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Postulates

® Postulate 1 (Independent systems) There exist independent systems.

® Postulate 2 (Symmetric faithful state) For every composite system
made of two identical physical systems there exists a symmetric joint
state that is both dynamically and preparationally faithful.

® Postulate 3 (Local observability principle) For composite systems
local informationally complete observables provide global
informationally complete observables.

® Postulate 4 (Info-complete discriminating observable) For every
system there exists a minimal info-complete observable that can be
achieved using a joint discriminating observable on system+ ancilla.

P1+P4 = Hilbert space| |P1,P2 = C*-algebra




Postulates (in progress)

® Postulate 1 (Independent systems) There exist independent systems.

® Postulate 2 (Symmetric faithful state) For every composite system
made of two identical physical systems there exists a symmetric joint
state that is both dynamically and preparationally faithful.

® Postulate 3 (Pure symmetric faithful state) If there exists a pure
symmetric faithful state then we have Quantum Mechanics




Actions and outcomes

Experiment (or “action”): every experiment is described
by aset A = {a7;} of possible transformations .27
having overall unit probability, with the apparatus
signaling the outcome ] labeling which transformation
actually occurred.




States

State: A state w for a physical system is a rule which
provides the probability for any possible transformation
within an experiment, namely:

w : state, w() : probability that the transformation o/ occurs

Normalization: Z w(e;) =1
dj cA

Identity transtormation: W(f ) =




States and transformations

States make a convex set 6

Transformations make a monoid (Z




Independent systems and local transtormations

Independent systems and local experiments: two
physical systems are “independent” if on each
system it is possible to perform “local experiments”
for which on every joint state one has the
commutativity of the pertaining transformations

SN g o 0

(Q/,gg,%,.n)i%(l)o%@)o%ﬂ(g)o...

Multipartite system: a collection of independent systems
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[L.ocal state

For a multipartite system we define the local state w l n
of the n-th system the state that gives the probability of
any local transformation &7on the n-th system with all
other systems untouched, namely

G ldy=0te 7 o #




Conditional state

When composing two transformations 2/ and & the
probability that ZBoccurs conditioned that & occurred
before is given by

p(B|A) = w(ﬁ;f%)

Conditional state: the conditional state W gy gives the probability
that a transformation & occurs on the physical system in the
state W after the transformation .2/ occurred, namely

w(PB o of )
w()

kB =




No-signaling from the future

[Ozawa] The definition of conditional state needs to
assume that

S o(Bjod)=w(d), VB,V
@jGB

This is no-signaling from the future.
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Weights and Operations

Weight: un-normalized state | = ()

0 <) <D(I) <+

convex cone of weights: )i

Operation: |Op,, o = ®y= w(-0) Wy (AB) = w(HBo)

Action of a transformation over a state (“Schrodinger picture”):

A :=O0p, w

(FW)(PB) = w(PB o )




Evolution as conditioning

Axioms

Experime
transforma

Theorems

1 Linear eva

i

onditional Sta
(no-signaling from
future)

[ conditioning )~
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Dynamical and informational equivalence

From the definition of conditional state we have:

* there are different transformations which
always produce the same state change, but
generally occur with different probabilities

* there are different transformations which
always occur with the same probability, but
generally affect a different state change
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Dynamical and informational equivalence

Dynamical equivalence of transformations: two
transformations 27 and & are dynamically
equivalent if

Weoy — Wz Vw € &

Informational equivalence of transformations: two
transformations &7and %4 are informationally
equivalent if

w(F) = w(HB) Yweb

A transformation is completely specified by the two classes




Addition of transformations

Two transformations .27 and Zare informationally
compatible (or coexistent) if for every state w one has

w()+w(HB) <1
For any two coexistent transformations 2/jand .2/o we define the
transformation ‘ o/ + b ‘ as the transformation
corresponding to the event e = {1,2} namely the apparatus

signals that either @7 or @/ 0ccurred, but doesn’t specify which
one:

YVw e S w(e + o) = w(@) + w(e2)  (info-class)

ey~
w(szfl :5272) Fa w(gfl :Qfg) i
/ (dyn-class)

(2 + ) w = Hw + How o, + distributive

Vw € 6 Wofy +afs =
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Rescaling of transformations

Multiplication by a scalar: for each transformation.o?

t
t

he transformation \.@Z for < X\ < 1 isdefined as the

-ansformation which is dynamically equivalent to.g/

but occurs with probability w(AZ) = Aw()

Convex structure for transformations ‘$
and for actions




Effect

We call effect an informational equivalence class %
of transformations 27

“Heisenberg picture”: "o, "3 — 20 o/ — Bo o

(from the notion of conditional state)

duality

effects as positive linear functionals [ over states:
Lot (W) = ()

Convex structure for effects ‘:B
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No-signaling

The occurrence of the transformation &4 on system 1 generally
affects the local state on system 2, i. e.

Qaz o2 # Q0

However a local action A = {.7; } on system 2 does
not affect the local state on system 1, more precisely:

acausality of local actions: any local action on a
system is equivalent to the identity transformation
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No-signaling

Theorem 1 (No-signaling) Any local action on a system does not affect another
independent system. More precisely, any local action on a system is equivalent to the
identity transformation when viewed from another independent system. In equations one
has

V() € GXQ,VA, QA7J|2 == Q|2 (1)

Proof. Since the two systems are dynamically independent, for every two local
transformations one has &V 0 &7(? = &7(?) 0 &7 which implies that Q(&/ 0.7 ?)) =
QAP 0 7MW = Q(efV, o7'?). By definition, for 2 € T one has Q|»(B) = Q.7 , B),
and using the addition rule for transformations and reminding the identification A =

D _; ¥, one has

QN B — DB =S B =5 B, (2)
On the other hand, we have
Qs s(B) = (S, B) o (A,.7)) = A, B), (3)

namely the statement.
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No-signaling from dynamical independence

Axioms

Experime
transforma

( Theorems

Indepen
syste

[ conditioning ) »
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Generalized weights,
transformations, and effects

Generalize by taking differences:

convex sets/cones = (affine) linear spaces

weights JYf =9 gen. weights

transformations S = gen. transformations ‘S
(real algebra)

effects 3 =P gen. effects P




Real Banach spaces

norms:
gen. effects SR : ||| := sup |w(Z)]
weS
gen. weights Yp: |o| = sup |o(L)]
Pro| <1
gen. transformations‘zR: ||| := sup |HBoA|
Pro[2|<1

W Pr dual Banach pair under the pairing
oy (W) = w()

‘e Banach algebra




(

Experime

transformat

Banach-space structures

Dual Banach
pair

Axioms
Theorems
_ Informational | o
: equivalence | il
generaﬁ;ed

effect
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Observable

Observable: a complete set of effects . = {;}

Si=7
J




Informationally complete observable

Informationally complete observable: an observable

= {I;} is informationally complete if any effect [ can
be written as linear combination of elements of I,
namely there exist coefficients c¢;(l) such that
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Bloch representation

lot = Y mi(&)n;  lw(w) = m(@) - nw) + q()
J

Conditioning;:

fractional affine (
transformation ()




Informationally complete observable

Theorem: there always exists a minimal informationally
complete observable.

Proof. By definition g = Spang (°3), whence there must exists a spanning set for Bg that is contained in 3. The
maximal number of elements of this set that are linearly independent will constitute a basis, which we suppose has
finite cardinality dim(3g ). It remains to be shown that it is possible to have a basis with sum of elements equal to .#,
and that such basis is obtained operationally starting from the available observables from which we constructed ‘3.

If all observables are uninformative (i. e. with all effects proportional to .#) , then B¥r = Span(.¥), . is a minimal
infocomplete observable, and the statement of the theorem is proved. Otherwise, there exists at least an observable
E = {[;} with n > 2 linearly independent effects. If this is the only observable, again the theorem is proved. Otherwise,
take a new binary observable £, = {x,y} from the set of available ones (you can take different binary observables out
of a given observable with more than two outcomes by summing up effects to yes-no observables). If x € Span([E)
discard it. If x & Span(IE), then necessarily also y ¢ Span(E) [since if there exists coefficients A; such that y = ¥; A/,
then x = ¥;(1 — A;)/;]. Now, consider the observable

E ={3y,5(i+x),50,....Ix} (1)

(which operationally corresponds to the random choice between the observables £ and £, with probability %, and
with the events corresponding to x and /; made indistinguishable). This new observable has now |E’'| = n+ 1 linearly
independent effects (since y is linearly independent on the /; and one has y = Y7 i —x = Y ,[; + 11 —x). By
iterating the above procedure we reach |E’'| = dim(*3r ), and we have so realized an apparatus that measures a minimal
informationally complete observable. B
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Local observability principle

For composite systems local info-complete observables provide
global info-complete observables.

QL

Holism pE>Y Reductionism

oo

Local ; j Local ' Local

experiment experiment experiment

identity for the affine dimension of composite systems

E L g

dim(@lg) == dlm(Gl) dlm(62) — dlm(Gl) o dlm(Gg)
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Local observability principle

identity for the affine dimension of composite systems

dim(Glg) — dlm(Gl) dlm(GQ) 7 dlm(Gl)

S dlm(GQ)

Proof. We first prove that the left side 1s a lower bound for the right side. Indeed, the
number of outcomes of a minimal informationally complete observable is dim(&) + 1,
since 1t equals the dimension of the affine space embedding the convex set of states G

plus an additional dimension for normalization. Now, consider a g|

complete measurement made of two local minimal informational

lobal informationally
ly complete observ-

ables measured jointly. It has number of outcomes |[dim(G&) + 1]

dim(G,) + 1]. How-

ever, we are not guaranteed that the joint observable 1s itself minimal, whence the bound.

The opposite inequality can be easily proved by considering that a global informa-
tionally incomplete measurement made of minimal local informationally complete mea-
surements should belong to the linear span of a minimal global informationally complete

measurement. i

In Quantum Mechanics we have: dim( 6) 5

dim(H)? — 1

29



Local observability principle

Postulates
Axioms

Theorems

lLocal \ nsions of the conve
- ates consistent with

\ observabilit | | antum tensor produ
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Faithful states

Dynamically faithful state: we say that a state ¢ of a bipartite
system is dynamically faithful if when acting on it with a local
transformation ./ on one system the output conditioned
weight (&7, Z )D is in 1-to-1 correspondence with the
transformation 2

() : -
i (o, 9D @ (I, )D
. 2 ‘

(&, ) P=0—= & =0, V%R
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Faithful states

Preparationally faithful state: we say that a state P
of a bipartite system is preparationally faithful if every
joint state {2 can be achieved by a suitable local
transformation Jn on one system occurring with
nonzero probability




Faithful states

Symmetric bipartite state: we call a joint state D of a
bipartite system symmetric if

b(of, B) = O(B, o)




A T
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Operational definition of transposed

Existence of symmetric faithful states

“transposition” over the real algebra .4 of (generalized)

transformations
of <— o’
(o) ; :
P Mo (of, 9D P (I, 0O = (o, 9)D




Operational definition of transposed

For symmetric faithful state it is easy to check that the

involution .of <— .o/ ! satisfies the properties of the
transposed:

B
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Positive bilinear form

Positive form over generalized effects: Jordan
decomposition of the real symmetric form P over
generalized effects PR (finite dimension)

|(I)‘ . — (I)_|_ —@P_

0|(,B) =P(c(L),2), (&)=(P—P)(L)
ct =

D|(f,PB) strictly positive scalar product over *Pr




The complex conjugation

The involution § corresponds to a generalized transformation
(A )=AoZ
Extend G to transformations as follows
HdoclB) —cleld o B =g 6L oAb
Correspondingly the involution over transformations reads
clly =205 o7
which is composition preserving, namely

c(Bod)=¢c(B)og(H).

The involution § will play the role of a complex conjugation.
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The complex conjugation

In term of a canonical basis|c;] for PR or which
D(ci,cj) = 504
the involution § writes

()= o F =3 Bler, L)
k

One has: & = & g(%)’:g(%’)
(%T)T:M7

where A c (")




The adjoint

Scalar product over Pr

o(B|A o =D(c(B), o) =D (B o)

etk )

o (&7") works as an adjoint with respect to the scalar
product

o€ 0 A |B) o = (A |C 0 B)o




The C'-algebra of generalized
transtormations

Take complex linear combinations of generalized transformations

and define¢(ca) = c*¢(/ ) for c € C.

c-generalized transformations: ¢ complex

‘ c-generalized etfects: ‘:B(C \ Banach spaces

complex C*-algebra

GNS-like construction: the generalized transformations act as

complex operators over the (pre)Hilbert space of generalized
effects ‘B@

‘Cc becomes a C*-algebra with respect to the norm induced by
the scalar product on SB(C
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GNS construction for representing
transformations

Representations 7T & of transformations & € A over effects.A /J

To ()| LB)e = | A o HB)e

The Born rule rewrites in the form of pairing;:

w() = o(Z|0)e

with representation of states given by
Z 8T T

The representation of transformatlons is given by

W(B o) = o(B|S|p)e
o(B'| A o p)o = o{FT 0 B'|p)e
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C*-algebra of transformations

Postulates
Axioms

Theorems

Symmetric \

dyn. faithful state

transposition + | i
complex , C*-algebra of |
conjugation | transformations |
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An explicit representation

® =d ' |I){I]

(o, B)=;Ti[Py Py  (L|B) :=0(F", B)=
(| B) = $<<1|2ﬁéu>> A:=3,A QA

All) =/ (D)) =Py ) =: |&)

4 g4

4 EnAn'Ajz EnAjzAn —
o EnAz'A;; EnA;;AJl =
) = S A AL S A P
(=7 || SLAL-A, | S,A4,A] =P

Tr[P;, PZ]




An explicit representation

(I)(Ci,Cj) = %TI‘[VV,’W;] == (Siij

ol oo

1= 0ijS Cj < \%GJ-T

1 2

0
1
0
0

S e e

(I)(C,',Cj) = %TI’[O',‘O';] =

R.=Z @7 (I)(Il) =Rc = E
E\W;) =|W:) =s;|W;)

o~ ESjo.Wj
/




Quantum vs Classical C*-algebras
(in progress)

The C*-algebra of transformations is isometrically
*-homomorphic to the usual operator C*-algebra.

Then the GNS representation is irreducible if the

faithful state (cyclic vector) is pure, corresponding
to OM

The representation is abelian if the faithful state is
separable corresponding to CM
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C*-algebra of transformations

state-effect duality | dim(P) = dim(&) + 1 | (D1)

P2 (prep. faith.) dim (%) = dim(&*?) +1 (?)
(T)+GNS T S e T B s 1 =)=m2)
P3 (loc. observability) | dim(&i2) =dim(S6;)dim(S,)+dim(S;) +dim(S,) | (D2)
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8 L
Qg!x! k- Open problems

theory group

dim(*) = % Existence of G (i.e. existence of the decomposition
of the Banach space Pr into positive and negative parts for the
symmetric real form ¢p

dim(*8) < % Extrapolation:

dim(6°?) = dimy(6*2)2 -1 — dim(G) = dimy(S&)2 — 1

Find a simple postulate discriminating the quantum from the
classical C*-algebras

Exploit purity of () quant-ph 0611094, 0612162,

0701217, 0701219

www.qubit. it
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