l

<² < T < : < 2c S c
s min . 37Ž .

) T² < < :c S S c< :c gHH

< ::Using a basis of HH mHH for which S is in the232 3

Schmidt-form, i.e. diagonal and positive, and notic-

ing that F is independent of the normalization ofmin

S, we can choose S to be

< :² < < :² <S s 1qe 0 0 q 1ye 1 1 . 38Ž . Ž . Ž .e

The minimization can performed only on states
< Ž .:c x of the form

< : < : < : wc x scos x 0 qsin x 1 , xg 0,2p , 39Ž . . Ž .
because any phase would be irrelevant. Substituting

Ž . Ž . Ž .Eqs. 38 and 39 in Eq. 37 and minimizing
respect to x, one obtains

F s1ye 2 . 40Ž .min

Ž .With some little algebra, Eq. 40 can be cast in a
compact form independent of basis and normaliza-
tion as follows

˜det SŽ .
†'˜F s4 , where Ss S S . 41Ž .min 2 ˜w xTr S

6. Conclusions

We studied the problem of characterizing Bell
measurements, as maximally entangled POVM’s for
measurements on composite systems. We introduced
operator-completeness relations and a simple matrix
approach to deal with bipartite systems. These allow
us to write the most general Bell-like POVM in a
compact form. The role of spanning sets of unitary
operators has been emphasized, with attention to
unitary irreducible representations of groups. Bell
observables related to Bell POVM’s have been ex-
plicitly derived. As direct application of the matrix
formalism, we evaluated the robustness of teleporta-
tion to non maximality of the shared entangled re-
source and to non ideality of the measurement.
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