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Quantum statistics of photon cloning machines
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Abstract

We show an experiment to study the statistics of the output state of an optimalN → M cloning machine that produces
indistinguishable clones. The experiment is based on a photonic implementation of universal cloning transformations. 2001
Published by Elsevier Science B.V.

PACS: 03.65.Bz; 03.67.-a

Quantum mechanics protects its intrinsic statisti-
cal nature through the impossibility of determining
the wave function of a single quantum system via
any imaginable measurement scheme over a single or
a finite number of copies of the same system. This
well assessed result [1], logically consistent within
the theoretical framework of quantum mechanics, is
equivalent to the impossibility of perfect quantum
cloning [2], which in turn is due to unitarity of quan-
tum mechanical transformations [3]. On the other
hand, for the same reason, even an approximate op-
timal cloning cannot be of any help in improving the
statistics of an ideal quantum measurement, and this
poses bounds on optimal quantum cloning. In this Let-
ter we analyze the possibility of performing measure-
ments on many output copies of an optimal cloning
machine, and show how the cloning statistics prevents
from improving any ideal quantum measurement ex-
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ploiting the vanishing of statistical errors according to
the central limit theorem. As we will see, this is due
to the intrinsic super-Bernoullian statistics of clones,
which originates from the unavoidable quantum corre-
lations among them. A concrete experiment based on
the proposal of Ref. [4] will be also analyzed, which
allows measurements of permutation invariant observ-
ables on clones made of indistinguishable photons.

We consider optimalN → M cloning transforma-
tions for two-state quantum systems [5–7] and with
the proposed experimental scheme of Refs. [4,8]. The
scheme is based on spontaneous parametric down-
conversion, with the qubit encoded on the polarization
state of a photon. In the interaction picture and in the
limit of a very intense classical undepleted pump, this
process is described by the Hamiltonian

(1)H = γ
(
a

†
V1a

†
H2 − a

†
H1a

†
V2

) + h.c.,

wherea†
V 1,2 is the creation operator of a photon with

vertical polarizationV in beam 1 or 2, respectively,
and analogously forH which denotes horizontal po-
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larization. As shown in Ref. [4], since the above
Hamiltonian is invariant under a general jointSU(2)
transformation of all polarization modes, the achieved
cloning transformation is universal, namely its quality
does not depend on the input state.

In Ref. [4] it was shown that after detectingM −N

photons in beam 2 at the output of the down-converter,
for an initial state withN photons with vertical
polarization in beam 1, the state of theM photons in
beam 1 is proportional to

(2)
M−N∑
k=0

(
M − k

N

)
|M − k〉V V 〈M − k| ⊗ |k〉HH 〈k|.

The detection ofM−N photons in beam 2 occurs with
probability

Γ 2(M−N)

(
M + 1

N + 1

)(
1−Γ 2)−N−2

,

whereΓ = tanhγ t (t is the interaction time). State
(2) is the same as the output of the optimalN → M

cloning transformation of Ref. [5] by establishing the
correspondence between the state ofM spins-1/2 of
the symmetric multiplet withz-component equal to
M/2− k and the state|M − k〉V |k〉H with M − k pho-
tons vertically polarized andk horizontally polarized.
Notice, however, that there are important physical dif-
ferences between the photonic case and the case of
M spins. First of all, theM photons in state (2) are
by definition indistinguishable, whence only permu-
tation invariant collective measurements are allowed.
Moreover, the cloning transformation (2) is realized
a posteriori, in the sense that the output numberM

of copies is a random variable that is selected as the
result of the measurement of the photon number in
beam 2.

Since this setup can be implemented in our lab,
this gives us a unique opportunity to study the mea-
surements of permutation invariant operators of theM

spins by measuring the corresponding photonic ob-
servables. Let us consider for example the operator
Sz = ∑M

i=1σzi , whereσzi is the Pauli operator corre-
sponding to theith spin. By exploiting the correspon-
dence between photonic Fock states and the symmet-
ric multiplet ofM spins the operatorSz corresponds to
the photonic operator̂D = a

†
V1aV1 − a

†
H1aH1, which

is simply the difference of the photon numbers of the
two polarizations modes in beam 1. Therefore, the sta-

tistics of D̂ is the same as the statistics ofSz. Let us
start from the simple case of an initial state ofN pho-
tons all with vertical polarization. The output state cor-
responding to a detection ofM−N photons in beam 2
is given by Eq. (2). The probabilityP(d) of detecting
d as the result of the measurement of the photon dif-
ferenceD̂ is given by

(3)P(d)= (N + 1)(M −N)!
(M + 1)!

(
M+d

2

)!(
M+d

2 −N
)! ,

whered has the same parity ofM and ranges from
2N − M to M. Notice thatP(d) is a polynomial
of degreeN as a function ofd . For example, in the
particular case of one input copy (N = 1) it is a linear
function.

In the general case where the vertical polarization
component of the input state isv, namely each input
photon is in state(

√
va

†
V + √

1− veiφa
†
H)|0〉, the

probability of detectingd is given by

P(d)= (N + 1)(M −N)!(M+d
2

)!(M−d
2

)!
(M + 1)! vM

(4)

×
M−N∑
l=0

(M − l)!2l!
(M − l −N)!

(
v

1− v

)(M−d)/2−l

c2
l ,

with

cl =
min{(M−d)/2,M−l}∑
k=max{0,(M−d)/2−l}

(−1)k

k!((M − d)/2− k)!

× 1

(M − l − k)!(l + k − (M − d)/2)!

(5)×
(

1− v

v

)k

,

whered has the same parity ofM and ranges from
−M to M. In terms of spin statistics,P(d) is the
probability of measuring the valued for Sz when the
initial state of theN spins has mean value 2v − 1 for
the operatorσz. Notice that the probability distribution
P(d) is independent of the phaseφ of the initial state.

The mean value observed in the measurement ofD̂

is given by

(6)
〈
D̂

〉 = (2v − 1)
N(M + 2)

N + 2
,
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and the corresponding variance takes the form

〈
�D̂2〉 ≡ 〈

D̂2〉 − 〈
D̂

〉2

= 4
(2v − 1)2

(N + 2)2(N + 3)

× [
M2(N + 1)+M

(−N2 + 10N + 20
)

− 2N2 − 11N − 18
]

+ 4v(1− v)

(N + 2)(N + 3)

(7)

× [
2M2(N + 1)−M

(
N2 − 5N + 14

)
− 2N2 + 2N + 18

]
.

Notice that the above variance has a leading term
which is proportional toM2. As we will see in the fol-
lowing, this means that the statistical error associated
to the estimation of〈σz〉 from the sample ofM clones
does not vanish for large values ofM, but remains a
constant. In fact, when inferring〈σz〉 from the aver-
age over clones

∑
σzi/M ≡ Sz/M, the statistical error

εM would beεM =
√

〈�S2
z 〉/M2, which is constant in

the limit M → ∞, whereas for a Bernoulli statistics
(which would be obtained by measuring uncorrelated
clones) one has the error from the central limit the-

orem εM =
√

〈�σ 2
z 〉/(M − 1). This is in agreement

with the impossibility of determining the wave func-
tion of a single quantum system [1]. Actually, the es-
timation of〈σz〉 from a sample ofM clones can never
lead to a better result for anyM than performing this
measurement directly on theN initial copies. This is
due to the super-Bernoullian character of the probabil-
ity distribution (4). In order to clarify this, let us con-
sider the Bernoulli probability distributionPB(d) that
would be obtained in the measurement of the opera-
tor D̂ performed onM copies in the same pure state
(
√
va

†
V +√

1− v eiφa
†
H)|0〉, which is the state of each

input copy of the cloner. Such a distribution is given
by

(8)PB(d)=
(

M
M−d

2

)
v(M+d)/2(1− v)(M−d)/2.

It is clear that in this case the measurement ofσz
leads to a vanishing error for large values ofM. In
order to compare the probability distribution (4) with
Bernoullian (8) we rescale the operatorSz as S̃z =

Sz/ηNM , where

ηNM = N

N + 2

M + 2

M

is the shrinking factor [6] of theN →M cloning trans-
formation. This rescaling is introduced so that the two
probability distributions (4) and (8) have the same av-
erage value. The statistical fluctuations corresponding
to the operator̃Sz for the output state of the cloner can
also be written as

(9)
〈
�S̃2

z

〉 = M

η2
MN

〈
�σ 2

z1

〉 + M(M − 1)

2η2
MN

〈�σz1�σz2〉,

where 〈�σ 2
z1〉 = 1 − (2v − 1)2η2

NM is the statisti-
cal fluctuation corresponding to theσz operator for
a single output copy and〈�σz1�σz2〉 = 〈(σz1 −
〈σz1〉)(σz2 − 〈σz2〉)〉 refers to the correlation between
two output copies. As we can see by comparing the
above equation to Eq. (7), the correlation terms are re-
sponsible for the fact that the statistical fluctuations
of the operatorsz = Sz/M are constant for large val-
ues ofM, and therefore theσz component of the state
cannot be measured perfectly by performing measure-
ments on the output state of a cloner. On the other
hand, a comparison between the variance in Eq. (7)
with the Bernoulli variance forN spins proves the
impossibility of improving the quantum measurement
of σz through statistics on clones. Hence, the super-
Bernoulli character of the clones statistics is an in-
principle feature.

As an example, we show in Fig. 1 the probabil-
ity distributions corresponding to Eqs. (4) and (8) for
the case of theN = 5 → M = 30 cloning transfor-
mation with initial states withv = 1/2. The super-
Bernoullian character of the probability distribution
(4) is striking.

Let us now discuss the experimental aspects of the
measurement apparatus which is presently adopted
within the present investigation. The universal quan-
tum cloner is aquantum-injected, entangled OPA very
similar to the apparatus aimed at the implementation
of an all optical Schrödinger cat recently reported in
Ref. [9]. Consider the diagram shown in Fig. 2. Two
equal and equally oriented nonlinear crystals (e.g.,
beta-barium-borate) cut for type II phase matching are
excited by two beams derived from a common UV
laser beam at a wavelength ofλp = 400 nm. In the
present experiment the UV beam is supplied by sec-
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Fig. 1. Probability distributions corresponding to Eqs. (4) and (8) for
the 5→ 30 cloning transformation with initial states withv = 1/2.

ond harmonic generation of the output beam of a Co-
herent MIRA TI:SA mode-locked laser consisting of
a train of 150 fs pulses emitted at a rate of 76 MHz.
The average emitted power does not exceed 0.6 W and
then the amplification gain is of the orderg � 0.02.
Consequently a number of clonesM > 4 cannot be
easily produced for a numberN = 1 of input qubits
on modek1. We expect a far larger efficiency by the
next implementation within the apparatus of a regener-
ative OPA amplifier Coherent REGA9000. In this case
the value ofg will be multiplied by a factor about 20,
and the cloning efficiency is expected to increase by
the same factor. Crystal 1 is the spontaneous paramet-
ric down converter source ofπ -entangled photon cou-
ples emitted, with wavelength 2λp = 800 nm, over the
modesk1, k3 determined by two fixed 1 mm pinholes
placed 2 m away from the nonlinear source crystal.
In order to prevent any unwanted EPR type state re-
duction affecting the overall superposition process, the
photon emitted over the output modek3 is filtered by

Fig. 2. The universal quantum cloner is aquantum-injected, entan-
gled OPA very similar to the apparatus aimed at the implementation
of an all optical Schrödinger cat of Ref. [9]. For the setup descrip-
tion see text.

a polarization analyzer with axis oriented at 45◦ to the
horizontal (t.h.) before being detected byD3. A click
at D3 opens a gate selecting all registered outcomes,
thus providing theconditional character of the over-
all cloning experiment. The photon emitted overk1
provides the quantum-injection into the OPA, physi-
cally consisting of the other nonlinear crystal, referred
to as crystal 2. The measurement apparatus consists
of equal, specially selected, low noise EGG SPCM-
AQR14 cooled avalanche Silicon counters having a
quantum efficiency Q.E.≈ 60% at the detection wave-
lengthλ = 850 nm. The detectors are connected to a
set of Stanford Research SR-400 gated photon coun-
ters and analyzed by a computer assisted multi channel
analyzer (MCA) Canberra type Genie-2000. By this
method the first experimental evidence of cloning sin-
gle photon states (N = 1, M � 3) has indeed been
achieved recently in our Quantum Optics Laboratory
in Rome [8].

In conclusion, we have shown how optimal quan-
tum cloning protects the intrinsic uncertainty of quan-
tum mechanics from being improved by means of
statistics on many clones of the same quantum sys-
tem. We have seen that this is due to the intrin-
sic super-Bernoullian statistics of clones, which orig-
inates from the unavoidable quantum correlations
among them. This fundamental feature of quantum
cloning is presently being investigated in our labora-
tory by the experimental method just outlined.
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