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Geometric group theory: summa theologica

Goal of GGT is to study finitely-generated (f.g.) groups G as
automorphism groups (symmetry groups) of physical theory

Central question: How algebraic properties of a group G reflect
in dynamical properties of a physical theory and, conversely,
how dynamics of a reflects in algebraic structure of G.

physical theory
This interaction between groups and physics theory /s a fruitful 2-
way road.

From Lectures on quasi-isometric rigidity,
by Michael Kapovich



Program

To derive the whole Physics axiomatically

from “principles” stated in form of purely mathematical
axioms (without “physical primitives”),
but having a thorough physical interpretation.

Solution: informationalism



The sixth Hilbert
problem

The investigations on the foundations of
geometry suggest the problem: To treat
in the same manner by means of axioms,
those physical sciences in which
mathematics plays an important part; in
the first rank are the theory of
probabilities and mechanics.

David Hilbert




Mechanics: the Trojan horse

Axiomatizing the theory of probabilities
was a realistic goal: Kolmogorov
accomplished this in 1933. The word
‘mechanics’ without a qualifier,
however, is a Trojan horse.”

Benjamin Yandell
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Hilbert's Problems and Their Solvers
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We derive quantum theory from purely informational principles. Five elementary axioms—causality, perfect
distinguishability, ideal compression, local distinguishability, and pure conditioning—define a broad class of
theories of information processing that can be regarded as standard. One postulate—purification—singles out
quantum theory within this class.
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Principles for Quantum Theory

QuanTum THEORY

P1. Causality From First PRINCIPLES
P2. Local discriminability

P3. Purification

P4. Atomicity of composition
P5. Perfect distinguishability

P6. Lossless Compressibility
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Principles for Mechanics
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e Mechanics (QFT) derived in terms of
countably many quantum systems in
Interaction

add principles

Min algorithmic complexity principle

* homogeneity
* locality
* [SOtropy



Quantum walk on Cayley graph

w.l.g. Hilbert space H = @ggg(ng
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D'Ariano, Perinotti,
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Quantum walk on Cayley graph

w.l.g. Hilbert space H. = @ggngg

Evolution
wg (t+1)
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Build a directed graph with an arrow from g

to g’ wherever they are connected by Agg# 0

Gl <

N, s, € N

D'Ariano, Perinotti,
PRA 90 062106 (2014)



Quantum walk on Cayley graph

w.l.g. Hilbert space H. = @ggg(CSg

Evolution
wg (t+1)
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1) Locality: S, uniformly bounded

2) Reciprocity: Ayy #0 = Ay gy #0
3) Homogeneity: all g € G are “equivalent”

gs

<N, s, €N

D'Ariano, Perinotti,
PRA 90 062106 (2014)



Quantum walk on Cayley graph

w.l.g. Hilbert space H = @QEG(CSQ G| <N, sq € N

Evolution g1
D= 3 Aty \
g'€S, 95 T g
i i g
ZAQQ'AQ”Q’ — ZAQQ’AQNQ/ — 599”189 / l
g’ g’

1) Locality: S, uniformly bounded

2) Reciprocity: Agqgr #0 = Ay gy # 0

3) Homogeneity: all g € G are “equivalent”

S, =28, s,=s ... label Aggr =: Ap, h €: S

define the “action” on the set of vertices G: gh := ¢’ whenever A,y = A,

D'Ariano, Perinotti,
PRA 90 062106 (2014)



Quantum walk on Cayley graph

w.l.g. Hilbert space H = @gggCSQ G| <N, sq € N

Evolution g1
Vet +1) = 3 Ayt (t |
gs
g’'eSy \@\
S Agg Al = Z Al Agng = 8ygnl, /\‘f @
: g4 N
@)

1) Locality: S, uniformly bounded
2) Reciprocity: Ayyr #0 = Ay gy #0
3) Homogeneity: all g € G are equivalent

A sequence Ay Ay, - .. Ap,cONNECts g 1o itself,

namely ghiha ... hxy = g, then it must also connect
any other g’ to itself, i.e.g’hiha...hy =g .

From 2): two-loop ghh_l = ¢ defines uniquely h~Yfor h and viceversa

D'Ariano, Perinotti,

Aggr =2 Apy Agrg =1 Ay, he S=S,US S =87 PRA 90 062106 (2014)



Quantum walk on Cayley graph

w.l.g. Hilbert space H = @QEGCSQ G| <N, sq € N

. 6
Evolution J 91
ot +1) =)  Aggthy(t) l/
95
g’'eSy T g
A Al A 5o 1s, (o
Z 99’ // g = Z g"g" — Ygg” l
g’
1) Locality: S, uniformly bounded //
2) Reciprocity: Ayy #0 = Ay gy #0
3) Homogeneity: all g € G are equivalent
Build the free group F of words made with letters: l//'

]’LESZ:S_|_US_

with action on vertices in G:gh := g' whenever Ay, = Ay,

Consider the subgroup H of closed paths » H normal subgroup of F  D'Ariano, Perinotti,
PRA 90 062106 (2014)



Quantum walk on Cayley graph

w.l.g. Hilbert space H. = @ggg(CSg

Evolution
wg (t+1)

Z Agg by (1

g’'€sy

ZAQQ g’q — ZAT Ag”g’ — 599”]

g’

1) Locality: S, uniformly bounded

2) Reciprocity: Ayy #0 = Ay gy #0
3) Homogeneity: all g € G are equivalent

G| <N s, €N

I'(G, S4) colored directed graph with vertices
g € G and edges (g,g/) with g' = gh

Either the graph is connected, or it consists of
disconnected copies.
W.l.g. assume it as connected.

Being H normal, one concludes that:

G = F/H = (S|R) is a group with Cayley
graphI'(G, S.) (the identity any element
e € GG).

D'Ariano, Perinotti,
PRA 90 062106 (2014)



D'Ariano, Perinotti,
PRA 90 062106 (2014)

Quantum walk on Cayley graph

w.l.g. Hilbert space H. = @ggg(CSg

Evolution
wg (t+1)

Z Agg by (1

g’'€sy

ZAQQ g''g’ — ZAT Ag”g’ — 599”]

g’

1) Locality: S, uniformly bounded

2) Reciprocity: Ayy #0 = Ay gy #0
3) Homogeneity: all g € G are equivalent

G| <N s, €N

iff for Quantum Walk on Cayley graph



D'Ariano, Perinotti,
PRA 90 062106 (2014)

Quantum walk on Cayley graph

w.l.g. Hilbert space H = @QEGCSQ G| <N, sq € N

Evolution The following operator over the Hilbert space
/*(G) ® C? is unitary
¢9t+1 E;Aggwg A:ZTh®Ah
7e heS
ZAgg L= ZAT ,Agingr = 649115, | Where 1 is the right regular representation of G
g’ on £*(@G) acting as
I\ /! —1
1) Locality: S, uniformly bounded Tolg) =19'97")

2) Reciprocity: Ayy #0 = Ay gy #0
3) Homogeneity: all g € G are equivalent

4) [sotropy:

There exist:
e agroup L of permutations of S., transitive over
S+ that leaves the Cayley graph invariant

e a unitary s-dimensional (projective) representation hes
{L} of L such that:

A:ZTh@)Ah:ZTlh@LZAhL;

hesS




Quantum walk on Cayley graph

The guantum walk on the Cayley graph (QWCG) is
completely specified as

Q — (Gv S—I—v S, {Ah}hES)

In the following we will restrict to Cayley graphs
gi-embeddable in R

 Thm. [Misha Kapovich] G is a finitely-generated group whose Cayley graph qi
embeds in RY iff G contains a free Abelian subgroup H of finite index, with
rank(A)=d.

 Proof. R has polynomial growth, equivalent to x¢. Thus, G also has growth at
most x¢. By Gromov's theorem, it follows that G is virtually nilpotent. For nilpotent
groups there is a precise formula for growth in terms of their derived series [Bass
and Guivarch] which implies that the group has to be virtually Abelian of rank <d.




Quantum walk on Cayley graph

The guantum walk on the Cayley graph (QWCG) is
completely specified as

Q — (Ga S—I—a S, {Ah}hES)

In the more general case restrict to 14 with solvable
word problem and finite generating set R, i.e. (G
finitely presented (true for virtually Abelian).



D'Ariano, Erba, Perinotti, Tosini
arxiv::1603.07666,1511.03992

Quantum walk on Cayley graph: “renormalization”

AQWCG Q = (G, S,, s, {Ap}nes) With G virt. Abelian

s equivalent to a QWCG Q' = (H, S

, ST, { AR fhes)

with H C G with index g (induced representation).

(out isotropy is not transferred between GG and H)
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D'Ariano, Perinotti, PRA 90 062106 (2014)

The Weyl QW

== Minimal dimension for nontrivial unitary A: s=2

e Unitarity = for d=3 the only possible G is the BCC!!

¢ |sotropy = Fermionic ¢ (d=3)

D
Unitary operator;: A — /

Two QWs
connected
by P




The Wey‘ QW D'Ariano, Perinotti,

PRA 90 062106 (2014)

.

i0p(t) = 5[t +1) — vt — 1)) = 5(A4 - AN)p(t)

AL — AT =+ 04(speyes £ epsys,)  “Hamiltonian”
+ 0y (CuSyCs F SzCySz)

+ 0,(CpCyS, £ 5454C)

k<1 > 1041) = %Ui kv = Weyl equation! | o™ = (0,, +0,,0.)

A
TWO QCAS Sey = S1n k_a
V3
connected L
by D Co, = COS ﬁ




D'Ariano, Perinotti, PRA 90 062106 (2014) Bisio, D'Ariano, Perinotti, Ann. Phys. 368 177 (2016)

Dirac QW D Maxwell QW &)

Local coupling: Axcoupled with its inverse
with off-diagonal identity block matrix

Maxwell in relativistic Imit k£ < 1

+ Boson: emergent from convolution of fermions
Ek CPT-connected! (De Broglie neutrino-theory of photon)

w¥ (k) = cos Hn(cpeyc. F 5455, )]

Dirac in relativistic limit k<1

mM: mass, m4<1
n-1: refraction index




The LTM standards of the theory

Dimensionless variables

J;:x[m] cl, t=
a )

Relativistic limit:

Measure @ from light-refraction-index

wfPp (k) :(:(1—




2d Dirac

e Evolution of a narrow-band particle-state e Evolution of a localized state



D’Ariano, Mosco, Perinotti, Tosini, arXiv:1603.06442

Weyl 3d
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Dirac emerging from the QCA D'Aviano, Perinott,

PRA 90 062106 (2014)
fidelity with Dirac for a narrowband packets in the relativistic mit £ ~m < 1

F = [(exp [-iNA(k)])|

Ak) == (m? + £z — wP (k)

V3kokyk,  3(kikyk.)? L _
— (mQ + é)% (m2 _|_yk_2)% | 214(m -+ ?)24_0(]34_'_]\[ 1k2)
3 3

relativistic proton: N ~ m ™2 = 2.2 % 10°7 = t =1.2*10"s =3.7x10%y

UHECRs: k =10"°>m o N ~ k™2 =10 = 5107 %% s



G. M. D'Ariano, N. Mosco, P. Perinotti, A. Tosini,
PLA 378 3165 (2014); EPL 109 40012 (2015)

Analytical solution of Dirac (d=1) and Weyl (d=1,2,3)

The analytical solution of the Dirac automaton can
also be expressed in terms of Jacobi polynomials
Pl(f’p ! performing the sum over f in Eq. (16) which

finally gives
_ m)\?
Pty =) > YasP (1 +2 (—) )Aabm, 0),
Y a,bel0,1) &
adb+1
k — /“t+ o 2 ’
2+a®b k' /,[_ab + @
Vab = _(ia@b)nt(@) ( (-) 2 ), (18)
n (2)x

where yoo = y11 =0 (Y10 = yo1 =0) for + x — y odd
(even) and (x)y, = x(x+1)---(x+k—1).



Dispersive Schrodinger equation

Z.ate_iko.x—l_iw()tw(k? t) — S[w(k) o wO]e_ikO.x_l_intw(kv t)
10u)(k, t) = slw(k) — wolw(k, t)
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D'Ariano, Perinotti, PRA 90 062106 (2014)




Bisio, D'Ariano, Perinotti,
unpublished

Special Relativity recovered ... and more

Relativity principle: invariance of the physical law under change of inertial reference frame
— invariance of eigenvalue equation under change of representation.

0.4

FIG. 2: The distortion effects of the Lorentz group for the discrete Planck-scale theory represented by the quantum walk in
Eq. (6). Left figure: the orbit of the wavevectors k = (k;,0,0), with k; € {.05,.2,.5,1,1.7} under the rotation around the z
axis. Right figure: the orbit of wavevectors with |k| = 0.01 for various directions in the (kz, ky) plane under the boosts with
parallel to k and |3| € [0, tanh 4].

0.2

- Lorentz transformations are perfectly recovered for k« 1.
- For k~T:
- Double Special Relativity (Camelia-Smolin).
- Relative locality (in addition to relativity of simultaneity)

- For m=0 De Sitter SO(1,4) =1
- mass m and proper-time T are conjugated @
0

FIG. 3: The green surface represents the orbit of the wavevec-
tor k = (0.3,0,0) under the full rotation group SO(3).



Things we would like to know



Things we would like to know

A QWCG for G gi-embeddable in H* would provide a Weyl/Dirac free QFT
on a curved space, without using quantization rules. A decomposition
into irreps. of the right-regular rep. for a finitely presented group G qi-
embeddable in H* would be needed.

1. Is there a result of gi-rigidity (similar to that for R% for H*? What about a
generic Riemannian manifold M with dimension d=17,2,37

s the free group F* gi to H*? What about the converse, namely: if G is g
to H* then G is virtually free?

If the previous statement is true, then the right-reg. representation of F°
would provide the right-reg. representation of the virtually-free group
through induced representation (“renormalization”).



Things we would like to know

2. How the condition of symmetric Cayley graph restricts the structure of its G7 [*]

3. Given G, S;, and s>0, find all the unitary nonequivalent sets of matrices {An}nes that
provide a nontrivial WQ Q=(G, S., s,{An}nes).

The unitarity equations for the transfer matrices {An}nes depend only on |S.| and on the 4-
cycles.

4. Do groups sharing the same 4-cycles have something in common”?

5. Does the property of being presentable with relators |r|<4 correspond to some group
property”?

[*] A directed colored graph is symmetric if its automorphism group acts transitively upon
ordered pairs of adjacent vertices.



Things we would like to know

6. Given a group G with Cayley graph gi to a smooth Riemanian manifold M with a
nonzero curvature, can a “tangent group” be defined (similarly to what we do for
tangent space to M) as a sort of “local Abelianization” of G? The QWCG on G
should correspond to a Schrodinger equation with a Laplace-Beltrami diffusion on
M.

7. What happens for negative curvature (exponential growth of G?)

3. What is the equivalent of Fourier-transform decomposition into irreps. for finitely
presented hyperbolic G? What is the notion of wave-vector k? What does it mean
k<1 (relativistic regime)?

9. The universal covering of an arbitrary graph is a Cayley graph. Given a QW on a
graph, can a QW be induced on his universal covering (and viceversa)?



This Is more or less what | wanted to say

Thank you for your attention



