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We consider the convex set of positive operator valued meagB@8M) which
are covariant under a finite dimensional unitary projective representation of a
group. We derive a general characterization for the extremal points, and provide
bounds for the ranks of the corresponding POVM densities, also relating extrem-
ality to uniqueness and stability of optimized measurements. Examples of applica-
tions are given. €2004 American Institute of PhysicfDOI: 10.1063/1.18062G2

I. INTRODUCTION

An essential step in the design of the new quantum information techriloilaagg assess the
ultimate precision limits achievable by quantum measurements in extracting information from
physical systems. For example, the security analysis of a quantum cryptographic ﬁristbasbd
on the evaluation of the limits posed in principle by the quantum laws to any possible eavesdrop-
ping strategy. A general method to establish such limits is to optimize a quantum measurement
according to a suitable criterion, and this is the general objective of the so-caltedum esti-
mation theor)}"4 Different criteria can be adopted for optimizing the measurement, the choice of
a particular one depending on the particular problem at hand. Moreover, many different optimi-
zation problems often share the same form, e.g., they resort to the maximization of a concave
function on the set of the possible measurements. We remind that measurements form a convex
set, the convex combination corresponding to the random choice between two different appara-
tuses. Since a concave function attains its maximum in an extremal point, it is clear that the
optimization problem is strictly connected to the problem of characterizing the extremal points of
the convex set.

The quantum measurements interesting in most applicationsoasgianf with respect to a
group of physical transformations. In a purely statistical description of a quantum measurement in
terms of the outcome probability only—i.e., without considering the state-reduction—the mea-
surement is completely described by a positive operator valued mg&sDxéM) on its probabil-
ity space. In terms of POVM's, “group covariant” means that there is an action of the transfor-
mation group on the probability space which maps events into events, in such a way that when the
measured system is transformed according to a group transformation, the probability of a given
event becomes the probability of the transformed event. Such a scenario naturally occurs in the
estimation of an unknown group transformation performed on a known input state, e.g., in the
estimation of an unknown unitary transformatfohin the measurement of a phase shift in the
radiation field*’ or in the estimation of rotations on a system of spimsfirst technique for
characterizing extremal covariant POVM’s and quantum operations has been presented in Ref. 9
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inspired by the method for characterizing extremal correlation matrices of Ref. 10, in particular,
classification of extremal POVM'’s has been presented for the case of trivial stability group, i.e.,
when the only transformation which leaves the input state unchanged is the identity. Here we solve
the characterization problem for extremal covariant POVM’s in the general case of nontrivial
stability group, providing a simple criterion for extremality in Theorem 1 in terms of minimality

of the support of theseedof the POVM, presenting iff conditions for extremality in Theorem 3,
and providing bounds for the rank of extremal POVNiis the following we will define the rank

of a POVM as the rank of its respective density: see @y .for its definition]. We show that,
contrarily to the usual credo, the optimal covariant POVM can have rank larger than one. Indeed,
there are group representations for which covariant POVM cannot have unit rank, since this would
violate a general bound for the rank of the POVM in relation to dimensions and multiplicity of the
invariant subspaces of the group. In the present paper we adopt the maximum likelihood optimal-
ity criterion, which, however, as we will show, is formally equivalent to the solution of the
optimization problem in a very large class of optimality criteria. Other issues of practical interest
that we address are the uniqueness and the stability of the optimal covariant POVM. The whole
derivation is given for finite dimensional Hilbert spaces: as we will show in a simple example, it
can be generalized to infinite dimensions, however, at the price of making the theory much more
technical.

The paper is organized as follows. After introducing covariant POVM’s and their convex
structure in Sec. Il, the main group theoretical tools that will be used for the characterization of
covariant POVM'’s are presented in Sec. Ill. In Sec. IV we give a characterization of extremal
covariant POVM's in finite dimension with a general stability group, deriving an algebraic extre-
mality criterion, along with a general bound for the rank of the extremal POVM'’s in terms of the
dimensions of the invariant subspaces of the group and of the stability subgroup. Properties of
extremal POVM’s in relation with optimization problems are analyzed in Sec. V, where also the
issues of uniqueness and stability of the optimal covariant POVM'’s are addressed. Finally, ex-
amples of application of the theory to estimation of rotation, state, phase shift, etc., are given in
Sec. VI, providing extremal POVM’s with a nontrivial stability group and giving examples of
optimization problems with solution consisting of extremal POVM with rank greater than one.

Il. CONVEX STRUCTURE OF COVARIANT POVM’S

The general description of the statistics of a measurement is given in terms of a probability
spaceX—the set of all possible measuremenitcomes—equipped with ac-algebrac(X) of
subsetsB C X and with a probability measurg on o(X). Each subseB € o(X) describes the
event “the outcome belongs toB” and the statistics of the measurement is fully specified by the
probability measure, which associates to any evehtits probability p(B).

In quantum mechanics the probabilipyB) is given by the Born rule,

p(B) = Tr{pP(B)], 1)

wherep is a density operatdqii.e., a positive semidefinite operator with unit traoe the Hilbert
spaceH of the measured system, representing its state, wh&éathe POVM of the apparatus,
giving the probability measune for every given state of the quantum system. Mathematically a
POVM P:o(X)— B(H) is a positive operator valued measuan o(X), namely it satisfies the
following defining properties:

0=<PB)=<I| OB e o(X), (2)

©

P(UZ,B) = >, P(B) O{B;} disjoint, 3)
i=1
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P(x)=I. (4)

Notice that the set of POVM'’s foo(X) is a convex set, namely, P, and P, are POVM’s for
o(X%), then alsa\P;+(1-\)P, is a POVM fora(X) for any O<A < 1. The measurement described
by the POVMAP; +(1-\)P, corresponds to randomly choosing between two different measuring
apparatuses described by the POVM;sandP,, respectively. The extremal points of such convex
set of POVM’'s—the so-calledxtremal POVMs—correspond to measurements that cannot result
from a random choice between different measuring apparatuses.

In the following we will focus attention to the case of probability spatejiven by the
quotientG/Gg of a compact Lie grous with respect to a subgrou@,. Physically, this situation
arises when the POVM is designed to estimate a state in the grouﬁ{dgblﬂyg e G} of a given
statep, with the groupG acting on the Hilbert spacg{ of a quantum system via the unitary
projective representatioR(G)={Uy|g € G}. In such a case, in fact, the probability space of the
POVM is exactlyX=G/Go, andGy={h e G|UpU]=p} is the stability group op, whence the
points of the orbit are in one-to-one correspondence with the elemefits Gff G,. Notice that in
the following the fact that the representation is projective is inconsequential, whence there will be
no need for reminding.

An important class of measurements Wit G/G, is described by theovariantPOVM's*
namely those POVM’s which enjoy the property

P(gB) =UgP(B)U] OB e o(X), OgeG, (5)

wheregB ={gx|x € B}. Any POVM P in this class is absolutely continuous with respect to the
measure ® induced onX by the normalized Haar measurg dn the groupG, and admits an
operator densityl, namely

M:X — B(H), P(B) :f dx M(x). (6)
B
For a covariant POVM, the operator density has the form

M (X) = Ug(X)EU;(x) y (7)

whereg(x) e G is any element in the equivalence class X=G/G,, and E is an Hermitian
operator satisfying the constraints

E=0, f dg U;EU! =1, (8)
G

[E,U]=0 Ohe G (9)

The operatof= is usually referred to as theeedof the covariant POVM?

Notice that the constrain{8) are needed for positivity and normalization of the probability
density, whereas identit§®) guarantees theM(x):Ug(x)Eug(x) does not depend on the particular
elementy(x) in the equivalence class It is easy to see that the constrai(®$ and(9) still define
a convex setC, namely, for any=,,=, < C and for any 6sA<1 one has\Z;+(1-N)E, e C.
Precisely, the convex s€ is the intersection of the cone of positive semidefinite operators with
the two affine hyperplanes given by identi{9 and by the normalization condition in E(B).

Since a covariant POVM is completely specified by its sgeds in Eq.(7), the classification of
the the extremal covariant POVM'’s resorts to the classification of the extremal points in the
convex selC.
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IIl. GROUP THEORETIC TOOLS

Let G be a compact Lie group, with invariant Haar measugendrmalized ag/;dg=1, and
consider a unitary representatiBiG) ={U,|g € G} on a finite dimensional Hilbert spadé. Then
‘H is decomposed as direct sum of orthogonal irreducible subspaces as follows:

My
H= o oHW, (10
pnesSi=1
S denoting the collection of equivalence classes of irreducible components of the representation,
the classes being labeled by the greek indexwhereas the italic indek numbers equivalent
representations in the same class. T, 'H(")—>H(") denote invariant isomorphisms connecting
the irreducible representations of the equwalence clagg dimensiond,, namely for anyi,j
=1,...m, T(") H(") H(“) is an invertible operator satisfying the |dent|ty

UgTud =T,
Consistently with this notatiofT; W will denote the projection operator dﬁ(") Since all sub-
spacesH, W) are isomorphic, we can equivalently write

OgeG. (11

@ SHW = =H,®M,, (12)

i=1
whereH, denotes theepresentation spaceé.e., an abstractl ,-dimensional subspace where a
representation of the clagsacts, whileM , denotes thenultiplicity spacei.e., am,-dimensional
space which is unaffected by the action of the group. In this way, the decompgdi@ipcan be
written in the Wedderburn’s forrif

H=® H,®M,. (13
MneS
Due to Schur lemmas, an opera©rin the commutant of the representati®iG) can be
decomposed as follows:

0= 22 r[T O] T, (14)

moij=1 M

whereas, in terms of the decompositidB) one has

0=a,.5(1,®0,), (15

. denoting the identity on the representation space andO,, € B(M ) being a suitable set of
operators on the multiplicity spacel ,.

In this paper we will consider covariant POVM’s with=G/G, where bothG and G, are
compact Lie groups, represented on the Hilbert sgdcby the unitary representatiori®(G)
:{Ug|g e G} andR(Gp)={U,|h e Gy}. We will denote withS andS, the equivalence classes of
irreducible representations &(G) and R(Gy), respectively. The constraint8) and (9) can be
rewritten in a remarkably simple form using the decompositiong{aih irreducible subspaces
under the action o6 andG,. In fact, due to the invariance of the Haar measugetide integral
in (8) belongs to the commutant &(G). Rewriting the constraini8) by using(14), one obtains
easily,

(16)

Moreover, according t68) and(9), the operatoE must be a positive semidefinite operator in the
commutant ofR(Gg) (9), then we have

TATPE]=d, 8, OpesS, Oij=1,...m,.
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)

== €BveSo(|v® XIXV)7 (17)

whereX,, is an operator on the multiplicity subspasd,,.

IV. EXTREMAL COVARIANT POVM’'S WITH A NONTRIVIAL STABILITY GROUP

In this section we will classify the extremal points of the convex@etf covariant seeds,
namely the convex set of operators that satisfy both condit®rend(9). For the characterization
of the extremal points of a convex set we will use the well-known method of perturbations. We
will say that the operato® e B(H) is a “perturbation” of a giverE e C if and only if there exists
an e>0 such thatE +t® e C for anyt e [—¢, €]. With such definition one has that an operatbr
is extremal if and only if its unique perturbation is the trivial one, namely ié a perturbation of
E then®=0.

Let us start with a simple lemma which is useful for the characterization of the perturbations
of a given seecE.

Lemma 1: LetE € B(H) be a positive semidefinite operator. Then, for any Hermit@n
e B(H) the condition

Oe>0: Ote[-€€e] E+t0=0 (18
is equivalent to
Supp(®) C Supp(E). (19

Proof: Suppose that the conditiqii8) holds. Then for any¢) € Ker(Z) one necessarily has
(¢|®|¢p)=0. Therefore, for any vectdys) € H one has

1 1
(YBlP) = TKU(E +10)[#)] < TV(Y(E +10)|y)¢|(E +10)[¢) = 0.

Hence Ker(2) CKer(0), implying that Supp(®)C Supp(Z). Conversely, suppose tha&l9)
holds. Let us denote by the smallest nonzero eigenvalue®fand by| @] the norm of®, then
condition(18) holds with e=\/||@||. [

Using the previous lemma we can state that an Hermitian ope@aiera perturbation for a
given seedE if and only if the following conditions are satisfied:

Supp(®) C Supp(E), (20)
TOT#]=0 OpeS, Oij=1,...m,, (21)
[0,U)]=0 Ohe G (22)

[conditions(21) and (22) follow directly from the normalization constrain(6) and(17)].
This set of conditions leads to an interesting property of extremal seeds.
Theorem 1: E is an extremal point o€ if and only if for any/ e C one has

Supp({) CSupp(E) 0 {=E. (23

Proof: To prove necessity it is sufficient to defifle==-¢ and note that it is a perturbation
of E. In fact, ® is in the commutant oR(Gg), Supp(®)CE, and TfOT,]=0 OueS, Oi, |
=1,... m,. But, sinceZ is extremal, ther® must be zero.

Vice versa, assumg?3). If @ is a perturbation fo£, then there exists sonte~ 0 such that
{=E+t0 € C. But a perturbation must satisfiL9), then Supp({) C Supp(E). Using (23 it is
then clear tha® =t"1({-=)=0. [

The proposition tells us that extremal seeds have “minimal support,” in the sense that there is
no element e C with Supp({) C Supp(E) which is different from=.
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Theorem 2: Let beE e C. Write £ in the form(17). Then an operatof is a perturbation of
= if and only if

T{OTM]=0 OupesS, Dij=1,...m (24)

and ® can be written as follows:
=®,cs,(1, @ XIAX,), (25)

with X, e B(M,) and A, e B(Rng(X,)) Hermitian Ov e S,

Proof: Supposed is a perturbation. Conditio(21) is the same a&4). Due to the condition
(22), ® must be an Hermitian operator in the commutanR¢6,), then we can write it in the
block form®= Dyes, (I,®0,), with eachO, e B(M,) Hermitian. Moreover, conditiof20) along
with (17) imply that each operatad, must haveSupp(O ) C Supp(XTX )=Supp(X,). Using the
singular value decompositiod, == 1)\(V)|W ”)(v,| o)} and{|w )\} are orthonormal bases for
Supp(X,) and Rng(X,), respectlvely one can see that any Hermitian operay with
Supp(0,) C Supp(X,) admit the decompositiorOV:XTA,,Xy, with A, Hermitian operator in
B(Rng(X,)). Conversely, if both condition§24) and (25) hold, then conditiong20)—«22) are
obviously fulfilled. [ |

Theorem 3: Let P, be the projection operator onto the subspé¢g M, CH corresponding
to the class € S. An operatorzE e C written in the form:=ea,,eso(l V®X1XV) is extremal if and
only if

®,cs,B(RNY(X,)) =Span{F|u e S, i,j=1,... m,}, (26)

where
Fl(j’u) = 65VESOXV TrHV[PVTl(JM)PV]XI

Proof: Using the characterization of Theorem 2, we know tBas extremal if and only if for
any operato® satisfying(24) and(25) one has®=0. Let us taked in the form(25), and rewrite
the direct sum as an ordinary sum

0= 2> P,,oXAX)P,, (27)
veSy

using the projector®, onto H,® M,. Using invariance of trace under cyclic permutations, we
can write

T{eTH]= X Tl(,®A)(1,eX,)P,TFP(, e X)]= X T{AX,Tr, [P,T{P,IX]].

veSy veSy
(28)

Define the spac® = @VesORng(XV) and denote asaveSOB(Rng(XV)) the linear space of opera-
tors acting oriR which are block diagonal on the subspa&®y(X,), v e Sy. Then, the extrem-
ality condition for= becomes: for any Hermitian operatére @,.s B(Rng(X,)) one has

THAFM]=0 OpesS, Oij=1,...m,0 A=0. (29)

In terms of the Hilbert—-Schmidt produ¢f,B)=Tr[A'B] this condition says that the unique
Hermltlan operatoA e &,.s B(Rng(X,)) which is orthogonal to the whole set of operatéts
—{F |,ueS i,j=1,...m } is the null operator. Orthogonallty to the detis equivalent to
orthogonallty to the set of Hermitian operatois’ ={(F; “)+F("“) |(F(") ”))|,ue S,i,j

=1,... m,}. Such orthogonality holds if and only F’ is a spannlng set for the real space of
Hermltlan operators lﬁ%es B(Rng(X,). Nevertheless, using the Cartesian decomposition we see
that any complex block operat(ire @VesoB(Rng(XV)) can be written as a sum of two Hermitian
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ones, whence the extremality condition is equivaler§pan(F’)=&,.s B(Rng(X,) . Finally, the
observationSpan(F’)=Span(F) completes the proof. [ |

Notice that for trivial stability grougs,={€e} (e denotes the identity elementve recover the
characterization of Ref. 9: there, one has indeed a single equivalencevdiasS, with one-
dimensional representation spakg, so that the whole Hilbert spack is isomorphic to the
multiplicity space M- and the extremality conditio26) reduces toSpan{X'I'i(j“)XTm eS,i,j

.M, }=B(Rng(X)).

Corollary 1: Any rank-one seed is extremal

Proof: Let E be a rank-one seed. In this case there is only one ¢fassthe decomposition
(17) of E (otherwiseE could not have unit rankand the spacB(Rng(X, )) to be spanned is one
dimensional, whence the conditi¢®6) is always satisfied. |

An alternative proof of Corollary 1 follows by observing that any rank-one element of the
coneD of positive semidefinite operators is necessarily extremal for such cone: since the convex
setC is a subset oD, a rank-one seeff e C is necessarily an extreme point 6f

Corollary 2: Let E € C be an extremal seed and write it in the fOE”FEB,,ESO(L,@ XZX,,).
Define r,=rankX,). Then

PINCEIIN 1 (30)

veSy nesS

Proof: This relation follows directly from the extremality condition by noting that the left-
hand side is the dimension of the complex linear space of block operatars, B(Rng(x ),
while the right-hand side is the cardinality of the spannlnnge{F(" lwesS,i,j= .m, .

In Sec. VI we will see an explicit example of extremal POVM which ach|eves thls bound.

V. EXTREMAL POVM’'S AND OPTIMIZATION PROBLEMS

A crucial step in a quantum estimation approach is the optimization of the estimation strategy
for a given figure of merit. This consists in finding the POVM which maximizes some l{neane
generally concavefunctional 7—e.g., the average fidelity of the estimated state with the true one.
Then, the convex structure of the set of POVM’s plays a fundamental role in this problem, since,
due to concavity ofF, one can restrict the optimization procedure to the extremal POVM'’s only.

In the covariant case, the problem resorts to optimize the state estimation in the orbit
{ngug|g e G}= G /Gy of a given state under the action of a grou@, G, being the stability
group ofp. The optimization typically is the maximization of a linear functional corresponding to
the average value of a positive functidfx,x.), where the average is taken over all the couples
(x,x«) of measured and true valugsx. e XY=G/G,, respectively. The joint probability density
p(x,x+) is connected to the conditional dengfx|x-) given by the Born rule via Bayes, assuming
an a priori probability distribution of the true valug.. In the covariant problem the function
enjoys the invariance properfygx,gx)=f(x,x:) [0g € G, and is taken as a decreasing function of
the distancéx—x.| of the measured valuefrom the true one. In the case of compa@ one can
assume a uniforna priori distribution forx. values, so that the functional corresponding to the
average can be written as follows:

FlE]= f dg f dg. (9%, g-x0) Tr{Ug, pUS, UgE U] (31
G G

= f dg f(x0,9%) T{UgpU{E], (32
G

wherex, is the equivalence class containing the identity. In the following, we will consider as the
prototype optimization problem the maximization of the likelihood functidhal
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L[E]=TrpE], (33

corresponding to the choidéx, x.) = 8(x-x.) in Eq. (31). Maximizing £ [Z] means maximizing

the probability density that the measured valueoincides with the true valug.. For such
estimation strategy the optimization problem has a remarkably simple form, enabling a general
treatment for a large class of group representat}SrMoreover, the solution of the maximum
likelihood is formally equivalent to the solution of any optimization problem with a positive
(which, a part from an additive constant, means bounded from helommable functiori(x,X).
Indeed, we can define the map

M(p) = k_lf dg (X0, 9%)UgpUy, (34)
G

wherek=[zdg f(Xy,9%). This map is completely positive, unital and trace preserving, and, in
particular, M(p) is a state. With this definition, we have

FAEI=KL [ E], (35)

whence the maximization df, is equivalent to the maximization of the likelihood for the trans-
formed stateM(p).

Essentially all optimal covariant measurements known in the literature are represented by
rank-one operators. The rank-one assumption often provides a useful instrument for simplifying
calculations. Nevertheless, as we will show in the following, the occurrence of POVM’s with rank
grater than one is unavoidable in some relevant situations.

Proposition 1: For any= e C,

ranH=] = ma><(m’i>. (36)

neS i

Proof: Let us decompos®{ into irreducible subspaces for the representaliG) of G as
follows:

H=0, sDHM. (37)

Take an orthonormal basBi(“):{|(,u,i),n>|n:1, ... d,} for each subspac”e[i(“) in such a way

that |(M,i),n>:Ti(j")|(M,j),n) for any n, Ti(j“):Hj—>Hi being the invariant isomorphism which

intertwines the equivalent representatidpsi) and(u,j). DiagonalizeZ as

rank(E)
E= 2 [nXnd (38)
k=1
and write
my, dM
[y = 2 2 2 Cpal (i), n). (39
neS i=1n=1

Since(nk|Ti(j“)|nk>=2ﬁglc'(‘;’i)’nc'(‘ﬂ'j)vn, the normalization constraintd6) become

rank 2) d,
ek _
2 200 nClujn = 0y (40)
k=1 n=1
This relation implies that for any. e S the vectors{c,;|i=1,...,m,} defined by(c,i)kn
ic'(‘#’i)’n are orthogonal: since they ane, orthogonal vectors in a linear space whose dimension
is d, X rankE), it follows thatm,<d, X rank =), hence rankZ)=m,/d, OueS. |
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Summarizing, every timesy,>d, for some class. € S, a covariant POVM cannot be rep-
resented by a rank-one seed, due to the normalization constraints.

The previous proposition exhibits a structural reason for which, in the presence of equivalent
representations, the sgtof covariant seeds may contain only elements with rank greater than one.
On the other hand, in the following we will discuss the occurrence of covariant POVM'’s with rank
greater than one in explicit optimization problems, independently of the presence of equivalent
representations.

Proposition 2: LetZ be an extremal point of. Denote by P the projector on®upp(=), and
let r=rankP). ThenZE is the unique seed which maximizes the likelihood for the gtafe/r.

Proof: First, we need to prove thdE commutes with the representatid®(Hy) ={U, |k
e Hg}, whereHy is the stability group op. Define the group average

J dh U,EU]
=0 (41

fdh
H

0

SinceR(H) is the stability group of the projector onBupp(=), clearly Supp(E) is invariant
underR(H,), whencef satisfiesSupp(¢) C Supp(E). Moreover, using the invariance of the Haar
measure it is easy to see thatommutes withR(H). Finally, £ is an element o. In fact, it is
positive semidefinite, satisfi€46) and commutes witlR(Gy), which is by definition a subset of
R(Hy). SinceZE is extremal, using Theorem 1 we can conclude fatf, whenceZ commutes
with R(Hy).

Let us prove now optimality. For any arbitrary segd C, the following bound holds:

T PZ] _ T[] dim(H)
ror

L= Trpll= (42
where the last equality follows from the normalization constraitiy. Clearly = achieves the
bound, whence it is optimal. Notice that the inequality PZ]<Tr[{] becomes equality if and
only if Supp({)C Supp(Z), then using Theorem 1 we can see t&atrepresents the unique
optimal POVM. |

Consider now a density matrix with support in the orthogonal complementSiipp(=), and
consider the randomization

p:(]_—a)$+ao', (43

with 0<a=<1. In the following we prove that, for sufficiently smat>0, E is still optimal for

the maximum likelihood strategy. In other words, the extremal POVM represente&digtable

under randomization, and the same measuring apparatus can be used for a larger class of mixed
states.

Proposition 3: Consider the randomized statén (43) and denote by the maximum eigen-
value ofc. If «<1/(1+rq), thenE is the unique seed which maximizes the likelihood for the state
p.

Proof: First, notice thaE commutes with the representatiBiiH ) of the stability group op.

This follows from the observation that the conditiarc 1/(1+rq) implies that(1—a)/r is strictly

the largest eigenvalue @f Then,P is the projector on the eigenspace with maximum eigenvalue
of p, while, for anyhe G, P,= UhPUE is the projector on the eigenspace with maximum eigen-
value of p,= UhpUE. If heHgthen it must bep,=p, and, necessarilyp,=P. ThereforeH, is a
subgroup of the stability group d?. But £ commutes with the representation of the stability
group of P, as proven in Proposition 2, then it commutes also Withi).
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Now we prove optimality ofE. Let us denote byQ the projection ontoSupp(o). The
following bound holds for any e C:

£ia=" vp v aTiog (@)
<Y ripg+ ag iy (45)
L (GREeTs (46)
U ; D rg= 2 ; D Gim(H). 47

This bound is achieved by, proving its optimality. Notice thaE is the unique optimal seed. In
fact, equality in(46) is attained if and only if TiQZ]=0, namely wherSupp(Q) C Ker(¢), while
in (47) equality is attained if and only Bupp({) C Supp(P) & Supp(Q). Therefore the bound is
achieved if and only iSupp(¢) C Supp(P)=Supp(E), implying Z=E. [ |

VI. EXAMPLES
A. Extremal POVM'’s with a nontrivial stability group

Example 1:Consider the group of rotations, represented if2pt+1)-dimensional Hilbert
spaceH; by the irreducible representatié, , = el whereg is an anglen is a unit vector, and
j =(jx:]y+J7) is the angular momentum operator. In this case a covariant estimation in the orbit of
a pure stateéy) generally may involve a nontrivial stability group. This is actually the case when
|¢>i|jm)no, is an eigenvector ofiy-j for some unit vecton,. Clearly in such case the stability
group G, consists of rotations around,, and the state estimation in the orbit reduces to the
estimation of a rotated directiom’. The same situation arises for any statenixture of eigen-
vectors ofng-j. Without loss of generality, let us tak® as the direction of the axis, and write
p=2}=_;Prlim)(jm| with p,=0 Om. Let us denote by the projector ont@upp(p), and takem
such thatp;=max,{p,}. Then, since

Tripll < prTHPElI<prTHE]=px(2j +1),

one has thaE =(2j+1)|jm)(jm| is the optimal POVM. Notice that such POVM commutes with
the stability groupR(Gg) and is extremal, as a consequence of Corollary 1.

Example 2:Consider the groupl(d) of unitary d X d matrices with unit determinant, acting
on the spacg{=CY It is easy to see that each vectg) € H has a nontrivial stability group
Go=U(d-1). In fact, by introducing an orthonormal bass ={|n)|n=1, ... d-1} for the or-
thogonal complemertt{* of the line Span{|¢)}, and the basi®=|#) UB, for H, the stability
group G, consists on matrices of the form

u—(“’h O) 48
=lo v,/ (49

wherewy, € C, |wy|=1, andV,, is a unitary(d- 1) X (d-1) matrix with DetV},) =wy,. Let us con-
sider now the tensor representatiaﬁ('s)={U§’2|Ug e SU(d)} on the spacé{®2. This representa-
tion has two irreducible subspaces, the symmetric and the antisymmetri¢-onaisd 7{_, with
dimensiongd, =d(d+1)/2 andd_=d(d-1)/2, respectively. Denote by, andP_ the projectors on
H, andH_. Let us apply the representati®{(G) on the statdy)®? e H®2. Clearly the stability
group is the sam&, as before, and it is representedeQGo):{U§2| he Gy}. Itis easy to see that
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R(G,) contains five irreducible components, carried by the subspagesSpan{|)®?}, H,
=Span{|y)} @ H*, Hy=H"* & Span{|y)}, H,=P.(H ®?), and Hs=P_(H'®?). Notice thatH,

and H5 carry equivalent representations, corresponding to a two-dimensional multiplicity space.
An example of extremal POVM is given by

d(d+1 d
B= ( )|z//><¢|®2 q-2 QP

whereQ is the projection or{*®2. Since the two summands are proportional#x{®? and
P_QP_, which are the projectors dH; and s, respectively, thei® belongs to the commutant of
R(Go)={Ug?|h e Gy}. Notice that the subspacés, and Hs have multiplicitiesm,=mg=1, cor-
responding to one-dimensional multiplicity spacet, = Mxs=C (whence the partial traces over
H1 5 will be ¢ numbers. Moreover, using the fact that ;ylr[PJ:l, TrHl[P_]:O, TrHS[P+]:O,
TrHs[P_]:(d—l)(d—Z)IZ one can check extremality using the conditi@6). Let us observe that
in this example we have =rs;=1 andm,=m_=1, wherer, andrs are defined as in Corollary 2,
while m, andm_ are the multiplicities of the two irreducible representation®R0€). Then the
bound of(30) is saturated. Finally, we remark that this POVM is optimal for discriminating states
in the orbit of [)®2 in the orbit of p=(1/r)(|y)(4|®2+P_QP.) wherer=1+[(d-1)(d-2)/2]
because of Proposition 2, and also in the orbit of any randomizatiofl -«a)p+ ao whereo is
density matrix withSupp(o) C Ker(P), anda<1/(1+r), because of Proposition 3.

B. Extremal POVM'’s with rank greater than one

Example 1:Consider the Abelian group =1(1) of phase shifts, acting in the spaks=C? by
the representatioR(G) ={U(¢)=expli¢N}| ¢ € [-m, 7]}, where the generatd is given byN
=39 In|n)n| for some orthonormal basi$n)|n=0,1, ... d-1}. The stability groupG, may be
either the wholelJ(1) (for p diagonal on the eigenstates of the genejatmra discrete subgroup
Gy=7y for some integelk, including the cas&k=1 of trivial stability group. We exclude the
degenerate cas€,=U(1) of shift invariant states. The parameter spatel(1)/7, will be a
circle, parametrized by an angtes [-7, 7], and the action of a group elemeniy) € G on an
elementd e X will be given byg(¢) 6= 6+ke.

Due to constraini16), a seed= is represented in the eigenbasis of the generator by a
correlation matrix, namely by a positive semidefinite matrix with unit diagonal entries. Vice versa,
any correlation matrix corresponds to a seed in the case of trivial stability @gup Ref. 10 one
can find a constructive method which provides extremal correlation matrices with rahkhere
we show that any of such matrices can be viewed as the optimal seed for the estimation problem
in the orbit of a particular state. Let us choose as optimality criterion the maximization of the
average value of a positive summable functiok X X — R, depending only on the difference
0- 6. between the measured and the true value. Supp@asstate with stability grous,=7%. As
we noted at the beginning of Sec. V, the maximization Fof =]—the average value of
f(6- 6.)—corresponds to the maximization of the likelihodg,,[Z] for the transformed state
M(p)=foH™ (dep/2m)f(- k(p)U(PpUT [from Eq. (34)]. Notice that the mapM is trivially
covariant—i.e. M(U¢pU¢,) U¢M(p)U —since the group is Abelian. For simplicity here we
require that the map\ is invertible, whence alsoV™! is covariant and trace preservirigut
generally not positive Covariance ofM implies that the stability group aM(p) contains the
stability group ofp, and covariance oM™ implies the reverse inclusion, whence the stability
group is not changed by the maps.

Let us take now an extremal correlation matixwith rankZ)=r=1 and denote by the
projector ontoRng(E). Using Proposition 2, we can see tiicommutes with the representation
R(Hg), whereHj is the stability group ofP. Call A the modulus of the minimum eigenvalue of
MYPIr), then
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A |+
1+dv 1+ad\

is a density operator. Notice that the stability gragof p is the same stability group o¥1~1(P),
which coincides witiH, the stability group ofP. ThereforeZ commutes with the representation
R(Gy). It is easy to show th&E is the unique seed commuting wi(G,) which is also optimal
for the estimation of states in the orbit @fIn fact, for anyZ in the convex se€ of the seeds with
stability groupG,, we have

p= MY(PIr)

d
FL21=fo THIM(p)] = fo(—l > o T —r(li ) Tr[fP]) = f°<?>(i : :ﬁ)

This bound is achieved choosirig- =, moreover, as in Proposition 2, we can observe that the
functional Tf/P] with £ e C is maximum if and only iffz=E, then the maximum is unique.

Example 2:We provide now an example with a honcompact group represented in an infinite
dimensional Hilbert space. This example is out of the general treatment of the present paper—
which considers only finite dimensions—and is given only with the purpose of showing that our
results could be generalized to infinite dimensions, however at the price of much more technical
proofs.

Take H as the Fock space, and consider the projective representatignointhe group of
translations on the complex plariein terms of the Weyl-Heisenberg operat®$G)={D(«)
=e“at“a|ae(:}, where [a,a']=1. Here we will consider the twofold tensor representation
{D(a)®?|a e C} on H®2 Using the unitary operato‘r/ze(’T"‘)(ala;‘aIaZ), one can writeD(a)%?
=V(D(V2a)®1)V' and see that the irreducible subspaces of this representatiof,z¥(H
® Span{|¢.}), where{|¢,)|n=1,2, ...} is any orthonormal basis fdk. All these subspaces
carry equivalent representations, the isomorphism betwWégmand 7, being

Tron= V(I © [V (49)
In terms of these isomorphisms, the normalization constrgirsfor a seed operator becomhie

T Tnd]= 260 (50)

Notice that the number 2 in this formula has nothing to do with the dimensid,ofvhich is

infinite: in the noncompact case the dimensions are replaced by positive numbers depending only
on the equivalence class of representations. In principle, since the sfi&cs infinite dimen-

sional, there is the possibility of extremal covariant POVM'’s with an infinite rank. Actually we can
provide the remarkable example

2 =2V(|0)X0| ® HVT, (51)

where|0) is the vacuum state of the Fock bagis)|a’ajmy=m|m)}. The corresponding POVM

can be realized by averaging the outcomes of two independent measurements, wi (0|

®l andE,=1® |0)<0|,13 which in quantum optics correspond to two heterodyne measurerifents.
We can observe thaE maximizes the likelihood functional for any state of the fopm

=V(|0X0| ® o)V', wherea==]_p,|#.){ b4, is @ mixed state withp,>00n. In fact, for any seed

£, one has the bound

TIV(|0)0] ® o)VT(] = 20 pn TITV(|0)0] @ | o)) V']

< 2P TV @ [ X )V = 2 p THTonl] = 2, (52
n=0 n

and since= achieves the boun@?2), it is optimal. Moreovef= is the unique optimal seed. In fact,
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the equality in (52) is achieved if and only if TV(0)0|®|pXda)VIZI=TIV(I | by
X{¢s)V'Z] for any n: by expanding the identity on the Fock basis, the positivity, afplies

(m|{ | VT 2V|M)| ) =0 for anym=+ 0. Hence the unique nonzero diagonal elementsare on the
vectorsV|0)|¢,). On the other hand, the positivity @falong with the normalization constraint
Tr[Tmg]=0 Om#n imply that all the off diagonal elements ¢gfare zero. Hencé=2V=,_,(|0)

X (0| ® | ) VT=2V(|0)0| @ 1)V =E. The fact thatE is the unique optimal seed ensures that it

is also extremal, otherwise there would be two different seeds which are equally optimal. Notice
that 2 is extremal also according to our characterizati26).
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