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Università di Pavia

Center for Photonic Communication and Computing
Northwestern University, Evanston IL 60208

Founded by: EC (ATESIT), INFM (PRA-CLON), MIUR (Cofin), US (MURI)

Universal measuring devices and quantum calibration-[December 17 2003] [start]-[end]-[back] 1



QUIT (Quantum Information Theory)

Universal measuring devices and quantum calibration-[December 17 2003] [start]-[end]-[back] 2



QUIT (Quantum Information Theory)

G. M. D’Ariano (full prof.) C. Macchiavello (researcher) M. F. Sacchi (postdoc)

P. Perinotti (postdoc) O. Rudolph (ATESIT) G. Chiribella (PhD student)

P. Lo Presti (PhD student) F. Buscemi (PhD student) M. Medici (secretary)

Universal measuring devices and quantum calibration-[December 17 2003] [start]-[end]-[back] 3



Universal measuring devices and quantum calibration-[December 17 2003] [start]-[end]-[back] 4



INDEX

Universal measuring devices and quantum calibration-[December 17 2003] [start]-[end]-[back] 5



INDEX

1. Universal quantum detectors (G. M. D., P. Perinotti, and M. Sacchi)

Universal measuring devices and quantum calibration-[December 17 2003] [start]-[end]-[back] 5



INDEX

1. Universal quantum detectors (G. M. D., P. Perinotti, and M. Sacchi)

2. Programmable quantum detectors (G. M. D. and P. Perinotti)

Universal measuring devices and quantum calibration-[December 17 2003] [start]-[end]-[back] 5



INDEX

1. Universal quantum detectors (G. M. D., P. Perinotti, and M. Sacchi)

2. Programmable quantum detectors (G. M. D. and P. Perinotti)

3. Absolute quantum calibration (G. M. D. and P. Lo Presti)

Universal measuring devices and quantum calibration-[December 17 2003] [start]-[end]-[back] 5



INDEX

1. Universal quantum detectors (G. M. D., P. Perinotti, and M. Sacchi)

2. Programmable quantum detectors (G. M. D. and P. Perinotti)

3. Absolute quantum calibration (G. M. D. and P. Lo Presti)

• Goal: establish the required minimal set of resources in terms of:

Universal measuring devices and quantum calibration-[December 17 2003] [start]-[end]-[back] 5



INDEX

1. Universal quantum detectors (G. M. D., P. Perinotti, and M. Sacchi)

2. Programmable quantum detectors (G. M. D. and P. Perinotti)

3. Absolute quantum calibration (G. M. D. and P. Lo Presti)

• Goal: establish the required minimal set of resources in terms of:

1. special quantum states

Universal measuring devices and quantum calibration-[December 17 2003] [start]-[end]-[back] 5



INDEX

1. Universal quantum detectors (G. M. D., P. Perinotti, and M. Sacchi)

2. Programmable quantum detectors (G. M. D. and P. Perinotti)

3. Absolute quantum calibration (G. M. D. and P. Lo Presti)

• Goal: establish the required minimal set of resources in terms of:

1. special quantum states (maximally entangled states),

Universal measuring devices and quantum calibration-[December 17 2003] [start]-[end]-[back] 5



INDEX

1. Universal quantum detectors (G. M. D., P. Perinotti, and M. Sacchi)

2. Programmable quantum detectors (G. M. D. and P. Perinotti)

3. Absolute quantum calibration (G. M. D. and P. Lo Presti)

• Goal: establish the required minimal set of resources in terms of:

1. special quantum states (maximally entangled states),
2. special measurements

Universal measuring devices and quantum calibration-[December 17 2003] [start]-[end]-[back] 5



INDEX

1. Universal quantum detectors (G. M. D., P. Perinotti, and M. Sacchi)

2. Programmable quantum detectors (G. M. D. and P. Perinotti)

3. Absolute quantum calibration (G. M. D. and P. Lo Presti)

• Goal: establish the required minimal set of resources in terms of:

1. special quantum states (maximally entangled states),
2. special measurements (Bell measurements),

Universal measuring devices and quantum calibration-[December 17 2003] [start]-[end]-[back] 5



INDEX

1. Universal quantum detectors (G. M. D., P. Perinotti, and M. Sacchi)

2. Programmable quantum detectors (G. M. D. and P. Perinotti)

3. Absolute quantum calibration (G. M. D. and P. Lo Presti)

• Goal: establish the required minimal set of resources in terms of:

1. special quantum states (maximally entangled states),
2. special measurements (Bell measurements),
3. special unitary transformations

Universal measuring devices and quantum calibration-[December 17 2003] [start]-[end]-[back] 5



INDEX

1. Universal quantum detectors (G. M. D., P. Perinotti, and M. Sacchi)

2. Programmable quantum detectors (G. M. D. and P. Perinotti)

3. Absolute quantum calibration (G. M. D. and P. Lo Presti)

• Goal: establish the required minimal set of resources in terms of:

1. special quantum states (maximally entangled states),
2. special measurements (Bell measurements),
3. special unitary transformations (controlled-U unitary transformations).

Universal measuring devices and quantum calibration-[December 17 2003] [start]-[end]-[back] 5



Universal quantum detectors

Definition:
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Universal quantum detectors

Definition:

By a universal detector we can determine the expectation value 〈O〉 of an
arbitrary operator O of a quantum system just by using a different
data-processing for each O.
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Couple the quantum system (Hilbert space H) with an ancilla (Hilbert space K).

• A POVM {Πi}, Πi ≥ 0 on H⊗ K is universal for the system iff there exists a
state of the ancilla ν such that for any operator O on H one has

Tr[ρO] =
∑

i

fi(ν, O)Tr[(ρ⊗ ν)Πi] , (1)

for a suitable data-processing fi(ν, O) of the outcome i.
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Universal quantum detectors

Couple the quantum system (Hilbert space H) with an ancilla (Hilbert space K).

• A POVM {Πi}, Πi ≥ 0 on H⊗ K is universal for the system iff there exists a
state of the ancilla ν such that for any operator O on H one has

Tr[ρO] =
∑

i

fi(ν, O)Tr[(ρ⊗ ν)Πi] , (1)

for a suitable data-processing fi(ν, O) of the outcome i.

- In terms of the system only:

Tr[ρO] =
∑

i

fi(ν,O)Tr[ρΞi[ν]], Ξi[ν] .= Tr2[(I ⊗ ν)Πi], (2)

the POVM {Ξi[ν]} is informationally complete.
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Notation for entangled states

• Hilbert-Schmidt isomorphism: |Ψ〉〉 ∈ H⊗ K ⇐⇒ Ψ operator from K to H

|Ψ〉〉 =
∑
nm

Ψnm|n〉 ⊗ |m〉 ⇐⇒ Ψ =
∑
nm

Ψnm|n〉〈m|. (3)

〈〈A|B〉〉 ≡ Tr[A
†
B]. (4)
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• Multiplication rules (for fixed reference basis in the two Hilbert spaces):
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|Ψ〉〉 =
∑
nm

Ψnm|n〉 ⊗ |m〉 ⇐⇒ Ψ =
∑
nm

Ψnm|n〉〈m|. (3)

〈〈A|B〉〉 ≡ Tr[A
†
B]. (4)

• Partial trace rules

TrK[|A〉〉〈〈B|] = AB
†
,

TrH[|A〉〉〈〈B|] = (B
†
A)

ᵀ
,

(5)

• Multiplication rules (for fixed reference basis in the two Hilbert spaces):

(A⊗ B)|C〉〉 = |AC B
ᵀ〉〉, (6)

|A〉〉 ≡ (A⊗ I)|I〉〉 ≡ (I ⊗ A
ᵀ
)|I〉〉, |I〉〉 =

∑
n

|n〉 ⊗ |n〉, (7)

(U ⊗ U
∗
)|I〉〉 = |I〉〉, U

∗ .
= (U

†
)
ᵀ
. (8)
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Frames of operators

• A sequence of operators {Ξi} is a frame for a Banach space of operators if
there are constants 0 < a ≤ b < +∞ s.t. for all operators A one has

a||A||2 ≤
∑

i

|〈A,Ξi〉|2︸ ︷︷ ︸
Bessel series

≤ b||A||2. (9)
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a||A||2 ≤
∑

i

|〈A,Ξi〉|2︸ ︷︷ ︸
Bessel series

≤ b||A||2. (9)

• The sequence of operators {Ξi} is a frame iff the following operator on H⊗ K
is bounded and invertible (Hilbert-Schmidt operators)

F =
∑

i

|Ξi〉〉〈〈Ξi| . (frame operator) (10)
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Frames of operators

• A sequence of operators {Ξi} is a frame for a Banach space of operators if
there are constants 0 < a ≤ b < +∞ s.t. for all operators A one has

a||A||2 ≤
∑

i

|〈A,Ξi〉|2︸ ︷︷ ︸
Bessel series

≤ b||A||2. (9)

• The sequence of operators {Ξi} is a frame iff the following operator on H⊗ K
is bounded and invertible (Hilbert-Schmidt operators)

F =
∑

i

|Ξi〉〉〈〈Ξi| . (frame operator) (10)

• Then, there exists a dual frame {Θi} such that every operator A can be
expanded as follows

A =
∑

i

Tr[Θ†
iA]Ξi . (11)
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Frames of operators

• The completeness relation of the frame also reads:

E =
∑

i

Θ†
i ⊗ Ξi E : swap operator on H⊗ K (12)
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Frames of operators

• The completeness relation of the frame also reads:

E =
∑

i

Θ†
i ⊗ Ξi E : swap operator on H⊗ K (12)

• Alternate dual frames:

|Θi〉〉 = F−1|Ξi〉〉+ |Yi〉〉 −
∑

j

〈〈Ξj|F−1|Ξi〉〉|Yj〉〉 , (13)

Yi arbitrary Bessel, and F−1|Ξi〉〉 canonical dual frame.
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Frames of operators

• The completeness relation of the frame also reads:

E =
∑

i

Θ†
i ⊗ Ξi E : swap operator on H⊗ K (12)

• Alternate dual frames:

|Θi〉〉 = F−1|Ξi〉〉+ |Yi〉〉 −
∑

j

〈〈Ξj|F−1|Ξi〉〉|Yj〉〉 , (13)

Yi arbitrary Bessel, and F−1|Ξi〉〉 canonical dual frame.

• For exact frames there is only the canonical dual frame. Alternate duals are
useful for optimization.
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Universal quantum detectors

Tr[ρO] =
∑

i

fi(ν,O)Tr[ρΞi[ν]], Ξi[ν] .= Tr2[(I ⊗ ν)Πi]. (14)
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Universal quantum detectors

Tr[ρO] =
∑

i

fi(ν,O)Tr[ρΞi[ν]], Ξi[ν] .= Tr2[(I ⊗ ν)Πi]. (14)

True independently of ρ iff

O =
∑

i

fi(ν, O)Ξi[ν], (15)
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Tr[ρO] =
∑

i

fi(ν,O)Tr[ρΞi[ν]], Ξi[ν] .= Tr2[(I ⊗ ν)Πi]. (14)

True independently of ρ iff

O =
∑

i

fi(ν, O)Ξi[ν], (15)

namely {Ξi[ν]} is a positive frame, and the data-processing rule is given in
terms of the dual frame

fi(ν, O) = Tr
[
Θ†

i [ν]O
]
. (16)

[D’Ariano, Perinotti and Sacchi, quant-ph/0306025] [start]-[end]-[back] 11



Universal quantum detectors

Tr[ρO] =
∑

i

fi(ν,O)Tr[ρΞi[ν]], Ξi[ν] .= Tr2[(I ⊗ ν)Πi]. (14)

True independently of ρ iff

O =
∑

i

fi(ν, O)Ξi[ν], (15)

namely {Ξi[ν]} is a positive frame, and the data-processing rule is given in
terms of the dual frame

fi(ν, O) = Tr
[
Θ†

i [ν]O
]
. (16)

• The POVM {Ξi[ν]} is necessarily not orthogonal.
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Universal quantum detectors

Upon diagonalizing the POVM {Πi} on H⊗ K

Πi =
ri∑

j=1

|Ψ(i)
j 〉〉〈〈Ψ(i)

j | , (17)
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Πi =
ri∑

j=1

|Ψ(i)
j 〉〉〈〈Ψ(i)

j | , (17)

one has

Ξi[ν] ≡
ri∑

j=1

Ψ(i)
j νᵀΨ(i)†

j . (18)
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Universal quantum detectors

Upon diagonalizing the POVM {Πi} on H⊗ K

Πi =
ri∑

j=1

|Ψ(i)
j 〉〉〈〈Ψ(i)

j | , (17)

one has

Ξi[ν] ≡
ri∑

j=1

Ψ(i)
j νᵀΨ(i)†

j . (18)

• It follows that {Πi} is universal iff both {Ψ(i)
j } and {Ξi[ν]} are operator frames.
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Universal POVM’s: the Bell case

POVM on H⊗ H : Πi =
αi

d
|Ui〉〉〈〈Ui|, d = dim(H), αi > 0, Ui unitary. (19)
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α = eic(α,β)Uβ
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αi

d
|Ui〉〉〈〈Ui|, d = dim(H), αi > 0, Ui unitary. (19)

• Special case: {Ui} UIR of some group G.

• Example: projective UIR of abelian group: UαUβU†
α = eic(α,β)Uβ

• One can prove that the Bell POVM is necessarily orthogonal and it is universal,
with ancilla state ν satisfying Tr[U†

ανᵀ] 6= 0 for all α.
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Universal POVM’s: the Bell case

POVM on H⊗ H : Πi =
αi

d
|Ui〉〉〈〈Ui|, d = dim(H), αi > 0, Ui unitary. (19)

• Special case: {Ui} UIR of some group G.

• Example: projective UIR of abelian group: UαUβU†
α = eic(α,β)Uβ

• One can prove that the Bell POVM is necessarily orthogonal and it is universal,
with ancilla state ν satisfying Tr[U†

ανᵀ] 6= 0 for all α.

• Dual set (unique) for data-processing:

Θα[ν] =
1
d

d2∑
β=1

Uβe−ic(β,α)

Tr [Uβν∗]
. (20)
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Universal POVM’s: the Bell case

• Example: UIR of non abelian group SU(d).
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• Example: UIR of non abelian group SU(d).

- Frame operator for Ξα[ν] = Uα νᵀ U†
α (see Eq. (10))
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• Example: UIR of non abelian group SU(d).

- Frame operator for Ξα[ν] = Uα νᵀ U†
α (see Eq. (10))

F =
∫

dα (Uα ⊗ U∗
α) |νᵀ〉〉〈〈νᵀ| (U†

α ⊗ Uᵀ
α) = P +

1
a
P⊥,

P
.=1

d|I〉〉〈〈I|, a =
d2 − 1

d Tr[(νᵀ)2]− 1
,

(21)
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P⊥,
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.=1
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,

(21)

{Ξα[ν]} is a frame unless ν = d−1I.
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Universal POVM’s: the Bell case

• Example: UIR of non abelian group SU(d).

- Frame operator for Ξα[ν] = Uα νᵀ U†
α (see Eq. (10))

F =
∫

dα (Uα ⊗ U∗
α) |νᵀ〉〉〈〈νᵀ| (U†

α ⊗ Uᵀ
α) = P +

1
a
P⊥,

P
.=1

d|I〉〉〈〈I|, a =
d2 − 1

d Tr[(νᵀ)2]− 1
,

(21)

{Ξα[ν]} is a frame unless ν = d−1I.

• Canonical dual frame

Θ0
α[ν] = aUα νᵀU†

α + b I , b =
Tr[(νᵀ)2]− d

dTr[(νᵀ)2]− 1
. (22)
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• Consider alternate dual frames of covariant form

Θα[ν] = UαξU†
α . (23)
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Universal POVM’s: the Bell case

• Consider alternate dual frames of covariant form

Θα[ν] = UαξU†
α . (23)

One must have
Tr[ξ] = 1 , Tr[νᵀξ] = d . (24)
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Universal POVM’s: the Bell case

• Consider alternate dual frames of covariant form

Θα[ν] = UαξU†
α . (23)

One must have
Tr[ξ] = 1 , Tr[νᵀξ] = d . (24)

• The canonical dual frame minimizes the variance averaged over all pure states.
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Universal POVM’s: the Bell case

• Consider alternate dual frames of covariant form

Θα[ν] = UαξU†
α . (23)
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Tr[ξ] = 1 , Tr[νᵀξ] = d . (24)
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- By taking dim(K) = L, one has the following orthogonal POVM for H⊗ K

Πk,l = |ck(l)〉〈ck(l)| ⊗ |l〉〈l|, {|l〉} ONB for K. (26)

⇒ tomography + ancillary quantum roulette.

• Data-processing function:

fk,l(ν, O) =
Tr[C†(l)O]
〈l|ν|l〉

ck(l), 〈l|ν|l〉 6= 0 ∀l. (28)
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1. General classification of universal POVM’s (with any degree of entanglement),
...

2. Methods for generating positive operator frames from complex operator frames.

3. Are there universal Bell POVM’s based on unitary frames that are not a group
representations?

4. For H ' K is any universal POVM Bell?

5. Is a Bell POVM always ”better” than a separable one?

6. Is the canonical dual frame always ”optimal”?

7. Is there always a pure ancillary state? Is it always ”optimal”?

8. Weakly universal POVM’s: the ancilla state ν depends on the operator O to be
estimated.
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Programmable detectors

• Is it possible to have a ”programmable” detector which achieves any given
POVM (within a class) by preparing an ancilla in a different quantum state?
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Programmable detectors

• Is it possible to have a ”programmable” detector which achieves any given
POVM (within a class) by preparing an ancilla in a different quantum state?

- Answer: it is impossible to have a detector which is programmable exactly
using a finite-dimensional ancilla [M. Dušek and V. Bužek quant-ph/0201097 from no-go

theorem by Nielsen and Chuang [PRL 79 321 (1997)]

• Alternatives:

- Which continuum sets of detectors can be achieved with a single
programmable detector having a finite-dimensional ancilla?

- Is it possible to have an approximately programmable detector?
- Which minimal resources are needed to achieve all possible POVM’s?
- Is there a special unitary U to be chosen for the ancilla-system interaction?
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- The general form of a G-covariant Bell POVM

dBg = d g (Ug ⊗ IH)|V 〉〉〈〈V |(U†
g ⊗ IH) g ∈ G, (29)

V ∈ U(H), {Ug} UIR of G on H and d g Haar invariant measure.
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⇒ all possible covariant POVM’s (finite-dimensional UIR of a group G).

- The general form of a G-covariant Bell POVM

dBg = d g (Ug ⊗ IH)|V 〉〉〈〈V |(U†
g ⊗ IH) g ∈ G, (29)

V ∈ U(H), {Ug} UIR of G on H and d g Haar invariant measure.

- Covariant POVM

dPg = Tr2[dBg(I ⊗ ν)] = d g UgζU†
g , ζ = V νᵀV †. (30)
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Bell measurement from local measurements

• Bell measurement corresponding to the projective UIR of the Abelian group in d dimensions:

G = Zd × Zd

U(m, n) = Z
m

W
n
, Z =

∑
j

ω
j|j〉〈j|, W =

∑
k

|k〉〈k ⊕ 1|, ω = e
2πi
d . (31)
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• Unitary operator V connecting the Bell observable with local observables

V (|m〉 ⊗ |n〉) =
1
√

d
|U(m, n)〉〉. (32)
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• Bell measurement corresponding to the projective UIR of the Abelian group in d dimensions:

G = Zd × Zd

U(m, n) = Z
m

W
n
, Z =

∑
j

ω
j|j〉〈j|, W =

∑
k

|k〉〈k ⊕ 1|, ω = e
2πi
d . (31)

• Unitary operator V connecting the Bell observable with local observables

V (|m〉 ⊗ |n〉) =
1
√

d
|U(m, n)〉〉. (32)

• V is of the controlled-U form

V =
∑

i

|i〉〈i| ⊗W
i
.

Wn

(33)
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(non extremal POVM’s are achieved by a random choice between different
indecomposable apparatuses)
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Approximately programmable detectors

We need to achieve only ”indecomposable” detectors, i. e. extremal POVM’s

(non extremal POVM’s are achieved by a random choice between different
indecomposable apparatuses)

• The observables are a special case of extremal POVM’s, and they are all
connected each other by unitary transformations.

• Nonorthogonal extremal POVM’s are generally not connected by unitary
transformations.
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Convex structure of POVM’s

Theorem 1 The extremality of the POVM P = {Pn} n ∈ E = {1, 2, . . .} is
equivalent to the nonexistence of non trivial solutions D for the equation∑

n

Dn = 0, Supp(Dn),Rng(Dn) ⊆ Supp(Pn). (34)
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equivalent to the nonexistence of non trivial solutions D for the equation∑

n

Dn = 0, Supp(Dn),Rng(Dn) ⊆ Supp(Pn). (34)

Theorem 2 (Parthasaraty) A POVM P is extremal iff the operators
|v(n)

i 〉〈v(n)
j | are linearly independent, for all eigenvectors |v(n)

j 〉 of Pn.

[G. M. D’Ariano and P. Lo Presti, (quant-ph/0301110)] [start]-[end]-[back] 22



Convex structure of POVM’s

Corollary 1 Orthogonal POVM’s are extremal.

[G. M. D’Ariano and P. Lo Presti, (quant-ph/0301110)] [start]-[end]-[back] 23



Convex structure of POVM’s

Corollary 1 Orthogonal POVM’s are extremal.

Corollary 2 If some elements have non-disjoint supports, then P is not
extremal.

[G. M. D’Ariano and P. Lo Presti, (quant-ph/0301110)] [start]-[end]-[back] 23



Convex structure of POVM’s

Corollary 1 Orthogonal POVM’s are extremal.

Corollary 2 If some elements have non-disjoint supports, then P is not
extremal.

Corollary 3 If ∑
n

dim[Supp(Pn)]2 > d2, d
.= dim(H). (35)

then the POVM P = {Pn} is not extremal.

[G. M. D’Ariano and P. Lo Presti, (quant-ph/0301110)] [start]-[end]-[back] 23



Convex structure of POVM’s

Corollary 1 Orthogonal POVM’s are extremal.

Corollary 2 If some elements have non-disjoint supports, then P is not
extremal.

Corollary 3 If ∑
n

dim[Supp(Pn)]2 > d2, d
.= dim(H). (35)

then the POVM P = {Pn} is not extremal.

This means that a POVM with too many elements (i. e. N > d2) will be
decomposable into several POVM’s, each with less than d2 non-vanishing
elements.
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Extremal POVM’s in dimension d = 2

• From the sufficient condition for non-extremality∑
n

dim[Supp(Pn)]
2

> d
2
, (36)
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n

dim[Supp(Pn)]
2

> d
2
, (36)

we obtain that for a qubit the extremal POVM’s cannot have more than N = 4 results, and

must be of the form

Pi = αi(I + ni · σ), αi ≥ 0,
∑

i

αi = 1,
∑

i

αini = 0. (37)
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• For N = 2 they are the usual observables.
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Extremal POVM’s in dimension d = 2

• From the sufficient condition for non-extremality∑
n

dim[Supp(Pn)]
2

> d
2
, (36)

we obtain that for a qubit the extremal POVM’s cannot have more than N = 4 results, and

must be of the form

Pi = αi(I + ni · σ), αi ≥ 0,
∑

i

αi = 1,
∑

i

αini = 0. (37)

• For N = 2 they are the usual observables.

• For N = 3 and N = 4 they correspond to triangles or tetrahedra inside the Bloch sphere.
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Approximately programmable observables

• Approximate the observable X by a fixed programmable device

Xn = U
†|n〉〈n|U ' Z

(ν)
n

.
= Tr1[V

†
(I ⊗ |n〉〈n|)V (ν ⊗ I)] (38)

where the observables are close in term of the physical distance

d(X, Y)
.
= max

ρ∈S(H)

∑
n

|Tr[(Xn − Yn)ρ]| ≤
∑

n

||Xn − Yn||. (39)
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• Problem: evaluate dA(ε) where dA is the minimum dim(A) which satisfies (40).

• All the observables make the manifold SU(d)/U(1)d−1. Therefore, for V of the controlled-U

form V =
∑

j |j〉〈j| ⊗ Vj it will be sufficient to find a covering such that

min
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n

.
= Tr1[V

†
(I ⊗ |n〉〈n|)V (ν ⊗ I)] (38)
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d(X, Y)
.
= max

ρ∈S(H)

∑
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|Tr[(Xn − Yn)ρ]| ≤
∑

n

||Xn − Yn||. (39)

• The ε-programmable observable must satisfy the bound

max
X

min
ν∈S(A)

d(X, Z(ν)
) ≤ ε. (40)

• Problem: evaluate dA(ε) where dA is the minimum dim(A) which satisfies (40).

• All the observables make the manifold SU(d)/U(1)d−1. Therefore, for V of the controlled-U

form V =
∑

j |j〉〈j| ⊗ Vj it will be sufficient to find a covering such that

min
j
||Vj − U ||2 ≤ ε/

√
d. (41)

• It follows that dA(ε) = O(eκε(d+1)).
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|Tr[(Xn − Yn)ρ]| ≤
∑

n

||Xn − Yn||. (39)

• The ε-programmable observable must satisfy the bound

max
X

min
ν∈S(A)

d(X, Z(ν)
) ≤ ε. (40)

• Problem: evaluate dA(ε) where dA is the minimum dim(A) which satisfies (40).

• All the observables make the manifold SU(d)/U(1)d−1. Therefore, for V of the controlled-U

form V =
∑

j |j〉〈j| ⊗ Vj it will be sufficient to find a covering such that

min
j
||Vj − U ||2 ≤ ε/

√
d. (41)

• It follows that dA(ε) = O(eκε(d+1)). For POVMS one has dA(ε) = O(eκε(d
2+1)).

[G. M. D’Ariano and P. Perinotti, in progress] [start]-[end]-[back] 25



Tomography of quantum operations

X λ

X ν

R
EQuantum

operation

RE

RE
.
= E ⊗ I (R) (42)
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Tomography of quantum operations

X λ

X ν

R
EQuantum

operation

RE

RE
.
= E ⊗ I (R) (42)

For faithful input state R this is a 1-to-1correspondence between RE and E .

The quantum operation E is extracted from the output state as follows

E (ρ) = Tr2[(I ⊗ ρ
ᵀ
)I ⊗ R−1

(RE )], R(ρ) = Tr1[(ρ
ᵀ ⊗ I)R]. (43)

[D’Ariano and Lo Presti, Phys. Rev. Lett. 86 4195 (2001),Phys. Rev. Lett. 91 047902 (2003)] [start]-[end]-[back] 26



Homodyne tomography

• In quantum optics for each field mode a quorum ≡ {quadratures}

Xφ = 1
2

(
a†eiφ + ae−iφ

)
≡ Q cos φ + P sin φ.

〈H〉 =

∫ π

0

d φ

π
〈EH(Xφ; φ)〉 , EH(x; φ) = 1

4

∫ +∞

−∞
d k |k|Tr[He

ikXφ]e
−ikx

.

a
c

d

I

I1

2

I1 I2-= c c

= d d

b (LO) |z>

+

+

[G. M. D’Ariano, Scuola “E. Fermi”, (IOS Press, Amsterdam 2002) pag. 385.] [start]-[end]-[back] 27



Pauli tomography

Pauli matrices I , σx , σy , σz orthonormal basis for the qubit operator space:

H = 1
2[σ · Tr(σH) + I Tr(H)] .
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Pauli tomography

Pauli matrices I , σx , σy , σz orthonormal basis for the qubit operator space:

H = 1
2[σ · Tr(σH) + I Tr(H)] .

• In Quantum Optics the qubits are encoded on polarization of single photons:

σz = h
†
h− v

†
v,

| ↑〉 ≡ |1〉h|0〉v, | ↓〉 ≡ |0〉h|1〉v,

PBS

σz

PBS

σx,y

λ/4
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Faithful states

• The set of faithful states R is dense within the set of all bipartite states.
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Faithful states

• The set of faithful states R is dense within the set of all bipartite states.

• However, the knowledge of the map E from a measured RE will be affected by increasingly

large statistical errors for R approaching a non-invertible map.

• Therefore, most mixed separable states are

faithful! [e. g. Werner states are a. a.

faithful].

• The most ”efficient” states are the maxi-

mally entangled ones.

• For d = ∞ faithfulness depends also on

the matrix representation [e. g. Gaussian

displacement noise with n > 1
2].

[G. M. D’Ariano and P. Lo Presti, Phys. Rev. Lett. 91 047902 (2003)] [start]-[end]-[back] 29



Tomography of a single qubit quantum device

Device

NOPA

PB
S

σ x
,y

,z

λ
/4

PBS

σ

λ/4

x,y,z

[F. De Martini, G. M. D’Ariano, A. Mazzei, and M. Ricci, Phys. Rev. A 87 062307 (2003)] [start]-[end]-[back] 30



Tomography of a single qubit quantum device

Experiment performed in Roma La Sapienza

[F. De Martini, G. M. D’Ariano, A. Mazzei, and M. Ricci, Phys. Rev. A 87 062307 (2003)] [start]-[end]-[back] 31



Absolute Quantum Calibration of a POVM

n

R

ρ
n
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Absolute Quantum Calibration of a POVM

n

R

ρ
n

In terms of the POVM P .
= {Pn} of the detector, the outcome n will occur with probability

p(n) corresponding to the conditioned state ρn given by

p(n) = Tr[(Pn ⊗ I)R], ρn =
Tr1[(Pn ⊗ I)R]

Tr[(Pn ⊗ I)R]
, (44)
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Absolute Quantum Calibration of a POVM

n

R

ρ
n

In terms of the POVM P .
= {Pn} of the detector, the outcome n will occur with probability

p(n) corresponding to the conditioned state ρn given by

p(n) = Tr[(Pn ⊗ I)R], ρn =
Tr1[(Pn ⊗ I)R]

Tr[(Pn ⊗ I)R]
, (44)

from which we can obtain the POVM as follows

Pn = p(n)[R−1
(ρn)]

ᵀ
, R(ρ) = Tr1[(ρ

ᵀ ⊗ I)R]. (45)
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Absolute Quantum Calibration of Observable

n

R

ρ
n
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Absolute Quantum Calibration of Observable

n

R

ρ
n

• From tomographic data one can recognize when the POVM is actually an ”observable”. This

happens when the POVM is commutative.
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Absolute Quantum Calibration of Observable

n

R

ρ
n

• From tomographic data one can recognize when the POVM is actually an ”observable”. This

happens when the POVM is commutative.

• Then the POVM corresponds to any observable K = {|k〉〈k|} which commutes with {Pn}.
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Absolute Quantum Calibration of Observable

n

R

ρ
n

• From tomographic data one can recognize when the POVM is actually an ”observable”. This

happens when the POVM is commutative.

• Then the POVM corresponds to any observable K = {|k〉〈k|} which commutes with {Pn}.
From tomographic data one reconstructs the matrix elements 〈k|Pn|k〉 corresponding to the

conditioned probability distribution p(n|k) = 〈k|Pn|k〉.
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Absolute Quantum Calibration of Observable

n

R

ρ
n

• The conditioned probability p(n|k) from the tomographic calibration will allow ”unbiasing”

the detector measurements.
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Absolute calibration of a photodetector

LO

NLC

R
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Absolute calibration of a photodetector
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Absolute calibration of a photodetector

[G. M. D’Ariano and P. Lo Presti, unpublished] [start]-[end]-[back] 37



Homodyne calibration of a photodetector

Figure 1: Homodyne tomography of an On/Off photo-detector with quantum
efficiency η = 0.4 and thermal noise photon number ν = 0.1. The reconstruction
is obtained by pattern-function averaging of 1.5 · 106 data, for homodyne quantum
efficiency η = 0.9 and twin beam thermal photon n̄ = 3.

[G. M. D’Ariano and P. Lo Presti, Springer, Lecture Notes, in press] [start]-[end]-[back] 38



Homodyne calibration of a photodetector

Figure 2: Homodyne tomography of an On/Off photodetector with quantum
efficiency η = 0.4 and thermal noise photon number ν = 0.1, with n̄ = 3 photons
in the twin-beam. The ML estimation of the diagonal of the only Off POVM
element are reported for different values of sample size N and homodyne quantum
efficiency ηH. Left: N = 105, ηH = 0.7; Middle: N = 104, ηH = 0.9; Right:
N = 106, ηH = 0.7 .

[G. M. D’Ariano and P. Lo Presti, Springer, Lecture Notes, in press] [start]-[end]-[back] 39



NWU experiment on twin beam

Measurement of

the joint photon-

number proba-

bility distribution

for a twin-beam

from nondegenerate

downconversion

A schematic of the experimental setup. NOPA, non-degenerate optical parametric

amplifier; LOs, local oscillators; PBS, polarizing beam splitter; LPFs, low-pass

filters; BPF, band-pass filter; G, electronic amplifier. Electronics in the two

channels are identical. The measured distributions exhibit up to 1.9 dB of

quantum correlation between the signal and idler photon numbers, whereas the

marginal distributions are thermal as expected for parametric fluorescence.

[M. Vasilyev, S.-K. Choi, P. Kumar, and G. M. D’Ariano, Phys. Rev. Lett. 84 2354 (2000)] [start]-[end]-[back] 40



NWU experiment on twin beam

Marginal distributions for the signal and idler beams. Theoretical distributions for the same mean

photon numbers are also shown [Phys. Rev. Lett. 84 2354 (2000)].

[M. Vasilyev, S.-K. Choi, P. Kumar, and G. M. D’Ariano, Phys. Rev. Lett. 84 2354 (2000)] [start]-[end]-[back] 41



Results
Left: Mea-

sured joint photon-number prob-

ability distributions for the twin-

beam state. Right: Difference

photon number distributions cor-

responding to the left graphs

(filled circles, experimental data;

solid lines, theoretical predictions;

dashed lines, difference photon-

number distributions for two in-

dependent coherent states with

the same total mean number of

photons and n = m.) (a)

400000 samples, n = m = 1.5,

N = 10; (b) 240000 samples,

n = 3.2, m = 3.0, N = 18;

(c) 640000 samples, n = 4.7,

m = 4.6, N = 16. [back to

photodetector calibration]

[M. Vasilyev, S.-K. Choi, P. Kumar, and G. M. D’Ariano, Phys. Rev. Lett. 84 2354 (2000)] [start]-[end]-[back] 42



Conclusions

Universal measuring devices and quantum calibration-[December 17 2003] [start]-[end]-[back] 43



Conclusions

Universal quantum detectors

Universal measuring devices and quantum calibration-[December 17 2003] [start]-[end]-[back] 43



Conclusions

Universal quantum detectors

1. There are Bell POVM’s that are universal observables.

Universal measuring devices and quantum calibration-[December 17 2003] [start]-[end]-[back] 43



Conclusions

Universal quantum detectors

1. There are Bell POVM’s that are universal observables.
2. There are separable universal observable corresponding to a quantum

tomography + ancillary quantum roulette.

Universal measuring devices and quantum calibration-[December 17 2003] [start]-[end]-[back] 43



Conclusions

Universal quantum detectors

1. There are Bell POVM’s that are universal observables.
2. There are separable universal observable corresponding to a quantum

tomography + ancillary quantum roulette.
3. Many open problems...

Universal measuring devices and quantum calibration-[December 17 2003] [start]-[end]-[back] 43



Conclusions

Universal quantum detectors

1. There are Bell POVM’s that are universal observables.
2. There are separable universal observable corresponding to a quantum

tomography + ancillary quantum roulette.
3. Many open problems...

4. Conjectures:

Universal measuring devices and quantum calibration-[December 17 2003] [start]-[end]-[back] 43



Conclusions

Universal quantum detectors

1. There are Bell POVM’s that are universal observables.
2. There are separable universal observable corresponding to a quantum

tomography + ancillary quantum roulette.
3. Many open problems...

4. Conjectures:

(a) All Bell POVM are universal.

Universal measuring devices and quantum calibration-[December 17 2003] [start]-[end]-[back] 43



Conclusions

Universal quantum detectors

1. There are Bell POVM’s that are universal observables.
2. There are separable universal observable corresponding to a quantum

tomography + ancillary quantum roulette.
3. Many open problems...

4. Conjectures:

(a) All Bell POVM are universal.
(b) Bell POVM’s are ”optimal” versus separable.

Universal measuring devices and quantum calibration-[December 17 2003] [start]-[end]-[back] 43



Conclusions

Universal quantum detectors

1. There are Bell POVM’s that are universal observables.
2. There are separable universal observable corresponding to a quantum

tomography + ancillary quantum roulette.
3. Many open problems...

4. Conjectures:

(a) All Bell POVM are universal.
(b) Bell POVM’s are ”optimal” versus separable.
(c) Canonical dual frames are ”optimal”.

Universal measuring devices and quantum calibration-[December 17 2003] [start]-[end]-[back] 43



Conclusions

Universal quantum detectors

1. There are Bell POVM’s that are universal observables.
2. There are separable universal observable corresponding to a quantum

tomography + ancillary quantum roulette.
3. Many open problems...

4. Conjectures:

(a) All Bell POVM are universal.
(b) Bell POVM’s are ”optimal” versus separable.
(c) Canonical dual frames are ”optimal”.
(d) There exists always a pure ancillary state.

Universal measuring devices and quantum calibration-[December 17 2003] [start]-[end]-[back] 43



Conclusions

Universal quantum detectors

1. There are Bell POVM’s that are universal observables.
2. There are separable universal observable corresponding to a quantum

tomography + ancillary quantum roulette.
3. Many open problems...

4. Conjectures:

(a) All Bell POVM are universal.
(b) Bell POVM’s are ”optimal” versus separable.
(c) Canonical dual frames are ”optimal”.
(d) There exists always a pure ancillary state.
(e) Pure ancillary states are ”optimal”.
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Conclusions

Programmable quantum detectors

With a finite-dimensional ancilla:

1. A general exact programmable detector is not achievable.
2. A covariant programmable detector is achievable.

3. A general ε-programmable detector is achievable with dA(ε) = O(eκεd
2
),

4. It can be build up using a controlled-U .

Absolute quantum calibration

1. Using quantum tomography with a bipartite faithful state one can perform
an absolute quantum calibration of a measuring apparatus.

2. In particular one can perform an absolute calibration of a photodetector.
3. The method is robust to detection noise and to mixing of the input state.
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Quantum Mechanics: physical axioms?

FAITHFUL STATESC
A

L
IB

R
A

T
IO

N

INFO-COMPLETE POVMS

Informationally complete POVM’s = calibrators: ”the quantum
standards of the International Bureau of Weights and Measures à

Paris” — Chris Fuchs.
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