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We consider the convex set of positive operator valued measures(POVM) which
are covariant under a finite dimensional unitary projective representation of a
group. We derive a general characterization for the extremal points, and provide
bounds for the ranks of the corresponding POVM densities, also relating extrem-
ality to uniqueness and stability of optimized measurements. Examples of applica-
tions are given. ©2004 American Institute of Physics.[DOI: 10.1063/1.1806262]

I. INTRODUCTION

An essential step in the design of the new quantum information technology1 is to assess the
ultimate precision limits achievable by quantum measurements in extracting information from
physical systems. For example, the security analysis of a quantum cryptographic protocol2 is based
on the evaluation of the limits posed in principle by the quantum laws to any possible eavesdrop-
ping strategy. A general method to establish such limits is to optimize a quantum measurement
according to a suitable criterion, and this is the general objective of the so-calledquantum esti-
mation theory.3,4 Different criteria can be adopted for optimizing the measurement, the choice of
a particular one depending on the particular problem at hand. Moreover, many different optimi-
zation problems often share the same form, e.g., they resort to the maximization of a concave
function on the set of the possible measurements. We remind that measurements form a convex
set, the convex combination corresponding to the random choice between two different appara-
tuses. Since a concave function attains its maximum in an extremal point, it is clear that the
optimization problem is strictly connected to the problem of characterizing the extremal points of
the convex set.

The quantum measurements interesting in most applications arecovariant4 with respect to a
group of physical transformations. In a purely statistical description of a quantum measurement in
terms of the outcome probability only—i.e., without considering the state-reduction—the mea-
surement is completely described by a positive operator valued measure(POVM) on its probabil-
ity space. In terms of POVM’s, “group covariant” means that there is an action of the transfor-
mation group on the probability space which maps events into events, in such a way that when the
measured system is transformed according to a group transformation, the probability of a given
event becomes the probability of the transformed event. Such a scenario naturally occurs in the
estimation of an unknown group transformation performed on a known input state, e.g., in the
estimation of an unknown unitary transformation,5,6 in the measurement of a phase shift in the
radiation field,4,7 or in the estimation of rotations on a system of spins.8 A first technique for
characterizing extremal covariant POVM’s and quantum operations has been presented in Ref. 9
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inspired by the method for characterizing extremal correlation matrices of Ref. 10, in particular,
classification of extremal POVM’s has been presented for the case of trivial stability group, i.e.,
when the only transformation which leaves the input state unchanged is the identity. Here we solve
the characterization problem for extremal covariant POVM’s in the general case of nontrivial
stability group, providing a simple criterion for extremality in Theorem 1 in terms of minimality
of the support of theseedof the POVM, presenting iff conditions for extremality in Theorem 3,
and providing bounds for the rank of extremal POVM’s[in the following we will define the rank
of a POVM as the rank of its respective density: see Eq.(6) for its definition]. We show that,
contrarily to the usual credo, the optimal covariant POVM can have rank larger than one. Indeed,
there are group representations for which covariant POVM cannot have unit rank, since this would
violate a general bound for the rank of the POVM in relation to dimensions and multiplicity of the
invariant subspaces of the group. In the present paper we adopt the maximum likelihood optimal-
ity criterion, which, however, as we will show, is formally equivalent to the solution of the
optimization problem in a very large class of optimality criteria. Other issues of practical interest
that we address are the uniqueness and the stability of the optimal covariant POVM. The whole
derivation is given for finite dimensional Hilbert spaces: as we will show in a simple example, it
can be generalized to infinite dimensions, however, at the price of making the theory much more
technical.

The paper is organized as follows. After introducing covariant POVM’s and their convex
structure in Sec. II, the main group theoretical tools that will be used for the characterization of
covariant POVM’s are presented in Sec. III. In Sec. IV we give a characterization of extremal
covariant POVM’s in finite dimension with a general stability group, deriving an algebraic extre-
mality criterion, along with a general bound for the rank of the extremal POVM’s in terms of the
dimensions of the invariant subspaces of the group and of the stability subgroup. Properties of
extremal POVM’s in relation with optimization problems are analyzed in Sec. V, where also the
issues of uniqueness and stability of the optimal covariant POVM’s are addressed. Finally, ex-
amples of application of the theory to estimation of rotation, state, phase shift, etc., are given in
Sec. VI, providing extremal POVM’s with a nontrivial stability group and giving examples of
optimization problems with solution consisting of extremal POVM with rank greater than one.

II. CONVEX STRUCTURE OF COVARIANT POVM’S

The general description of the statistics of a measurement is given in terms of a probability
spaceX—the set of all possible measurementoutcomes—equipped with as-algebrassXd of
subsetsB#X and with a probability measurep on ssXd. Each subsetBPssXd describes the
event “the outcomex belongs toB” and the statistics of the measurement is fully specified by the
probability measurep, which associates to any eventB its probabilitypsBd.

In quantum mechanics the probabilitypsBd is given by the Born rule,

psBd 8 TrfrPsBdg, s1d

wherer is a density operator(i.e., a positive semidefinite operator with unit trace) on the Hilbert
spaceH of the measured system, representing its state, whereasP is the POVM of the apparatus,
giving the probability measurep for every given stater of the quantum system. Mathematically a
POVM P:ssXd→BsHd is a positive operator valued measureon ssXd, namely it satisfies the
following defining properties:

0 ø PsBd ø I ∀ B P ssXd, s2d

Psøi=1
` Bid = o

i=1

`

PsBid ∀ hBij disjoint, s3d
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PsXd = I . s4d

Notice that the set of POVM’s forssXd is a convex set, namely, ifP1 and P2 are POVM’s for
ssXd, then alsolP1+s1−ldP2 is a POVM forssXd for any 0ølø1. The measurement described
by the POVMlP1+s1−ldP2 corresponds to randomly choosing between two different measuring
apparatuses described by the POVM’sP1 andP2, respectively. The extremal points of such convex
set of POVM’s—the so-calledextremal POVM’s—correspond to measurements that cannot result
from a random choice between different measuring apparatuses.

In the following we will focus attention to the case of probability spaceX given by the
quotientG /G0 of a compact Lie groupG with respect to a subgroupG0. Physically, this situation
arises when the POVM is designed to estimate a state in the group-orbithUgrUg

†ugPGj of a given
stater, with the groupG acting on the Hilbert spaceH of a quantum system via the unitary
projective representationRsGd8 hUgugPGj. In such a case, in fact, the probability space of the
POVM is exactlyX=G /G0, andG0=hhPG uUhrUh

†=rj is the stability group ofr, whence the
points of the orbit are in one-to-one correspondence with the elements ofX=G /G0. Notice that in
the following the fact that the representation is projective is inconsequential, whence there will be
no need for reminding.

An important class of measurements withX=G /G0 is described by thecovariantPOVM’s,4

namely those POVM’s which enjoy the property

PsgBd = UgPsBdUg
† ∀ B P ssXd, ∀ g P G, s5d

wheregB8 hgxuxPBj. Any POVM P in this class is absolutely continuous with respect to the
measure dx induced onX by the normalized Haar measure dg on the groupG, and admits an
operator densityM, namely

M:X → BsHd, PsBd =E
B

dx Msxd. s6d

For a covariant POVM, the operator density has the form4

Msxd = UgsxdJUgsxd
† , s7d

where gsxdPG is any element in the equivalence classxPX=G /G0, and J is an Hermitian
operator satisfying the constraints

J ù 0, E
G

dg UgJUg
† = I , s8d

fJ,Uhg = 0 ∀ h P G0. s9d

The operatorJ is usually referred to as theseedof the covariant POVM.11

Notice that the constraints(8) are needed for positivity and normalization of the probability
density, whereas identity(9) guarantees thatMsxd=UgsxdJUgsxd

† does not depend on the particular
elementgsxd in the equivalence classx. It is easy to see that the constraints(8) and(9) still define
a convex setC, namely, for anyJ1,J2PC and for any 0ølø1 one haslJ1+s1−ldJ2PC.
Precisely, the convex setC is the intersection of the cone of positive semidefinite operators with
the two affine hyperplanes given by identity(9) and by the normalization condition in Eq.(8).
Since a covariant POVM is completely specified by its seedJ as in Eq.(7), the classification of
the the extremal covariant POVM’s resorts to the classification of the extremal points in the
convex setC.
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III. GROUP THEORETIC TOOLS

Let G be a compact Lie group, with invariant Haar measure dg normalized aseGdg=1, and
consider a unitary representationRsGd=hUgugPGj on a finite dimensional Hilbert spaceH. Then
H is decomposed as direct sum of orthogonal irreducible subspaces as follows:

H = %
mPS

%
i=1

mm

Hi
smd, s10d

S denoting the collection of equivalence classes of irreducible components of the representation,
the classes being labeled by the greek indexm, whereas the italic indexi numbers equivalent
representations in the same class. LetTij

smd :H j
smd→Hi

smd denote invariant isomorphisms connecting
the irreducible representations of the equivalence classm of dimensiondm, namely for anyi , j
=1, . . . ,mm Tij

smd :H j
smd→Hi

smd is an invertible operator satisfying the identity

UgTij
smdUg

† = Tij
smd, ∀ g P G. s11d

Consistently with this notationTii
smd will denote the projection operator onHi

smd. Since all sub-
spacesHi

smd are isomorphic, we can equivalently write

%
i=1

mm

Hi
smd ; Hm ^ Mm, s12d

whereHm denotes therepresentation space, i.e., an abstractdm-dimensional subspace where a
representation of the classm acts, whileMm denotes themultiplicity space, i.e., amm-dimensional
space which is unaffected by the action of the group. In this way, the decomposition(10) can be
written in the Wedderburn’s form,12

H = %
mPS

Hm ^ Mm. s13d

Due to Schur lemmas, an operatorO in the commutant of the representationRsGd can be
decomposed as follows:13

O = o
m

o
i,j=1

mm TrfTji
smdOg

dm

Tij
smd, s14d

whereas, in terms of the decomposition(13) one has

O = %mPSsIm ^ Omd, s15d

Im denoting the identity on the representation spaceHm, andOmPBsMmd being a suitable set of
operators on the multiplicity spacesMm.

In this paper we will consider covariant POVM’s withX=G /G0 where bothG and G0 are
compact Lie groups, represented on the Hilbert spaceH by the unitary representationsRsGd
=hUgugPGj andRsG0d=hUhuhPG0j. We will denote withS andS0 the equivalence classes of
irreducible representations ofRsGd and RsG0d, respectively. The constraints(8) and (9) can be
rewritten in a remarkably simple form using the decompositions ofH in irreducible subspaces
under the action ofG andG0. In fact, due to the invariance of the Haar measure dg, the integral
in (8) belongs to the commutant ofRsGd. Rewriting the constraint(8) by using(14), one obtains
easily,

TrfTij
smdJg = dmdi j , ∀ m P S, ∀ i, j = 1, . . . ,mm. s16d

Moreover, according to(8) and(9), the operatorJ must be a positive semidefinite operator in the
commutant ofRsG0d (9), then we have
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J = %nPS0
sIn ^ Xn

†Xnd, s17d

whereXn is an operator on the multiplicity subspaceMn.

IV. EXTREMAL COVARIANT POVM’S WITH A NONTRIVIAL STABILITY GROUP

In this section we will classify the extremal points of the convex setC of covariant seeds,
namely the convex set of operators that satisfy both conditions(8) and(9). For the characterization
of the extremal points of a convex set we will use the well-known method of perturbations. We
will say that the operatorQPBsHd is a “perturbation” of a givenJPC if and only if there exists
an e.0 such thatJ+ tQPC for any tP f−e ,eg. With such definition one has that an operatorJ
is extremal if and only if its unique perturbation is the trivial one, namely ifQ is a perturbation of
J thenQ=0.

Let us start with a simple lemma which is useful for the characterization of the perturbations
of a given seedJ.

Lemma 1: LetJPBsHd be a positive semidefinite operator. Then, for any HermitianQ
PBsHd the condition

∃e . 0: ∀ t P f− e,eg J + tQ ù 0 s18d

is equivalent to

SuppsQd # SuppsJd. s19d

Proof: Suppose that the condition(18) holds. Then for anyuflPKersJd one necessarily has
kfuQufl=0. Therefore, for any vectoruclPH one has

ukcuQuflu =
1

t
ukcusJ + tQduflu ø

1

t
ÎkcusJ + tQduclkfusJ + tQdufl = 0.

Hence KersJd#KersQd, implying that SuppsQd#SuppsJd. Conversely, suppose that(19)
holds. Let us denote byl the smallest nonzero eigenvalue ofJ and byiQi the norm ofQ, then
condition (18) holds withe=l / iQi. j

Using the previous lemma we can state that an Hermitian operatorQ is a perturbation for a
given seedJ if and only if the following conditions are satisfied:

SuppsQd # SuppsJd, s20d

TrfQTij
smdg = 0 ∀ m P S, ∀ i, j = 1, . . . ,mm, s21d

fQ,Uhg = 0 ∀ h P G0 s22d

[conditions(21) and (22) follow directly from the normalization constraints(16) and (17)].
This set of conditions leads to an interesting property of extremal seeds.
Theorem 1: J is an extremal point ofC if and only if for anyzPC one has

Suppszd # SuppsJd ⇒ z = J. s23d

Proof: To prove necessity it is sufficient to defineQ8J−z and note that it is a perturbation
of J. In fact, Q is in the commutant ofRsG0d, SuppsQd#J, and TrfQTij

mg=0 ∀mPS, ∀i, j
=1, . . . ,mm. But, sinceJ is extremal, thenQ must be zero.

Vice versa, assume(23). If Q is a perturbation forJ, then there exists sometÞ0 such that
z8J+ tQPC. But a perturbation must satisfy(19), thenSuppszd#SuppsJd. Using (23) it is
then clear thatQ= t−1sz−Jd=0. j

The proposition tells us that extremal seeds have “minimal support,” in the sense that there is
no elementzPC with Suppszd#SuppsJd which is different fromJ.
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Theorem 2: Let beJPC. Write J in the form(17). Then an operatorQ is a perturbation of
J if and only if

TrfQTij
smdg = 0 ∀ m P S, ∀ i, j = 1, . . . ,mm s24d

and Q can be written as follows:

Q = %nPS0
sIn ^ Xn

†AnXnd, s25d

with XnPBsMnd and AnPBsRngsXndd Hermitian ∀nPS0.
Proof: SupposeQ is a perturbation. Condition(21) is the same as(24). Due to the condition

(22), Q must be an Hermitian operator in the commutant ofRsG0d, then we can write it in the
block formQ= %nPS0

sIn ^ Ond, with eachOnPBsMnd Hermitian. Moreover, condition(20) along
with (17) imply that each operatorOn must haveSuppsOnd#SuppsXn

†Xnd=SuppsXnd. Using the
singular value decompositionXn=oi=1

rn li
snduwi

sndlkvi
nu [huvi

nlj and huwi
sndlj are orthonormal bases for

SuppsXnd and RngsXnd, respectively] one can see that any Hermitian operatorOn with
SuppsOnd#SuppsXnd admit the decompositionOn=Xn

†AnXn, with An Hermitian operator in
BsRngsXndd. Conversely, if both conditions(24) and (25) hold, then conditions(20)–(22) are
obviously fulfilled. j

Theorem 3:Let Pn be the projection operator onto the subspaceHn ^ Mn#H corresponding
to the classnPS0. An operatorJPC written in the formJ= %nPS0

sIn ^ Xn
†Xnd is extremal if and

only if

%nPS0
BsRngsXndd = SpanhFij

smdum P S, i, j = 1, . . . ,mmj, s26d

where

Fij
smd 8 %nPS0

Xn TrHn
fPnTij

smdPngXn
†.

Proof: Using the characterization of Theorem 2, we know thatJ is extremal if and only if for
any operatorQ satisfying(24) and(25) one hasQ=0. Let us takeQ in the form(25), and rewrite
the direct sum as an ordinary sum

Q = o
nPS0

PnsIn ^ Xn
†AnXndPn, s27d

using the projectorsPn onto Hn ^ Mn. Using invariance of trace under cyclic permutations, we
can write

TrfQTij
smdg = o

nPS0

TrfsIn ^ AndsIn ^ XndPnTij
smdPnsIn ^ Xn

†dg = o
nPS0

TrfAnXnTrHn
fPnTij

smdPngXn
†g.

s28d

Define the spaceR8 %nPS0
RngsXnd and denote as%nPS0

BsRngsXndd the linear space of opera-
tors acting onR which are block diagonal on the subspacesRngsXnd, nPS0. Then, the extrem-
ality condition forJ becomes: for any Hermitian operatorAP %nPS0

BsRngsXndd one has

TrfAFij
smdg = 0 ∀ m P S, ∀ i, j = 1, . . . ,mm ⇒ A = 0. s29d

In terms of the Hilbert–Schmidt productsA,Bd8TrfA†Bg this condition says that the unique
Hermitian operatorAP %nPS0

BsRngsXndd which is orthogonal to the whole set of operatorsF
8 hFij

smd umPS , i , j =1, . . . ,mmj is the null operator. Orthogonality to the setF is equivalent to
orthogonality to the set of Hermitian operatorsF8=hsFij

smd+Fji
smdd , isFij

smd−Fji
smdd umPS , i , j

=1, . . . ,mmj. Such orthogonality holds if and only ifF8 is a spanning set for the real space of
Hermitian operators in%nPS0

BsRngsXnd. Nevertheless, using the Cartesian decomposition we see
that any complex block operatorOP %nPS0

BsRngsXndd can be written as a sum of two Hermitian
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ones, whence the extremality condition is equivalent toSpansF8d= %nPS0
BsRngsXndd. Finally, the

observationSpansF8d=SpansFd completes the proof. j

Notice that for trivial stability groupG0=hej (e denotes the identity element), we recover the
characterization of Ref. 9: there, one has indeed a single equivalence classn̄ in S0 with one-
dimensional representation spaceHn̄, so that the whole Hilbert spaceH is isomorphic to the
multiplicity spaceMn̄ and the extremality condition(26) reduces toSpanhXTij

smdX†umPS , i , j
=1, . . . ,mmj=BsRngsXdd.

Corollary 1: Any rank-one seed is extremal.
Proof: Let J be a rank-one seed. In this case there is only one classn0 in the decomposition

(17) of J (otherwiseJ could not have unit rank), and the spaceBsRngsXn0
dd to be spanned is one

dimensional, whence the condition(26) is always satisfied. j

An alternative proof of Corollary 1 follows by observing that any rank-one element of the
coneD of positive semidefinite operators is necessarily extremal for such cone: since the convex
setC is a subset ofD, a rank-one seedJPC is necessarily an extreme point ofC.

Corollary 2: Let JPC be an extremal seed and write it in the formJ= %nPS0
sIn ^ Xn

†Xnd.
Define rn8 ranksXnd. Then

o
nPS0

rn
2 ø o

mPS
mm

2 . s30d

Proof: This relation follows directly from the extremality condition by noting that the left-
hand side is the dimension of the complex linear space of block operators%nPS0

BsRngsXndd,
while the right-hand side is the cardinality of the spanning setF=hFij

smd umPS , i , j =1, . . . ,mmj.j
In Sec. VI we will see an explicit example of extremal POVM which achieves this bound.

V. EXTREMAL POVM’S AND OPTIMIZATION PROBLEMS

A crucial step in a quantum estimation approach is the optimization of the estimation strategy
for a given figure of merit. This consists in finding the POVM which maximizes some linear(more
generally concave) functionalF—e.g., the average fidelity of the estimated state with the true one.
Then, the convex structure of the set of POVM’s plays a fundamental role in this problem, since,
due to concavity ofF, one can restrict the optimization procedure to the extremal POVM’s only.

In the covariant case, the problem resorts to optimize the state estimation in the orbit
hUgrUg

†ugPGj. G /G0 of a given stater under the action of a groupG, G0 being the stability
group ofr. The optimization typically is the maximization of a linear functional corresponding to
the average value of a positive functionfsx,x*d, where the average is taken over all the couples
sx,x*d of measured and true valuesx, x* PX8G /G0, respectively. The joint probability density
psx,x*d is connected to the conditional densitypsxux*d given by the Born rule via Bayes, assuming
an a priori probability distribution of the true valuex* . In the covariant problem the functionf
enjoys the invariance propertyfsgx,gx*d= fsx,x*d ∀gPG, and is taken as a decreasing function of
the distanceux−x* u of the measured valuex from the true onex* . In the case of compactG one can
assume a uniforma priori distribution forx* values, so that the functional corresponding to the
average can be written as follows:

FrfJg =E
G

dgE
G

dg* fsgx0,g*x0dTrfUg*
rUg*

† UgJUg
†g s31d

=E
G

dg fsx0,gx0dTrfUgrUg
†Jg, s32d

wherex0 is the equivalence class containing the identity. In the following, we will consider as the
prototype optimization problem the maximization of the likelihood functional3,4
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LrfJg 8 TrfrJg, s33d

corresponding to the choicefsx,x*d=dsx−x*d in Eq. (31). Maximizing LrfJg means maximizing
the probability density that the measured valuex coincides with the true valuex* . For such
estimation strategy the optimization problem has a remarkably simple form, enabling a general
treatment for a large class of group representations.13 Moreover, the solution of the maximum
likelihood is formally equivalent to the solution of any optimization problem with a positive
(which, a part from an additive constant, means bounded from below) summable functionfsx,x*d.
Indeed, we can define the map

Msrd = k−1E
G

dg fsx0,gx0dUgrUg
†, s34d

wherek=eGdg fsx0,gx0d. This map is completely positive, unital and trace preserving, and, in
particular,Msrd is a state. With this definition, we have

FrfJg = kLMsrdfJg, s35d

whence the maximization ofFr is equivalent to the maximization of the likelihood for the trans-
formed stateMsrd.

Essentially all optimal covariant measurements known in the literature are represented by
rank-one operators. The rank-one assumption often provides a useful instrument for simplifying
calculations. Nevertheless, as we will show in the following, the occurrence of POVM’s with rank
grater than one is unavoidable in some relevant situations.

Proposition 1: For anyJPC,

rankfJg ù max
mPS

Smm

dm
D . s36d

Proof: Let us decomposeH into irreducible subspaces for the representationRsGd of G as
follows:

H = %mPS% i=1
mmHi

smd. s37d

Take an orthonormal basisBi
smd=husm , id ,nl un=1, . . . ,dmj for each subspaceHi

smd in such a way
that usm , id ,nl=Tij

smdusm , jd ,nl for any n, Tij
smd :H j →Hi being the invariant isomorphism which

intertwines the equivalent representationssm , id and sm , jd. DiagonalizeJ as

J = o
k=1

ranksJd

uhklkhku s38d

and write

uhkl = o
mPS

o
i=1

mm

o
n=1

dm

csm,id,n
k usm,id,nl. s39d

SincekhkuTij
smduhkl=on=1

dm csm,id,n
k* csm,jd,n

k , the normalization constraints(16) become

o
k=1

ranksJd

o
n=1

dm

csm,id,n
k* csm,jd,n

k = dmdi j . s40d

This relation implies that for anymPS the vectorshcsm,id u i =1, . . . ,mmj defined by scsm,iddk,n

8csm,id,n
k are orthogonal: since they aremm orthogonal vectors in a linear space whose dimension

is dm3 ranksJd, it follows thatmmødm3 ranksJd, hence ranksJdùmm /dm ∀mPS. j
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Summarizing, every timesmm.dm for some classmPS, a covariant POVM cannot be rep-
resented by a rank-one seed, due to the normalization constraints.

The previous proposition exhibits a structural reason for which, in the presence of equivalent
representations, the setC of covariant seeds may contain only elements with rank greater than one.
On the other hand, in the following we will discuss the occurrence of covariant POVM’s with rank
greater than one in explicit optimization problems, independently of the presence of equivalent
representations.

Proposition 2: LetJ be an extremal point ofC. Denote by P the projector ontoSuppsJd, and
let r8 ranksPd. ThenJ is the unique seed which maximizes the likelihood for the stater=P/ r.

Proof: First, we need to prove thatJ commutes with the representationRsH0d8 hUkuk
PH0j, whereH0 is the stability group ofr. Define the group average

j 8

E
H0

dh UhJUh
†

E
H0

dh

. s41d

SinceRsH0d is the stability group of the projector ontoSuppsJd, clearly SuppsJd is invariant
underRsH0d, whencej satisfiesSuppsjd#SuppsJd. Moreover, using the invariance of the Haar
measure it is easy to see thatj commutes withRsH0d. Finally, j is an element ofC. In fact, it is
positive semidefinite, satisfies(16) and commutes withRsG0d, which is by definition a subset of
RsH0d. SinceJ is extremal, using Theorem 1 we can conclude thatJ=j, whenceJ commutes
with RsH0d.

Let us prove now optimality. For any arbitrary seedzPC, the following bound holds:

Lrfzg = Trfrzg =
TrfPzg

r
ø

Trfzg
r

=
dimsHd

r
, s42d

where the last equality follows from the normalization constraints(16). Clearly J achieves the
bound, whence it is optimal. Notice that the inequality TrfPzgøTrfzg becomes equality if and
only if Suppszd#SuppsJd, then using Theorem 1 we can see thatJ represents the unique
optimal POVM. j

Consider now a density matrixs with support in the orthogonal complement ofSuppsJd, and
consider the randomization

r = s1 − ad
P

r
+ as, s43d

with 0øaø1. In the following we prove that, for sufficiently smalla.0, J is still optimal for
the maximum likelihood strategy. In other words, the extremal POVM represented byJ is stable
under randomization, and the same measuring apparatus can be used for a larger class of mixed
states.

Proposition 3: Consider the randomized stater in (43) and denote by q¯the maximum eigen-
value ofs. If a,1/s1+rq̄d, thenJ is the unique seed which maximizes the likelihood for the state
r.

Proof: First, notice thatJ commutes with the representationRsH0d of the stability group ofr.
This follows from the observation that the conditiona,1/s1+rq̄d implies thats1−ad / r is strictly
the largest eigenvalue ofr. Then,P is the projector on the eigenspace with maximum eigenvalue
of r, while, for anyhPG, Ph8UhPUh

† is the projector on the eigenspace with maximum eigen-
value ofrh8UhrUh

†. If hPH0 then it must berh=r, and, necessarily,Ph=P. ThereforeH0 is a
subgroup of the stability group ofP. But J commutes with the representation of the stability
group ofP, as proven in Proposition 2, then it commutes also withRsH0d.
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Now we prove optimality ofJ. Let us denote byQ the projection ontoSuppssd. The
following bound holds for anyzPC:

Lrfzg =
s1 − ad

r
TrfPzg + a Trfszg s44d

ø
s1 − ad

r
TrfPzg + aq̄ TrfQzg s45d

ø
s1 − ad

r
TrfsP + Qdzg s46d

ø
s1 − ad

r
Trfzg =

s1 − ad
r

dimsHd. s47d

This bound is achieved byJ, proving its optimality. Notice thatJ is the unique optimal seed. In
fact, equality in(46) is attained if and only if TrfQzg=0, namely whenSuppsQd#Kerszd, while
in (47) equality is attained if and only ifSuppszd#SuppsPd % SuppsQd. Therefore the bound is
achieved if and only ifSuppszd#SuppsPd=SuppsJd, implying z=J. j

VI. EXAMPLES

A. Extremal POVM’s with a nontrivial stability group

Example 1:Consider the group of rotations, represented in as2j +1d-dimensional Hilbert
spaceH j by the irreducible representationRn,w8eiwn·j , wherew is an angle,n is a unit vector, and
j 8 s jx, j y, jzd is the angular momentum operator. In this case a covariant estimation in the orbit of
a pure stateucl generally may involve a nontrivial stability group. This is actually the case when
ucl8 u jmln0

, is an eigenvector ofn0·j for some unit vectorn0. Clearly in such case the stability
group G0 consists of rotations aroundn0, and the state estimation in the orbit reduces to the
estimation of a rotated directionn8. The same situation arises for any stater mixture of eigen-
vectors ofn0·j . Without loss of generality, let us taken0 as the direction of thez axis, and write
r=om=−j

j pmu jmlk jmu with pmù0 ∀m. Let us denote byP the projector ontoSuppsrd, and takem̄
such thatpm̄=maxmhpmj. Then, since

Trfrzg ø pm̄ TrfPJg ø pm̄ TrfJg = pm̄s2j + 1d,

one has thatJ=s2j +1du jm̄lk jm̄u is the optimal POVM. Notice that such POVM commutes with
the stability groupRsG0d and is extremal, as a consequence of Corollary 1.

Example 2:Consider the groupSUsdd of unitary d3d matrices with unit determinant, acting
on the spaceH8Cd. It is easy to see that each vectoruclPH has a nontrivial stability group
G0;Usd−1d. In fact, by introducing an orthonormal basisB'8 hunl un=1, . . . ,d−1j for the or-
thogonal complementH' of the lineSpanhuclj, and the basisB8 ucløB' for H, the stability
groupG0 consists on matrices of the form

Uh = Svh 0

0 Vh
D , s48d

wherevhPC , uvhu=1, andVh is a unitarysd−1d3 sd−1d matrix with DetsVhd=vh
* . Let us con-

sider now the tensor representationRsGd=hUg
^2uUgPSUsddj on the spaceH^2. This representa-

tion has two irreducible subspaces, the symmetric and the antisymmetric onesH+ andH−, with
dimensionsd+=dsd+1d /2 andd−=dsd−1d /2, respectively. Denote byP+ andP− the projectors on
H+ andH−. Let us apply the representationRsGd on the stateucl^2PH^2. Clearly the stability
group is the sameG0 as before, and it is represented byRsG0d=hUh

^2uhPG0j. It is easy to see that
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RsG0d contains five irreducible components, carried by the subspacesH1=Spanhucl^2j, H2

=Spanhuclj ^ H', H3=H' ^ Spanhuclj, H4=P+sH'^2d, and H5=P−sH'^2d. Notice thatH2

andH3 carry equivalent representations, corresponding to a two-dimensional multiplicity space.
An example of extremal POVM is given by

J =
dsd + 1d

2
uclkcu^2

%
d

d − 2
P−QP−,

whereQ is the projection onH'^2. Since the two summands are proportional touclkcu^2 and
P−QP−, which are the projectors onH1 andH5, respectively, thenJ belongs to the commutant of
RsG0d=hUh

^2uhPG0j. Notice that the subspacesH1 andH5 have multiplicitiesm1=m5=1, cor-
responding to one-dimensional multiplicity spacesM1;M5;C (whence the partial traces over
H1,5 will be c numbers). Moreover, using the fact that TrH1

fP+g=1, TrH1
fP−g=0, TrH5

fP+g=0,
TrH5

fP−g=sd−1dsd−2d /2 one can check extremality using the condition(26). Let us observe that
in this example we haver1=r5=1 andm+=m−=1, wherer1 andr5 are defined as in Corollary 2,
while m+ andm− are the multiplicities of the two irreducible representations ofRsGd. Then the
bound of(30) is saturated. Finally, we remark that this POVM is optimal for discriminating states
in the orbit of ucl^2,13 in the orbit of r=s1/rdsuclkcu^2+P−QP−d where r =1+fsd−1dsd−2d /2g
because of Proposition 2, and also in the orbit of any randomizationr8=s1−adr+as wheres is
density matrix withSuppssd#KersPd, anda,1/s1+rd, because of Proposition 3.

B. Extremal POVM’s with rank greater than one

Example 1:Consider the Abelian groupG=Us1d of phase shifts, acting in the spaceH=Cd by
the representationRsGd=hUswd=expsiwNj u hwP f−p ,pgj, where the generatorN is given byN
=on=0

d−1nunlknu for some orthonormal basishunl un=0,1, . . . ,d−1j. The stability groupG0 may be
either the wholeUs1d (for r diagonal on the eigenstates of the generator), or a discrete subgroup
G0=Zk for some integerk, including the casek=1 of trivial stability group. We exclude the
degenerate caseG0=Us1d of shift invariant states. The parameter spaceX=Us1d /Zk will be a
circle, parametrized by an angleuP f−p ,pg, and the action of a group elementgswdPG on an
elementuPX will be given bygswdu=u+kw.

Due to constraint(16), a seedJ is represented in the eigenbasis of the generator by a
correlation matrix, namely by a positive semidefinite matrix with unit diagonal entries. Vice versa,
any correlation matrix corresponds to a seed in the case of trivial stability groupG0. In Ref. 10 one
can find a constructive method which provides extremal correlation matrices with rankr .1: here
we show that any of such matrices can be viewed as the optimal seed for the estimation problem
in the orbit of a particular state. Let us choose as optimality criterion the maximization of the
average value of a positive summable functionf :X3X→R+ depending only on the difference
u−u* between the measured and the true value. Supposer a state with stability groupG0=Zk. As
we noted at the beginning of Sec. V, the maximization ofFrfJg—the average value of
fsu−u*d—corresponds to the maximization of the likelihoodLMsrdfJg for the transformed state
Msrd= f0

−1e−p
p sdw /2p dfs−kwdUwrUw

† [from Eq. (34)]. Notice that the mapM is trivially
covariant—i.e.,MsUfrUf

†d=UfMsrdUf
†—since the group is Abelian. For simplicity here we

require that the mapM is invertible, whence alsoM−1 is covariant and trace preserving(but
generally not positive). Covariance ofM implies that the stability group ofMsrd contains the
stability group ofr, and covariance ofM−1 implies the reverse inclusion, whence the stability
group is not changed by the maps.

Let us take now an extremal correlation matrixJ with ranksJd=r ù1 and denote byP the
projector ontoRngsJd. Using Proposition 2, we can see thatJ commutes with the representation
RsH0d, whereH0 is the stability group ofP. Call l the modulus of the minimum eigenvalue of
M−1sP/ rd, then
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r =
l

1 + dl
I +

1

1 + dl
M−1sP/rd

is a density operator. Notice that the stability groupG0 of r is the same stability group ofM−1sPd,
which coincides withH0, the stability group ofP. ThereforeJ commutes with the representation
RsG0d. It is easy to show thatJ is the unique seed commuting withRsG0d which is also optimal
for the estimation of states in the orbit ofr. In fact, for anyz in the convex setC of the seeds with
stability groupG0, we have

Frfzg = f0 TrfzMsrdg = f0S l

1 + dl
Trfzg +

1

rs1 + dld
TrfzPgD ø f0Sd

r
DS 1 + rl

1 + dl
D .

This bound is achieved choosingz=J, moreover, as in Proposition 2, we can observe that the
functional TrfzPg with zPC is maximum if and only ifz=J, then the maximum is unique.

Example 2:We provide now an example with a noncompact group represented in an infinite
dimensional Hilbert space. This example is out of the general treatment of the present paper—
which considers only finite dimensions—and is given only with the purpose of showing that our
results could be generalized to infinite dimensions, however at the price of much more technical
proofs.

Take H as the Fock space, and consider the projective representationonH of the group of
translations on the complex planeC in terms of the Weyl–Heisenberg operatorsRsGd=hDsad
=eaa†−āauaPCj, where fa,a†g=1. Here we will consider the twofold tensor representation

hDsad^2uaPCj on H^2. Using the unitary operatorV=esp/4dsa1a2
†−a1

†a2d, one can writeDsad^2

=VsDsÎ2ad ^ IdV† and see that the irreducible subspaces of this representation areHn=VsH
^ Spanhufnljd, wherehufnl un=1,2, . . . ,̀ j is any orthonormal basis forH. All these subspaces
carry equivalent representations, the isomorphism betweenHm andHn being

Tmn= VsI ^ ufmlkfnudV†. s49d

In terms of these isomorphisms, the normalization constraints(16) for a seed operator become13

TrfTmnzg = 2dmn. s50d

Notice that the number 2 in this formula has nothing to do with the dimension ofHn which is
infinite: in the noncompact case the dimensions are replaced by positive numbers depending only
on the equivalence class of representations. In principle, since the spaceH^2 is infinite dimen-
sional, there is the possibility of extremal covariant POVM’s with an infinite rank. Actually we can
provide the remarkable example

J = 2Vsu0lk0u ^ IdV†, s51d

where u0l is the vacuum state of the Fock basishuml ua†auml=mumlj. The corresponding POVM
can be realized by averaging the outcomes of two independent measurements withJ1= u0lk0u
^ I andJ2= I ^ u0lk0u,13 which in quantum optics correspond to two heterodyne measurements.14

We can observe thatJ maximizes the likelihood functional for any state of the formr
=Vsu0lk0u ^ sdV†, wheres=on=0

` pnufnlkfnu, is a mixed state withpn.0∀n. In fact, for any seed
z, one has the bound

TrfVsu0lk0u ^ sdV†zg = o
n=0

`

pn TrfVsu0lk0u ^ ufnlkfnudV†zg

ø o
n=0

`

pn TrfVsI ^ ufnlkfnudV†zg = o
n

`

pn TrfTnnzg = 2, s52d

and sinceJ achieves the bound(52), it is optimal. MoreoverJ is the unique optimal seed. In fact,
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the equality in (52) is achieved if and only if TrfVsu0lk0u ^ ufnlkfnudV†zg=TrfVsI ^ ufnl
3kfnudV†zg for any n: by expanding the identity on the Fock basis, the positivity ofz implies
kmukfnuV†zVumlufnl=0 for anymÞ0. Hence the unique nonzero diagonal elements ofz are on the
vectorsVu0lufnl. On the other hand, the positivity ofz along with the normalization constraint
TrfTmnzg=0 ∀mÞn imply that all the off diagonal elements ofz are zero. Hencez=2Von=1

` su0l
3k0u ^ ufnlkfnudV†=2Vsu0lk0u ^ IdV†=J. The fact thatJ is the unique optimal seed ensures that it
is also extremal, otherwise there would be two different seeds which are equally optimal. Notice
that J is extremal also according to our characterization(26).
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