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• Postulate 1 (Independent systems) There exist independent systems.

• Postulate 2 (Symmetric faithful state) For every composite system 
made of two identical physical systems there exists a symmetric joint 
state that is both dynamically and preparationally faithful.

• Postulate 3 (Local observability principle) For composite systems 
local informationally complete observables provide global 
informationally complete observables.

• Postulate 4 (Info-complete discriminating observable) For every 
system there exists a minimal info-complete observable that can be 
achieved using a joint discriminating observable on system+ ancilla.

Postulates

P1÷P4          Hilbert space P1,P2          C*-algebra           
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• Postulate 1 (Independent systems) There exist independent systems.

• Postulate 2 (Symmetric faithful state) For every composite system 
made of two identical physical systems there exists a symmetric joint 
state that is both dynamically and preparationally faithful.

• Postulate 3 (Pure symmetric faithful state) If there exists a pure 
symmetric faithful state then we have Quantum Mechanics

Postulates (in progress)
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Experiment (or “action”): every experiment is described 
by a set                       of possible transformations       
having overall unit probability, with the apparatus 
signaling the outcome     labeling which transformation 
actually occurred.

ON THE MISSING AXIOM OF QUANTUM MECHANICS 5

charge, etc. The object of the experiment is something unknown or not precisely known
on the system, and by definition, this will be considered in the notion of state, which will
be in Def. 2. For instance, depending on the context, the charge of a particle can be a
property defining the object system—and used to design the measuring apparatus—or,
if unknown, it could be object of the experiment itself, and as such it would enter the
definition of state. Again we emphasize that here the purpose is to give only the syntactic
manual of the empirical approach, not the semantics, i. e. the specific physical context.

General axiom 2 (On what is an experiment). An experiment on a object system consists
in having it interacting with an apparatus. The interaction between object and apparatus
produces one of a set of possible transformations of the object, each one occurring with
some probability. Information on the “state” of the object system at the beginning of the
experiment is gained from the knowledge of which transformation occurred, which is the
”outcome” of the experiment signaled by the apparatus.

It is clear that both ”object” and ”apparatus” are physical systems, and the asymmetry
between object and apparatus is just asymmetry in prior knowledge, namely the apparatus
is the system of which the experimenter has more a priori information. It is then clear that
the knowledge gained on the state of the object depends on the physical object system, on
the knowledge of details of the transformation produced on the object system, and, more
generally, also on prior knowledge on the “state” itself of the system. In other words, the
experiment can be always regarded as a refinement of knowledge on the object system.

One should convince himself that the above definition of experiment is very general,
and includes all possible situations. For example, at first sight it may seem that it doesn’t
consider the case in which the object is not under the experimenter control (e. g. astro-
nomical observations), in the sense that in such case one cannot establish an interaction
with the object system. However, also in this case there is an interaction between the ob-
ject of interest (e. g. the astronomical object) and another object (e. g. the light) which
should be regarded as a part of the apparatus (i. e. telescope plus light). Such cases can
also be regarded as ”indirect experiments”, namely the experiment is performed on an
auxiliary ”object” (e. g. the light) which is supposed to have had a previous interaction
with the true object of interest, and whose state depends on properties/quantities of it.
Also, the customary case in which a ”quantity” or a ”quality” is measured without in any
way affecting the system corresponds to the case in which all states are left invariant by
the transformations corresponding to each outcome.

Performing a different experiment on the same object obviously corresponds to use a
different experimental apparatus or, at least, to change some settings of the apparatus.
Abstractly, this corresponds to change the set {Aj} of possible transformations Aj that
the system can experience. Such change could actually mean really changing the ”dy-
namics” of the transformations, but may simply mean changing only their probabilities,
or, just their labeling outcomes. Any such change actually corresponds to a change of
the experimental setup. Therefore, the set of all possible transformations {Aj} will be
identified with the choice of experimental setting—the action—and this will be formalized
by the following definition

Definition 1 (Actions and outcomes). The action on the object system due to an exper-
iment is the set A ≡ {Aj} of possible transformations Aj having overall unit probability,
with the apparatus signaling the outcome j labeling which transformation actually oc-
curred.

Thus the action is just a complete set of possible transformations describing an ex-
periment. As we can see now, in a general probabilistic framework the action A is the
”cause”, whereas the outcome j labeling the transformation Aj that actually occurred
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State: A state     for a physical system is a rule which 
provides the probability for any possible transformation 
within an experiment, namely: 

6 GIACOMO MAURO D’ARIANO

is the ”effect” (the action has to be regarded as the cause, since it is the option of the
experimenter). The action can be also considered deterministic, in the sense that one
transformation Aj of the set will occur with certainty. On the other hand, the outcome—
i. e. which transformation Aj occurs— generally is not deterministic, and the particular
case of a deterministic transformation A corresponds to the singleton action A ≡ {A }.

3. States

According to General Axiom 1 by definition the knowledge of the state of a physical
system allows us to predict the results of forthcoming possible experiments on the system,
or, more generally, on another system in an alleged similar situation. According to the
General Axiom 2 then, a precise knowledge of the state of a system would allow to evaluate
the probabilities of any possible transformation of it, for any possible experiment. It
follows that the only possible definition of state is the following

Definition 2 (States). A state ω for a physical system is a rule which provides the
probability for any possible transformation, namely

(1) ω : state, ω(A ) : probability that the transformation A occurs.

We assume that the identical transformation I occurs with probability one, namely

(2) ω(I ) = 1.

This corresponds to a kind of intermediate or interaction picture, in which we don’t con-
sider the free evolution of the system: the scheme could be easily generalized to include
a free evolution, however, at the expense of simplicity. Mathematically, a state will be
a map ω from the set of physical transformations to the interval [0, 1], with the normal-
ization condition (2). Moreover, for every action A = {Aj} one has the normalization of
probabilities

(3)
X

Aj∈A
ω(Aj) = 1

for all states ω of the system. As already noticed, in order to conceive also non-disturbing
experiments, one must conceive situations in which all states are left invariant by each
transformation. At this purpose, see also Remark 4 in the following.

The fact that we necessarily work in the presence of partial knowledge about both object
and apparatus requires that the specification itself of either states and transformations
can be given either incompletely or probabilistically, entailing a convex structure on states
and an addition rule for coexistent transformations. Regarding the convex structure of
state, this is given more precisely by the rule

Rule 1 (Convex structure of states). The possible states of a physical system make a
convex set, namely for any two states ω1 and ω2 we can consider the state ω which is the
mixture of ω1 and ω2, corresponding to have ω1 with probability λ and ω2 with probability
1− λ. We will write

(4) ω = λω1 + (1− λ)ω2, 0 ≤ λ ≤ 1,

and the state ω will correspond to the following probability rule for transformations A

(5) ω(A ) = λω1(A ) + (1− λ)ω2(A ).

Generalization to more than two states follows by induction. In the following the
convex set of states will be denoted by S. We will call pure the states which are the
extremal elements of the convex set, namely which cannot be obtained as mixture of any
two states, and we will call mixed the non extremal ones. As regards transformations, the
addition rule for coexistent transformations and the convex structure will be considered
in the Rules 5 and 7.
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Normalization:

States
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States and transformations

States make a convex set

Transformations make a monoid 

Weights make the convex coneW which is generated by the convex set of states S.

Definition 6 (Linear real space of generalized weights) We extend the notion of

weight to that of negative weight, by taking differences. Such generalized weights span

the affine linear space WR of the convex cone W of weights.

Remark 2 The transformations A act as linear transformations over the space of

weights as follows

A !̃ = !̃(B ◦A ). (15)

We are now in position to introduce the concept of operation.

Definition 7 (Operation) To each transformation A we can associate a linear map

OpA : S−→W, which sends a state ! into the unnormalized state !̃A
.=OpA ! ∈W,

defined by the relation

OpA !
.= !̃A , !̃A (B) = !(B ◦A ). (16)

Similarly to a state, the linear form !̃A ∈W for fixed A maps from the set of transfor-

mations to the interval [0,1]. It is not strictly a state only due to lack of normalization,
since 0 < !̃A (I ) ! 1. The operation Op gives the conditioned state through the state-

reduction rule

!A =
!̃A

!(A )
≡ OpA !

OpA !(I )
. (17)

In the following we will adopt for the operation the more intuitive notation in Eq. (15),

namely we will write

A ! := !(·◦A )≡ OpA ! (18)

At first sight it is not obvious that the commutativity of local transformations in

Definition 3 implies that a transformation on system 2 does not affect the conditioned
local state on system 1. However, this is actually the case, as it is proved in the following

theorem.

Theorem 1 (No signaling, i. e. acausality of local transformations) Any local action

on a system does not affect another independent system. More precisely, any local

action on a system is equivalent to the identity transformation when viewed from an

independent system, namely, in terms of states one has

∀A !
A j∈A

"(A j, ·) ="(I , ·)≡"|2. (19)

Proof. The no-signaling condition is a direct consequence of the definition of indepen-
dent systems. Indeed, for any experiment A = {Ai} one has the normalization condition
(2) for all states of the system, in particular for all locally conditioned joint states

!
i

"I ,B(Ai) = 1, ∀" ∈S×2, ∀B ∈ T, (20)
S

S
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Independent systems and local transformations

Multipartite system: a collection of independent systems

ON THE MISSING AXIOM OF QUANTUM MECHANICS 9

In the following, when we have more than one independent systems, we will denote
local transformations as ordered strings of transformations as follows

(10) (A , B, C , . . .)
.
= A (1) ◦B(2) ◦ C (3) ◦ . . .

i. e. the transformation in parenthesis corresponds to the local transformation A on
system 1, B on system 2, etc.

Rule 4 (Bayes). When composing two transformations A and B, the probability p(B|A )
that B occurs conditioned that A happened before is given by the Bayes rule

(11) p(B|A ) =
ω(B ◦A )

ω(A )
.

The Bayes rule leads to the concept of conditional state:

Definition 10 (Conditional state). The conditional state ωA gives the probability that a
transformation B occurs on the physical system in the state ω after the transformation A
occurred, namely

(12) ωA (B)
.
=

ω(B ◦A )
ω(A )

.

Remark 3 (Linearity of evolution). At this point it is worth noticing that the present
definition of “state”, which logically follows from the definition of experiment, leads to a
notion of evolution as state conditioning. In this way, each transformation acts linearly on
the state space (in addition, since states are probability functionals on transformations, by
dualism (equivalence classes of) transformations are linear functionals over the probability
space). Indeed, a common misconception is that one cannot mimic Quantum Mechanics
as a mere classical probabilistic mechanics in terms of evolutions on a probability space,
because Quantum Mechanics restricts to linear evolution only, whereas classical mechanics
give evolutions which are generally nonlinear.

In the following we will make extensive use of the functional notation

(13) ωA
.
=

ω(· ◦A )
ω(A )

,

where the centered dot stands for the argument of the map. The notion of conditional
state describes the most general evolution.

For the following it is convenient to extend the notion of state to that of weight, namely
nonnegative bounded functionals ω̃ over T with 0 < ω̃(I ) < +∞. To each weight ω̃ it
corresponds the properly normalized state

(14) ω =
ω̃

ω̃(I )
.

Weights make the convex cone S̃ which is generated by the convex set of states S. We
are now in position to introduce the concept of operation.

Definition 11 (Operation). To each transformation A we can associate a linear map
OpA : S −→ S̃ which sends a state ω into the unnormalized state ω̃A

.
= OpA ω ∈ S̃

defined by the relation

(15) ω̃A (B) = ω(B ◦A ).

Similarly to a state, the linear form ω̃A ∈ S̃ for fixed A maps from the set of transfor-
mations T to the interval [0, 1]. It is not strictly a state only due to lack of normalization,

Independent systems and local experiments: two 
physical systems are “independent” if on each 
system it is possible to perform “local experiments” 
for which on every joint state one has the 
commutativity of the pertaining transformations

8 GIACOMO MAURO D’ARIANO

Rule 2. The faces of a ”complete” set of states are themselves ”complete” sets of states.

The problem is to define what does it mean ”completeness”. This can only be defined
in terms of all possible invertible dynamical maps (i. e. isometric transformations of the
set: see the following).

Definition 7 (Maximally chaotic state). The maximally chaotic state χ(S) of the convex
set S is the baricenter of the set, i. e. it can be obtained by averaging over all pure states
with the uniform measure, namely

(6) χ(S)
.
=

Z

Extr S

d ψ ψ

where Extr S denotes the set of extremal points of S, and d ψ is the measure which is
invariant under isomorphisms of S.
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p
dim(S) + 1.
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coefficients of the expansion of the state into extremal states. However, for the same
mixed state there are generally infinitely many convex decompositions into pure states.
Now, from the definition it immediately follows that a maximally chaotic state must be
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4. Transformations and conditioned states

Rule 3 (Transformations make a semi-group). The composition A ◦B of two transfor-
mations A and B is itself a transformation. There exists the identical transformation I
which leaves the physical system invariant, and which for every transformation A satisfies
the composition rule

(7) I ◦A = A ◦I = A .

Consistency of compostion of transformations requires associativity, namely
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Example 2. (1) s(ω, ζ) = 0 for ω !≺ ζ
(2) s(ω, ζ) = 0 for ζ pure and ζ != ω;
(3) a(ω, ζ) = 0 for ζ != ω, if either ζ or ω is pure.

A dual description of the mixing in S is given by the following theorem

Theorem 5. One has the following properties for s:

(1) For ω ∈ S, ζ $→ s(ω, ζ) is a concave function on S;
(2) For ζ ∈ S, ω $→ 1

s(ω,ζ) is a convex function on S;

(3) For ω, ζ ∈ S one has

(48) s(ω, ζ) = inf{u(ζ) : u concave on S, u ≥ 0 on S, u(x) = 1}.

Theorem 6. One has

(49) d(ω, ζ) =
1

supθ∈S min{s(ω, θ), s(ζ, θ)} − 1,

or also

(50)
1

d(ω, ζ) + 1
= sup{α ∈ [0, 1] : αω + (1− α)ω′ = αζ + (1− α)ζ′, ω′, ζ′ ∈ S}.

[CONTINUE] Equivalently s(ω, θ) + s(ζ, θ) ≤ 1 for all θ ∈ S, namely every mixture
θ contains ω and ζ in complementary proportions (i. e. sum of the proportions is not
greater than unit)

11. Local state

Definition 35 (Local state). In the presence of many independent systems in a joint state
Ω, we define the local state ω|n of the n-th system the state that gives the probability for
any local transformation A on the n-th system, with all other systems untouched, namely

(51) ω|n(A )
.
= Ω(I , . . . , I , A|{z}

nth

, I , . . .).

For example, for two systems only, (which is equivalent to group n− 1 systems into a
single one), we just write ω|1 = Ω(·, I ). Notice that generally the commutativity Rule 9
doesn’t imply that the occurrence of a transformation B on system 2 doesn’t change the
probability of occurrence of any other transformation A on system 1, namely, generally

(52) A (1) ◦B(2) = B(2) ◦A (1) !=⇒ Ω(·, B)
Ω(I , B)

= Ω(·, I ).

In other words, the occurrence of the transformation B on system 2 generally affects the
conditioned local state on system 1, namely one has

(53) ΩI ,B(·, I )
.
=

Ω(·, B)
Ω(I , B)

!= Ω(·, I ) ≡ ω|1.

Therefore, in order not to violate the relativity principle, for independent systems (e. g.
space-like separated) we need to require explicitly the acausality principle:

Rule 14 (Acausality of local transformations). Any local action on a system is equivalent
to the identity transformation when viewed from an independent system, namely, in terms
of states one has

(54) ∀A
X

Aj∈A
Ω(·, Aj) = Ω(·, I ) ≡ ω|1.

The acausality of local transformations Rule 14 along with the existence of inequivalent
actions imply the existence of indistinguishable incompatible mixtures.

For a multipartite system we define the local state           
of the n-th system the state that gives the probability of 
any local transformation      on the n-th system with all 
other systems untouched, namely  
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.
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(48) ΩB2(·, I )
.
=

Ω(·, B)
Ω(I , B)
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Therefore, in order not to violate the relativity principle, for independent systems (e. g.
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(49) ∀A
X

Aj∈A
Ω(·, Aj) = Ω(·, I ) ≡ ω(1)

The a-causality of local transformations Rule 16 along with the existence of inequivalent
actions imply the existence of indistinguishable incompatible mixtures.

Corollary 4 (Existence of equivalent incompatible mixtures). For any two incompatible
actions A = {Aj} and B = {Bi}, the following mixtures are the same state

(50)
X

j

pjωj =
X

i

p′iω
′
i ≡ ω,

where

ωj =
ω(·, Aj)

ω(I , Aj)
, pj = ω(I , Aj),

ω′
i =

ω(·, Bi)
ω(I , Bi)

, p′i = ω(I , Bi),

ω
.
= ω(·, I ).

(51)
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probability that     occurs conditioned that      occurred 
before is given by
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Theorem 1. The group of isomorphisms of S leave the state χ(S) invariant. Moreover,
χ(S) is the only state that is left invariant.

Proof. Upon denoting by U the transformation corresponding to a particular isomor-
phism, by definition the convex set of states is left invariant, namely SU ≡ S. On the
other hand, [χ(S)]U ≡ χ(S), whence χ(S) is left invariant, and this must be true for
every isomorphism. We now prove that χ(S) is the only invariant state.

Any nontrivial isomorphism maps extremal states to extremal states, and for each
couple of extremal states there is always an isomorphism connecting them. The same
is no longer true for mixed states, since each isomorphism maps distinct extremal states
into distinct extremal states preserving convex combination, whence it cannot change the
coefficients of the expansion of the state into extremal states. However, for the same
mixed state there are generally infinitely many convex decompositions into pure states.
Now, from the definition it immediately follows that a maximally chaotic state must be
full-rank. . . .

4. Transformations and conditioned states

Rule 3 (Transformations make a semi-group). The composition A ◦B of two transfor-
mations A and B is itself a transformation. There exists the identical transformation I
which leaves the physical system invariant, and which for every transformation A satisfies
the composition rule

(7) I ◦A = A ◦I = A .

Consistency of compostion of transformations requires associativity, namely

(8) C ◦ (B ◦A ) = (C ◦B) ◦A .

Definition 9 (Independent systems and local transformations). We say that two physical
systems are independent if on each system it is possible to perform local transformations
that don’t affect the other system. This can be expressed synthetically with the commuta-
tivity of local transformations

(9) A1 ◦B2 = B2 ◦A1,

where the label n = 1, 2 of the transformations denotes the system undergoing the trans-
formation.

In the following, when we have more than one independent systems, we will denote
local transformations as ordered strings of transformations as follows

(10) (A , B, C , . . .)
.
= A1 ◦B2 ◦ C3 ◦ . . .

i. e. the transformation in parenthesis corresponds to the local transformation A on
system 1, B on system 2, etc.

Rule 4 (Bayes). When composing two transformations A and B, the probability p(B|A )
that B occurs conditioned that A happened before is given by the Bayes rule

(11) p(B|A ) =
ω(B ◦A )

ω(A )
.

The Bayes rule leads to the concept of conditional state:

Definition 10 (Conditional state). The conditional state ωA gives the probability that a
transformation B occurs on the physical system in the state ω after the transformation A
occurred, namely

(12) ωA (B)
.
=

ω(B ◦A )
ω(A )

.
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[Ozawa] The definition of conditional state needs to 
assume that 

No-signaling from the future

Now, for x in a Banach space and T a map on the Banach space one has

||Tx|| =
∣∣∣∣

∣∣∣∣T
x

||x||

∣∣∣∣

∣∣∣∣ ||x|| ! sup
||y||=1

||Ty||||x|| ! sup
||y||!1

||Ty||||x|| =: ||T ||||x||, (35)

namely

||Tx|| ! ||T ||||x||, (36)

and applying the last identity twice one has for operators on the Banach space

||AB|| ! ||A||||B||, (37)

since

||AB|| = sup
||x||!1

||ABx|| ! sup
||x||!1

||A||||B||||x|| = ||A||||B||. (38)

This implies that ||B ◦A || ! ||B||||A ||, whence the generalized transformations make a Banach algebra.

DIMENSIONALITY THEOREMS

=⇒

state-effect duality dim(P) = dim(S)+1 (D1)

P2 (prep. faith.) dim(T) = dim(S×2)+1 (T)

(T)+GNS dim(S×2)+1= (dim(S)+1)2 (T4)≡(D2)
P3 (loc. observability) dim(S12) = dim(S1)dim(S2)+dim(S1)+dim(S2) (D2)

P4 (infoc. as joint discr.) dim(S) = dim#(S×2)−1 (D4)

(D2)+(D4) dim(S×2) = dim#(S×2)2−1 (D24)

(T)+(D24) dim(T) = dim#(S×2)2 (T2)

Faithful GNS dim(TC) = dim(PC)2 (T3)

dim(TC) = dim(TR), dim(PC) = dim(PR)

(T3)+(T2)+(D4)+(D2) dim(PR) = dim#(S×2) =
√
dim(S×2)+1= dim(S)+1 (T3)

(D24) dim(S) = dim#(S)2−1 (D24b)

(D4+D24b) dim#(S×2) = dim#(S)2 (⊗)
(D1)+(D24b) dim(P) = dim#(S)2 (P)

New things

Remark 2 (No conditioning from the future) Ozawa noticed that when defining conditional states we are actually

assuming normalization for every complete experiment, namely that

!
B j∈B

!(B j ◦A ) = !(A ), ∀B, ∀A . (39)

This is a kind of equivalent to a sort of “no-signaling from the future”.

This is relevant to define the Heisenberg picture. Indeed, one has !A (B) ≡ !A (B), since !A is a state by the

no-signaling from the future. This implies that !(B ◦A ) = !(B ◦A ) which gives the chaining rule

B ◦A = B ◦A (40)

This is no-signaling from the future.
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Weights and Operations

Weights make the convex coneW which is generated by the convex set of states S.

Definition 6 (Linear real space of generalized weights) We extend the notion of

weight to that of negative weight, by taking differences. Such generalized weights span

the affine linear space WR of the convex cone W of weights.

Remark 2 The transformations A act as linear transformations over the space of

weights as follows

A !̃ = !̃(B ◦A ). (15)

We are now in position to introduce the concept of operation.

Definition 7 (Operation) To each transformation A we can associate a linear map

OpA : S−→W, which sends a state ! into the unnormalized state !̃A
.=OpA ! ∈W,

defined by the relation

OpA !
.= !̃A , !̃A (B) = !(B ◦A ). (16)

Similarly to a state, the linear form !̃A ∈W for fixed A maps from the set of transfor-

mations to the interval [0,1]. It is not strictly a state only due to lack of normalization,
since 0 < !̃A (I ) ! 1. The operation Op gives the conditioned state through the state-

reduction rule

!A =
!̃A

!(A )
≡ OpA !

OpA !(I )
. (17)

In the following we will adopt for the operation the more intuitive notation in Eq. (15),

namely we will write

A ! := !(·◦A )≡ OpA ! (18)

At first sight it is not obvious that the commutativity of local transformations in

Definition 3 implies that a transformation on system 2 does not affect the conditioned
local state on system 1. However, this is actually the case, as it is proved in the following

theorem.

Theorem 1 (No signaling, i. e. acausality of local transformations) Any local action

on a system does not affect another independent system. More precisely, any local

action on a system is equivalent to the identity transformation when viewed from an

independent system, namely, in terms of states one has

∀A !
A j∈A

"(A j, ·) ="(I , ·)≡"|2. (19)

Proof. The no-signaling condition is a direct consequence of the definition of indepen-
dent systems. Indeed, for any experiment A = {Ai} one has the normalization condition
(2) for all states of the system, in particular for all locally conditioned joint states

!
i

"I ,B(Ai) = 1, ∀" ∈S×2, ∀B ∈ T, (20)

4. CONDITIONED STATES AND LOCAL STATES

Rule 3 (Bayes) When composing two transformations A and B, the probability

p(B|A ) that B occurs conditional on the previous occurrence of A is given by the

Bayes rule

p(B|A ) =
!(B ◦A )
!(A )

. (10)

The Bayes rule leads to the concept of conditional state:

Definition 4 (Conditional state) The conditional state !A gives the probability that a

transformation B occurs on the physical system in the state ! after the transformation

A has occurred, namely

!A (B) .=
!(B ◦A )
!(A )

. (11)

In the following we will make extensive use of the functional notation

!A
.=
!(·◦A )
!(A )

, (12)

where the centered dot stands for the argument of the map. Therefore, the notion of

conditional state describes the most general evolution.

Definition 5 (Local state) In the presence of many independent systems in a joint state

!, we define the local state !|n of the n-th system the state that gives the probability

for any local transformation A on the n-th system, with all other systems untouched,

namely

!|n(A ) .=!(I , . . . ,I , A︸︷︷︸
nth

,I , . . .). (13)

For example, for two systems only, (which is equivalent to group n− 1 systems into a
single one), we just write !|1 =!(·,I ).

Remark 1 (Linearity of evolution) At this point it is worth noticing that the present

definition of “state”, which logically follows from the definition of experiment, leads to

a notion of evolution as state-conditioning. In this way, each transformation acts linearly

on the state space. In addition, since states are probability functionals on transforma-

tions, by dualism (equivalence classes of) transformations are linear functionals over

the state space.

For the following it is convenient to extend the notion of state to that of weight,

namely nonnegative bounded functionals !̃ over the set of transformations with 0 !
!̃(A ) ! !̃(I ) < +" for all transformations A . To each weight !̃ it corresponds the

properly normalized state

! =
!̃

!̃(I )
. (14)Weight: un-normalized state
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Action of a transformation over a state (“Schrödinger picture”):

(A ω)(B) := ω(B ◦ A )
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• there are different transformations which 
always produce the same state change, but 
generally occur with different probabilities

• there are different transformations which 
always occur with the same probability, but 
generally affect a different state change

Dynamical and informational equivalence

From the definition of conditional state we have:
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Dynamical and informational equivalence

Informational equivalence of transformations: two 
transformations     and     are informationally 
equivalent if              

10 GIACOMO MAURO D’ARIANO

The above observation leads us to the following definitions of dynamical and informational
equivalences of transformations.

Definition 13 (Dynamical equivalence of transformations). Two transformations A and
B are dynamically equivalent if ωA = ωB for all possible states ω of the system.

Definition 14 (Informational equivalence of transformations). Two transformations A
and B are informationally equivalent if ω(A ) = ω(B) for all possible states ω of the
system.

6. Informational compatibility

The concept of dynamical equivalence of transformations leads to introduce a convex
structure also for transformations. We first need the notion of informational compatibility.

Definition 15 (Informational compatibility or coexistence). We say that two transfor-
mations A and B are coexistent or informationally compatible if one has

(17) ω(A ) + ω(B) ≤ 1, ∀ω ∈ S,

The fact that two transformations are coexistent means that in principle they can occur
in the same experiment, namely there exists at least an action containing both of them. We
have named the present kind of compatibility ”informational” since it is actually defined
on the informationally equivalence classes of transformations. Notice that the relation of
coexistence is symmetric, but is not reflexive, since a transformation can be coexistent
with itself only if ω(A ) ≤ 1/2. The present notion of coexistence is the analogous of
that introduced by Ludwig [6] for the ”effects”. This notion is also related to that of
”exclusive” transformations, since they correspond to exclusive outcomes [see also Ref. [4]
in regards ”exclusive” implies ”coexistent”, but generally not the reverse].

We are now in position to define the ”addition” of coexistent transformations.

Rule 5 (Addition of coexistent transformations). For any two coexistent transformations
A1 and A2 we define the transformation A = A1+A2 as the transformation corresponding
to the event e = {1, 2}, namely the apparatus signals that either A1 or A2 occurred, but
doesn’t specify which one. By definition, one has the distributivity rule

(18) ω(A + B) = ω(A ) + ω(B).

Addition of compatible transformations is the core for the description of partial knowl-
edge on the experimental apparatus. Notice also that same notion of coexistence can
extended to ”propensities” as well (see Definition 17).

Definition 16 (Indecomposable transformation). We call a transformation T indecom-
posable, if there are no coexistent transformations summing to it.

Rule 6 (Multiplication of a transformation by a scalar). For each transformation A the
transformation λA for 0 ≤ λ ≤ 1 is defined as the transformation which is dynamically
equivalent to A , but which occurs with probability ω(λA ) = λω(A ).

Remark 4 (No-information from identity transformations). At this point a warning is
in order, as regards the transformations that are dynamically equivalent to the identity,
namely the probabilistic identity transformations. According to the Rule 6 for multiplica-
tion of transformations by a scalar, a probabilistic identity transformation will be of the
form pI , where p is the probability that the transformation occurs, namely p = ω(pI ).
One could now imagine an hypothetical situation of a ”classical” experiment which leaves
the object identically undisturbed, independently on its state, but still with many dif-
ferent outcomes j that are signaled by the apparatus. If such an experiment had an
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tion of transformations by a scalar, a probabilistic identity transformation will be of the
form pI , where p is the probability that the transformation occurs, namely p = ω(pI ).
One could now imagine an hypothetical situation of a ”classical” experiment which leaves
the object identically undisturbed, independently on its state, but still with many dif-
ferent outcomes j that are signaled by the apparatus. If such an experiment had an
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Definition 13 (Dynamical equivalence of transformations). Two transformations A and
B are dynamically equivalent if ωA = ωB for all possible states ω of the system.
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and B are informationally equivalent if ω(A ) = ω(B) for all possible states ω of the
system.

6. Informational compatibility

The concept of dynamical equivalence of transformations leads to introduce a convex
structure also for transformations. We first need the notion of informational compatibility.

Definition 15 (Informational compatibility or coexistence). We say that two transfor-
mations A and B are coexistent or informationally compatible if one has

(17) ω(A ) + ω(B) ≤ 1, ∀ω ∈ S,

The fact that two transformations are coexistent means that in principle they can occur
in the same experiment, namely there exists at least an action containing both of them. We
have named the present kind of compatibility ”informational” since it is actually defined
on the informationally equivalence classes of transformations. Notice that the relation of
coexistence is symmetric, but is not reflexive, since a transformation can be coexistent
with itself only if ω(A ) ≤ 1/2. The present notion of coexistence is the analogous of
that introduced by Ludwig [6] for the ”effects”. This notion is also related to that of
”exclusive” transformations, since they correspond to exclusive outcomes [see also Ref. [4]
in regards ”exclusive” implies ”coexistent”, but generally not the reverse].

We are now in position to define the ”addition” of coexistent transformations.

Rule 5 (Addition of coexistent transformations). For any two coexistent transformations
A1 and A2 we define the transformation A = A1+A2 as the transformation corresponding
to the event e = {1, 2}, namely the apparatus signals that either A1 or A2 occurred, but
doesn’t specify which one. By definition, one has the distributivity rule

(18) ω(A + B) = ω(A ) + ω(B).

Addition of compatible transformations is the core for the description of partial knowl-
edge on the experimental apparatus. Notice also that same notion of coexistence can
extended to ”propensities” as well (see Definition 17).

Definition 16 (Indecomposable transformation). We call a transformation T indecom-
posable, if there are no coexistent transformations summing to it.

Rule 6 (Multiplication of a transformation by a scalar). For each transformation A the
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◦,+ distributive

we will legitimately write ω(A ) instead of ω(A ). Similarly, one has ωA (B) ≡ ωA (B),
which implies that ω(B ◦A ) = ω(B ◦A ), leading to the chaining rule B ◦A ∈ B ◦A
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∑
i li = 1). We will call the observable L = {li} is

informationally complete when each effect l can be written as a linear combination
l =

∑
i ci(l)li. of elements of L, and when these are linearly independent we will call the

informationally complete observable minimal.
The fact that we necessarily work in the presence of partial knowledge about both
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independent if on the two systems 1 and 2 we can perform local experiments A(1) and A(2)

whose transformations commute each other (i. e. A (1) ◦ B(2) = B(2) ◦ A (1), ∀A (1) ∈
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For any two coexistent transformations      and       we define the 
transformation                           as the transformation 
corresponding to the event                  namely the apparatus 
signals that either       or       occurred, but doesn’t specify which 
one:
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The above observation leads us to the following definitions of dynamical and informational
equivalences of transformations.

Definition 13 (Dynamical equivalence of transformations). Two transformations A and
B are dynamically equivalent if ωA = ωB for all possible states ω of the system.

Definition 14 (Informational equivalence of transformations). Two transformations A
and B are informationally equivalent if ω(A ) = ω(B) for all possible states ω of the
system.

6. Informational compatibility

The concept of dynamical equivalence of transformations leads to introduce a convex
structure also for transformations. We first need the notion of informational compatibility.

Definition 15 (Informational compatibility or coexistence). We say that two transfor-
mations A and B are coexistent or informationally compatible if one has

(17) ω(A ) + ω(B) ≤ 1, ∀ω ∈ S,

The fact that two transformations are coexistent means that in principle they can occur
in the same experiment, namely there exists at least an action containing both of them. We
have named the present kind of compatibility ”informational” since it is actually defined
on the informationally equivalence classes of transformations. Notice that the relation of
coexistence is symmetric, but is not reflexive, since a transformation can be coexistent
with itself only if ω(A ) ≤ 1/2. The present notion of coexistence is the analogous of
that introduced by Ludwig [6] for the ”effects”. This notion is also related to that of
”exclusive” transformations, since they correspond to exclusive outcomes [see also Ref. [4]
in regards ”exclusive” implies ”coexistent”, but generally not the reverse].

We are now in position to define the ”addition” of coexistent transformations.

Rule 5 (Addition of coexistent transformations). For any two coexistent transformations
A1 and A2 we define the transformation A = A1+A2 as the transformation corresponding
to the event e = {1, 2}, namely the apparatus signals that either A1 or A2 occurred, but
doesn’t specify which one. By definition, one has the distributivity rule

(18) ω(A + B) = ω(A ) + ω(B).

Addition of compatible transformations is the core for the description of partial knowl-
edge on the experimental apparatus. Notice also that same notion of coexistence can
extended to ”propensities” as well (see Definition 17).

Definition 16 (Indecomposable transformation). We call a transformation T indecom-
posable, if there are no coexistent transformations summing to it.

Rule 6 (Multiplication of a transformation by a scalar). For each transformation A the
transformation λA for 0 ≤ λ ≤ 1 is defined as the transformation which is dynamically
equivalent to A , but which occurs with probability ω(λA ) = λω(A ).

Remark 4 (No-information from identity transformations). At this point a warning is
in order, as regards the transformations that are dynamically equivalent to the identity,
namely the probabilistic identity transformations. According to the Rule 6 for multiplica-
tion of transformations by a scalar, a probabilistic identity transformation will be of the
form pI , where p is the probability that the transformation occurs, namely p = ω(pI ).
One could now imagine an hypothetical situation of a ”classical” experiment which leaves
the object identically undisturbed, independently on its state, but still with many dif-
ferent outcomes j that are signaled by the apparatus. If such an experiment had an
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transformation λA for 0 ≤ λ ≤ 1 is defined as the transformation which is dynamically
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that introduced by Ludwig [12] for the ”effects”. This notion is also related to that of
”exclusive” transformations, since they correspond to exclusive outcomes [see also Ref.
[10] in regards ”exclusive” implies ”coexistent”, but generally not the reverse].

We are now in position to define the ”addition” of coexistent transformations.

Rule 5 (Addition of coexistent transformations). For any two coexistent transformations
A and B we define the transformation S = A1 +A2 as the transformation corresponding
to the event e = {1, 2}, namely the apparatus signals that either A1 or A2 occurred, but
doesn’t specify which one. By definition, one has the distributivity rule

(19) ∀ω ∈ S ω(A1 + A2) = ω(A1) + ω(A2),

whereas the state conditioning is given by

(20) ∀ω ∈ S ωA1+A2 =
ω(A1)

ω(A1 + A2)
ωA1 +

ω(A2)
ω(A1 + A2)

ωA2 .

Notice that the two rules in Eqs. (19) and (20) completely specify the transformation
A1 +A2, both informationally and dynamically (see also Section 5). Eq. (20) can be more
easily restated in terms of operations as follows:

(21) ∀ω ∈ S OpA1+A2
ω = OpA1

ω + OpA2
ω.

Addition of compatible transformations is the core for the description of partial knowledge
on the experimental apparatus. Notice also that the same notion of coexistence can
extended to ”propensities” as well (see Definition 17).

Definition 16 (Indecomposable transformation). We call a transformation T indecom-
posable, if there are no coexistent transformations summing to it.

From the above definition we can see that the equivalent of quantum unitary transfor-
mations could be defined in terms of indecomposable isometric transformations.

Rule 6 (Multiplication of a transformation by a scalar). For each transformation A the
transformation λA for 0 ≤ λ ≤ 1 is defined as the transformation which is dynamically
equivalent to A , but which occurs with probability ω(λA ) = λω(A ).

Remark 4 (No-information from identity transformations). At this point a warning is
in order, as regards the transformations that are dynamically equivalent to the identity,
namely the probabilistic identity transformations. According to the Rule 6 for multiplica-
tion of transformations by a scalar, a probabilistic identity transformation will be of the
form pI , where p is the probability that the transformation occurs, namely p = ω(pI ).
One could now imagine an hypothetical situation of a ”classical” experiment which leaves
the object identically undisturbed, independently on its state, but still with many dif-
ferent outcomes j that are signaled by the apparatus. If such an experiment had an
action of the form A = {pjI }, it would provide no information on the state ω of the
object, since by definition the probabilities of the outcomes will be independent on ω,
because ω(pjI ) = pj . Therefore, a ”classical” experiment makes sense only for an action
A = {Aj} made of non identical transformations, but with the set of states restricted to
be all invariant under A.

It is now natural to introduce a norm over transformations as follows.

Theorem 1 (Norm for transformations). The following quantity

(22) ||A || = sup
ω∈S

ω(A ),

is a norm on the set of transformations. In terms of such norm all transformations are
contractions.
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Definition 13 (Dynamical equivalence of transformations). Two transformations A and
B are dynamically equivalent if ωA = ωB for all possible states ω of the system.

Definition 14 (Informational equivalence of transformations). Two transformations A
and B are informationally equivalent if ω(A ) = ω(B) for all possible states ω of the
system.

6. Informational compatibility

The concept of dynamical equivalence of transformations leads to introduce a convex
structure also for transformations. We first need the notion of informational compatibility.

Definition 15 (Informational compatibility or coexistence). We say that two transfor-
mations A and B are coexistent or informationally compatible if one has
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The fact that two transformations are coexistent means that in principle they can occur
in the same experiment, namely there exists at least an action containing both of them. We
have named the present kind of compatibility ”informational” since it is actually defined
on the informationally equivalence classes of transformations. Notice that the relation of
coexistence is symmetric, but is not reflexive, since a transformation can be coexistent
with itself only if ω(A ) ≤ 1/2. The present notion of coexistence is the analogous of
that introduced by Ludwig [6] for the ”effects”. This notion is also related to that of
”exclusive” transformations, since they correspond to exclusive outcomes [see also Ref. [4]
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Theorem 1 Let X be a real finite-dimensional normed space with unitary sphere SX , and let L(X) be the linear
operators from X into itself. It is proved that X is an inner product space if and only if for A,C ∈ L(X)

A⊥C⇔∃u ∈ SX : ||A|| = ||Au||, Au⊥Cu,

where ⊥ denotes Birkhoff orthogonality.

Theorem 2 (Existence of an infocomplete observable) There always exists a minimal informationally complete ob-

servable.

Proof. By definition PR = SpanR(P), whence there must exists a spanning set for PR that is contained in P. The
maximal number of elements of this set that are linearly independent will constitute a basis, which we suppose has

finite cardinality dim(PR). It remains to be shown that it is possible to have a basis with sum of elements equal to I ,

and that such basis is obtained operationally starting from the available observables from which we constructed P.
If all observables are uninformative (i. e. with all effects proportional to I ) , thenPR = Span(I ), I is a minimal

infocomplete observable, and the statement of the theorem is proved. Otherwise, there exists at least an observable

E = {li} with n! 2 linearly independent effects. If this is the only observable, again the theorem is proved. Otherwise,
take a new binary observable E2 = {x,y} from the set of available ones (you can take different binary observables out
of a given observable with more than two outcomes by summing up effects to yes-no observables). If x ∈ Span(E)
discard it. If x %∈ Span(E), then necessarily also y %∈ Span(E) [since if there exists coefficients !i such that y= !i!ili,
then x= !i(1−!i)li]. Now, consider the observable

E′ =
{
1
2
y, 1
2
(l1+ x), 1

2
l2, . . . , ln

}
(1)

(which operationally corresponds to the random choice between the observables E and E2 with probability 1
2
, and

with the events corresponding to x and l − 1 made indistinguishable). This new observable has now |E′| = n+ 1
linearly independent effects (since y is linearly independent on the li and one has y=!ni=1 li−x=!ni=2 li+ l1−x). By
iterating the above procedure we reach |E′| = dim(PR), and we have so realized an apparatus that measures a minimal
informationally complete observable."

Theorem 3 (Convex set of dynamical faithful states) If a faithful state is mixed, each component state (i. e. each

state in its possible expansions as convex combination) must be faithful.
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Rescaling of transformations

Multiplication by a scalar: for each transformation        
the transformation         for                     is defined as the 
transformation which is dynamically equivalent to       
but occurs with probability
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The above observation leads us to the following definitions of dynamical and informational
equivalences of transformations.

Definition 13 (Dynamical equivalence of transformations). Two transformations A and
B are dynamically equivalent if ωA = ωB for all possible states ω of the system.

Definition 14 (Informational equivalence of transformations). Two transformations A
and B are informationally equivalent if ω(A ) = ω(B) for all possible states ω of the
system.

6. Informational compatibility

The concept of dynamical equivalence of transformations leads to introduce a convex
structure also for transformations. We first need the notion of informational compatibility.

Definition 15 (Informational compatibility or coexistence). We say that two transfor-
mations A and B are coexistent or informationally compatible if one has

(17) ω(A ) + ω(B) ≤ 1, ∀ω ∈ S,

The fact that two transformations are coexistent means that in principle they can occur
in the same experiment, namely there exists at least an action containing both of them. We
have named the present kind of compatibility ”informational” since it is actually defined
on the informationally equivalence classes of transformations. Notice that the relation of
coexistence is symmetric, but is not reflexive, since a transformation can be coexistent
with itself only if ω(A ) ≤ 1/2. The present notion of coexistence is the analogous of
that introduced by Ludwig [6] for the ”effects”. This notion is also related to that of
”exclusive” transformations, since they correspond to exclusive outcomes [see also Ref. [4]
in regards ”exclusive” implies ”coexistent”, but generally not the reverse].

We are now in position to define the ”addition” of coexistent transformations.

Rule 5 (Addition of coexistent transformations). For any two coexistent transformations
A1 and A2 we define the transformation A = A1+A2 as the transformation corresponding
to the event e = {1, 2}, namely the apparatus signals that either A1 or A2 occurred, but
doesn’t specify which one. By definition, one has the distributivity rule

(18) ω(A + B) = ω(A ) + ω(B).

Addition of compatible transformations is the core for the description of partial knowl-
edge on the experimental apparatus. Notice also that same notion of coexistence can
extended to ”propensities” as well (see Definition 17).

Definition 16 (Indecomposable transformation). We call a transformation T indecom-
posable, if there are no coexistent transformations summing to it.

Rule 6 (Multiplication of a transformation by a scalar). For each transformation A the
transformation λA for 0 ≤ λ ≤ 1 is defined as the transformation which is dynamically
equivalent to A , but which occurs with probability ω(λA ) = λω(A ).

Remark 4 (No-information from identity transformations). At this point a warning is
in order, as regards the transformations that are dynamically equivalent to the identity,
namely the probabilistic identity transformations. According to the Rule 6 for multiplica-
tion of transformations by a scalar, a probabilistic identity transformation will be of the
form pI , where p is the probability that the transformation occurs, namely p = ω(pI ).
One could now imagine an hypothetical situation of a ”classical” experiment which leaves
the object identically undisturbed, independently on its state, but still with many dif-
ferent outcomes j that are signaled by the apparatus. If such an experiment had an
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Convex structure for transformations     
and for actions

Weights make the convex coneW which is generated by the convex set of states S.

Definition 6 (Linear real space of generalized weights) We extend the notion of

weight to that of negative weight, by taking differences. Such generalized weights span

the affine linear space WR of the convex cone W of weights.

Remark 2 The transformations A act as linear transformations over the space of

weights as follows

A !̃ = !̃(B ◦A ). (15)

We are now in position to introduce the concept of operation.

Definition 7 (Operation) To each transformation A we can associate a linear map

OpA : S−→W, which sends a state ! into the unnormalized state !̃A
.=OpA ! ∈W,

defined by the relation

OpA !
.= !̃A , !̃A (B) = !(B ◦A ). (16)

Similarly to a state, the linear form !̃A ∈W for fixed A maps from the set of transfor-

mations to the interval [0,1]. It is not strictly a state only due to lack of normalization,
since 0 < !̃A (I ) ! 1. The operation Op gives the conditioned state through the state-

reduction rule

!A =
!̃A

!(A )
≡ OpA !

OpA !(I )
. (17)

In the following we will adopt for the operation the more intuitive notation in Eq. (15),

namely we will write

A ! := !(·◦A )≡ OpA ! (18)

At first sight it is not obvious that the commutativity of local transformations in

Definition 3 implies that a transformation on system 2 does not affect the conditioned
local state on system 1. However, this is actually the case, as it is proved in the following

theorem.

Theorem 1 (No signaling, i. e. acausality of local transformations) Any local action

on a system does not affect another independent system. More precisely, any local

action on a system is equivalent to the identity transformation when viewed from an

independent system, namely, in terms of states one has

∀A !
A j∈A

"(A j, ·) ="(I , ·)≡"|2. (19)

Proof. The no-signaling condition is a direct consequence of the definition of indepen-
dent systems. Indeed, for any experiment A = {Ai} one has the normalization condition
(2) for all states of the system, in particular for all locally conditioned joint states

!
i

"I ,B(Ai) = 1, ∀" ∈S×2, ∀B ∈ T, (20)
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Effect

We call effect an informational equivalence class                      
of transformations

ON THE MISSING AXIOM OF QUANTUM MECHANICS 13

Remark 5 (Duality between the convex sets of states and of propensities). From the
Definition 2 of state it follows that the convex set of states S and the convex sets of
propensities T are dual each other, and the latter can be regarded as the set of positive
linear contractions over the set of states, namely the set of positive functionals l on S
with unit upper bound, and with the functional l[A ] corresponding to the propensity [A ]
being defined as

(26) l[A ](ω)
.
= ω(A ).

In the following we will often identify propensities with their corresponding functionals,
and denote them by lowercase letters a, b, c, . . ., or l1, l2, . . .. Finally, notice that the notion
of coexistence (informational compatibility) extends naturally to propensities.

Remark 6 (Dual cone notation). We can write the propensity linear functionals on S
with the equivalent pairing notations

(27) lA (ω)
.
= ω(A ) ≡ (A |ω).

Definition 18 (Generalized observable). We call generalized observable a set of propen-
sities L = {li} which is informationally equivalent to an action L ∈ A, namely such that
there exists an action A = {Aj} for of which one has li ∈ Aj.

Clearly, the generalized observable is normalized to the constant unit functional, i. e.P
i li = 1.

Definition 19 (Informationally complete generalized observable). A generalized observ-
able L = {li} is informationally complete if each propensity can be written as a linear
combination of the of elements of L, namely for each propensity l there exist coefficients
ci(l) such that

(28) l =
X

i

ci(l)li.

Clearly, using an informationally complete generalized observable one can reconstruct
any state ω from just the probabilities li(ω), since one has

(29) ω(A ) =
X

i

ci(lA )li(ω).

Rule 9 (Partial ordering between propensities). For two propensities l1, l2 ∈ P we write
l1 ≤ l2 when l1(ω) ≤ l2(ω) ∀ω ∈ S.

In Ref. [6] the present partial ordering is interpreted saying that l2 is more sensitive
than l1. Upon introducing the notions of Kernel K0(l) for the propensity l, i. e. K0(l) =
{ω ∈ P |l(ω) = 0}, Ludwig introduces two axioms on increasing sensitivity of propensities:

Rule 10 (Axiom V1a of Ref.[6]). For two propensities there is always a third one such
that l3 ≥ l1, l2 and K0(l1) ∩K0(l2) ⊂ K0(l3).

Rule 11 (Axiom V1b of Ref.[6]). For each propensity there is always another one such
that l′ ≥ l and K0(l) ⊂ K0(l

′).

Introducing the notion of face generated by an ensemble C(ω), H. Neumann [7] also
considers the following axioms

Rule 12 (Axiom V2 of Ref. [7]). If C(ω2) ⊂ C(ω1) there is a propensity l with ω2 ∈ K0(l),
but ω1 (∈ K0(l)

Rule 13 (Axiom V3 of Ref. [7]). If C(ω1) ⊂ C(ω3) ⊂ C( 1
2ω1 + 1

2ω2) and C(ω2) and
C(ω3) are strictly separated, then C(ω1) = C(ω3)

A

effects as positive linear functionals   over states:

duality
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Convex structure for effects

effects. We will denote the set of effects by P. We will also extend the notion of effect
to that of generalized effects by taking differences of effects (for the original notion, we
will use the name physical effects). The set of generalized effects will be denoted asPR.

Theorem 5 (Banach space of generalized effects) The generalized effects make a Ba-

nach space, with norm defined as follows

||A || = sup
!∈S

|!(A )|. (42)

Proof. We remind the axioms of norm: i) Sub-additivity ||A + B|| ! ||A ||+ ||B||; ii)
Multiplication by scalar ||"A ||= |" |||A ||; iii) ||A ||= 0 impliesA = 0. The quantity in
Eq. (42) satisfy the sub-additivity relation i), since

||A +B|| = sup
!∈S

|!(A )+!(B)|≤ sup
!∈S

|!(A )+ sup
! ′∈S

|! ′(B)| = ||A ||+ ||B||. (43)

Moreover, it obviously satisfies axiom ii). Finally, axiom iii) corresponds to a general-
ized effect that is the (multiple of a) difference of two informationally equivalent trans-

formations, namely the null effect. Closure with respect to the norm (42) makes the
real vector space of generalized effects a Banach space, which we will name the Ba-

nach space of generalized effects. The norm closure corresponds to an approximability
criterion for preparability of transformations in terms of probabilities (see also Remark

5)."

Theorem 6 (Bound between norms of transformation and effect) The following

bound holds

||A ||≤ ||A ||. (44)

and for transformation A ∈ T±
R one has the identity

||A || = ||A ||. (45)

Proof. One can easily check the bound

||A || = sup
!∈S

|!(A )| ! sup
!∈S,C∈T

|!(C ◦A )| = ||A ||. (46)

For A ∈ T±
R !A is a physical state, and one also has the reverse bound

||A || = sup
!∈S,C∈T

|!(C ◦A )| = sup
!∈S,C∈T

|!A (C )!(A )| ! sup
!∈S

|!(A )| = ||A ||. (47)

"
From the bound (44) it follows that for a physical effect A one has ||A || ≤ 1.

Therefore, it follows that the set T of physical effects is a spherically truncated convex
cone.

Remark 6 (Duality between the convex sets of states and of effects) From the Defi-

nition 2 of state it follows that the convex set of states S and the convex sets of effects P

OpA B = B ◦ A = B ◦ A“Heisenberg picture”:
(from the notion of conditional state)
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However a local action                      on system 2 does 
not affect the local state on system 1, more precisely:

ON THE MISSING AXIOM OF QUANTUM MECHANICS 5

charge, etc. The object of the experiment is something unknown or not precisely known
on the system, and by definition, this will be considered in the notion of state, which will
be in Def. 2. For instance, depending on the context, the charge of a particle can be a
property defining the object system—and used to design the measuring apparatus—or,
if unknown, it could be object of the experiment itself, and as such it would enter the
definition of state. Again we emphasize that here the purpose is to give only the syntactic
manual of the empirical approach, not the semantics, i. e. the specific physical context.

General axiom 2 (On what is an experiment). An experiment on a object system consists
in having it interacting with an apparatus. The interaction between object and apparatus
produces one of a set of possible transformations of the object, each one occurring with
some probability. Information on the “state” of the object system at the beginning of the
experiment is gained from the knowledge of which transformation occurred, which is the
”outcome” of the experiment signaled by the apparatus.

It is clear that both ”object” and ”apparatus” are physical systems, and the asymmetry
between object and apparatus is just asymmetry in prior knowledge, namely the apparatus
is the system of which the experimenter has more a priori information. It is then clear that
the knowledge gained on the state of the object depends on the physical object system, on
the knowledge of details of the transformation produced on the object system, and, more
generally, also on prior knowledge on the “state” itself of the system. In other words, the
experiment can be always regarded as a refinement of knowledge on the object system.

One should convince himself that the above definition of experiment is very general,
and includes all possible situations. For example, at first sight it may seem that it doesn’t
consider the case in which the object is not under the experimenter control (e. g. astro-
nomical observations), in the sense that in such case one cannot establish an interaction
with the object system. However, also in this case there is an interaction between the ob-
ject of interest (e. g. the astronomical object) and another object (e. g. the light) which
should be regarded as a part of the apparatus (i. e. telescope plus light). Such cases can
also be regarded as ”indirect experiments”, namely the experiment is performed on an
auxiliary ”object” (e. g. the light) which is supposed to have had a previous interaction
with the true object of interest, and whose state depends on properties/quantities of it.
Also, the customary case in which a ”quantity” or a ”quality” is measured without in any
way affecting the system corresponds to the case in which all states are left invariant by
the transformations corresponding to each outcome.

Performing a different experiment on the same object obviously corresponds to use a
different experimental apparatus or, at least, to change some settings of the apparatus.
Abstractly, this corresponds to change the set {Aj} of possible transformations Aj that
the system can experience. Such change could actually mean really changing the ”dy-
namics” of the transformations, but may simply mean changing only their probabilities,
or, just their labeling outcomes. Any such change actually corresponds to a change of
the experimental setup. Therefore, the set of all possible transformations {Aj} will be
identified with the choice of experimental setting—the action—and this will be formalized
by the following definition

Definition 1 (Actions and outcomes). The action on the object system due to an exper-
iment is the set A ≡ {Aj} of possible transformations Aj having overall unit probability,
with the apparatus signaling the outcome j labeling which transformation actually oc-
curred.

Thus the action is just a complete set of possible transformations describing an ex-
periment. As we can see now, in a general probabilistic framework the action A is the
”cause”, whereas the outcome j labeling the transformation Aj that actually occurred

No-signaling

The occurrence of the transformation      on system 1 generally 
affects the local state on system 2, i. e. 
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Theorem 7. One has

(44) d(ω, ζ) =
1

supθ∈S min{s(ω, θ), s(ζ, θ)} − 1,

or also

(45)
1

d(ω, ζ) + 1
= sup{α ∈ [0, 1] : αω + (1− α)ω′ = αζ + (1− α)ζ′, ω′, ζ′ ∈ S}.

[CONTINUE] Equivalently s(ω, θ) + s(ζ, θ) ≤ 1 for all θ ∈ S, namely every mixture
θ contains ω and ζ in complementary proportions (i. e. sum of the proportions is not
greater than unit)

11. Local state

Definition 32 (Local state). In the presence of many independent systems in a joint state
Ω, we define the local state ω(n) of the n-th system the state that gives the probability for
any local transformation A on the n-th system, with all other systems untouched, namely

(46) ω(n)(A )
.
= Ω(I , . . . , I , A|{z}

nth

, I , . . .).

For example, for two systems only, (which is equivalent to consider n − 1 systems
as a single one), we will write simply ω(1)(A ) = Ω(A , I ). Notice that generally the
commutativity Rule 9 doesn’t imply that the occurrence of a transformation B on system
2 doesn’t change the probability of occurrence of any other transformation A on system
1, namely, generally

(47) A1 ◦B2 = B2 ◦A1 %=⇒ Ω(·, I ) =
Ω(·, B)

Ω(I , B)
.

In other words, the occurrence of the transformation B on system 2 generally affects the
conditioned local state on system 1, namely one has

(48) ΩB2(·, I )
.
=

Ω(·, B)
Ω(I , B)

%= Ω(·, I ) ≡ ω(1)

Therefore, in order not to violate the relativity principle, for independent systems (e. g.
space-like separated) we need to require explicitly the a-causality principle:

Rule 16 (A-causality of local transformations). Any local action on a system is equivalent
to the identity transformation when viewed from an independent system, namely, in terms
of states one has

(49) ∀A
X

Aj∈A
Ω(·, Aj) = Ω(·, I ) ≡ ω(1)

The a-causality of local transformations Rule 16 along with the existence of inequivalent
actions imply the existence of indistinguishable incompatible mixtures.

Corollary 4 (Existence of equivalent incompatible mixtures). For any two incompatible
actions A = {Aj} and B = {Bi}, the following mixtures are the same state

(50)
X

j

pjωj =
X

i

p′iω
′
i ≡ ω,

where

ωj =
ω(·, Aj)

ω(I , Aj)
, pj = ω(I , Aj),

ω′
i =

ω(·, Bi)
ω(I , Bi)

, p′i = ω(I , Bi),

ω
.
= ω(·, I ).

(51)

NO SIGNALLING

!B,I |2 !=!2 (82)

Theorem 3 (No signaling, i. e. acausality of local actions) Any local "action" (i. e. experiment) on a system does

not affect another independent system. More precisely, any local action on a system is equivalent to the identity

transformation when viewed from another independent system. In terms of states one has (S (A) := "A j∈A A j)

∀A !S (A),I |2 =!|2. (83)

Proof.

!|2(B) =!(I ,B) (84)

!S (A),I |2(B) =!((I ,B)◦ (S (A),I ) =!(S (A),B) (85)

!S (A),I |2(B) =!S (A),I (I ,B) = "
A j∈A

!A j ,I (I ,B)
!(A j,I )

"A j∈A!(A j,I )

= "
A j∈A

!(A j,B)
!(A j,I )

!(A j,I )
!(I ,I )

= "
A j∈A

!(A j,B) =!(I ,B) =!(S (A),B)
(86)

#S (A),I |2(B) =#S (A),I (I ,B) = "
A j∈A

#A j ,I (I ,B)
#(A j,I )

"A j∈A#(A j,I )

= "
A j∈A

#(A j,B)
#(A j,I )

#(A j,I )
#(S (A),I )

= "
A j∈A

#(A j,B) = #(S (A),B)
(87)

#S (A),I |2(B) =#S (A),I (I ,B) =
#(S (A),B)
#(S (A),I )

(88)

!S (A),I (G ) =!S (A),I (G ) = "
A j∈A

!A j ,I (G )
!(A j,I )

"A j∈A!(A j,I )

= "
A j∈A

!(G ◦ (A j,I ))
!(A j,I )

!(A j,I )
!(I ,I )

= "
A j∈A

!(G ◦ (A j,I )) =!(G )
(89)

GARBAGE

Proof. The no-signaling condition is an immediate consequence of the definition of independent systems and marginal-

ization. Marginalization is the statistical rule corresponding to

"
Ai∈A,B j∈B

!(Ai,B j) = 1 =⇒ "
B j∈B

!(Ai,B j) =!|1(Ai)≡!(Ai,I ),∀! ∈S×2 (90)

Therefore, if for a specific state one has #(A ,I ) = 1, then one has

1= #(A ,I )≡ #|2(A ) = "
B j∈B

#(A ,B j) (91)

acausality of local actions: any local action on a 
system is equivalent to the identity transformation 
on another independent system.

No-signaling, dynamical independence, and the local observability principle 6

Definition 3 (Dynamical independence) Two physical systems are independent

if on the two systems 1 and 2 we can perform local actions A(1) and A(2) whose

transformations commute each other (i. e. A (1) ◦ B(2) = B(2) ◦ A (1), ∀A (1) ∈
A(1), ∀B(2) ∈ B(2)).

Notice that the above definition of independent systems is purely dynamical, in the sense

that it does not contain any statistical requirement, such as the existence of factorized

states. Indeed, the present notion of dynamical independence is so minimal that it

can be satisfied not only by the quantum tensor product, but also by the quantum

direct sum. As we will see in the following, it is the local observability principle of

Postulate 1 which will select the tensor product. In the following, when dealing with

more than one independent system, we will denote local transformations as ordered

strings of transformations as follows A , B, C , . . . := A (1) ◦B(2) ◦C (3) ◦ . . .. The notion

of independent systems now entails the notion of local state—the equivalent of partial

trace in Quantum Mechanics.

Definition 4 (Local state) For two independent systems in a joint state Ω, we define

the local state Ω|1 of system 1 as the probability rule Ω|1(A )
.
= Ω(A ,I ) of the joint

state Ω with a local transformation A only on the system 1 and with system 2 untouched.

Clearly, the above notion can be symmetrically defined for system 2, and can be trivially

extended to any number of independent systems, with the local state Ω|n of the nth

system representing the probability rule of the joint state in which all systems are left

untouched apart from system n.

3. The no-signaling theorem

We are now in position to prove the general no-signaling theorem.

Theorem 1 (No-signaling) Any local action on a system does not affect another

independent system. More precisely, any local action on a system is equivalent to the

identity transformation when viewed from another independent system. In equations one

has

∀Ω ∈ S×2,∀A, ΩA,I |2 = Ω|2. (1)

No-signaling, dynamical independence, and the local observability principle 5

B, and we will write A0 ∈ A meaning that ”the transformation A0 belongs to the

equivalence class A ”, or ”A0 corresponds to the effect A ”, or ”A0 is informationally

equivalent to A ”. Since, by definition one has ω(A ) ≡ ω(A ), we will legitimately

write ω(A ) instead of ω(A ). Similarly, one has ωA (B) ≡ ωA (B), which implies that

ω(B ◦ A ) = ω(B ◦ A ), which gives the chaining rule B ◦ A ∈ B ◦A corresponding

to the ”Heisenberg picture” evolution of transformations acting on effects (notice that

in this way transformations act from the right on effects). Now, by definitions effects

are linear functionals over states with range [0, 1], and, by duality, we have a convex

structure over effects. We will denote the convex set of effects by P.

2.3. The structure of transformations

Addition of transformations. The fact that we necessarily work in the presence

of partial knowledge about both object and apparatus corresponds to the possibility

of incomplete specification of both states and transformations, entailing the convex

structure on states and the addition rule for coexistent transformations, namely for

transformations A1 and A2 for which ω(A1)+ω(A2) ! 1, ∀ω ∈ S (i. e. transformations

that can in principle occur in the same action). The addition of the two coexistent

transformations is the transformation S = A1 + A2 corresponding to the event

e = {1, 2} in which the apparatus signals that either A1 or A2 occurred, but does not

specify which one. Such transformation is specified by the informational and dynamical

equivalence classes ∀ω ∈ S: ω(A1+A2) = ω(A1)+ω(A2) and (A1+A2)ω = A1ω+A2ω.

Clearly the composition ”◦” of transformations is distributive with respect to the

addition ”+”. We will also denote as A ≡ S (A) :=
∑

Aj∈A Aj the deterministic

transformation S (A) corresponding to the sum of all possible transformations Aj in A.

We can also define the multiplication λA of a transformation A by a scalar 0 ! λ ! 1

as the transformation which is dynamically equivalent to A , but occurs with rescaled

probability ω(λA ) = λω(A ). Now, since for every couple of transformation A and

B the transformations λA and (1 − λ)B are coexistent for 0 ! λ ! 1, the set of

transformations also becomes a convex set. Moreover, since the composition A ◦B of

two transformations A and B is itself a transformation and there exists the identical

transformation I satisfying I ◦ A = A ◦ I = A for every transformation A , the

transformations make a semigroup with identity, i. e. a monoid. Therefore, the set of

physical transformations is a convex monoid.

It is obvious that we can extend the notions of coexistence, sum and multiplication

by a scalar from transformations to effects via equivalence classes.

2.4. Dynamical independence and local state

A purely dynamical notion of independent systems coincides with the possibility of

performing local actions. More precisely, we define
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No-signaling

No-signaling, dynamical independence, and the local observability principle 7

Proof. Since the two systems are dynamically independent, for every two local

transformations one has A (1) ◦A (2) = A (2) ◦A (1), which implies that Ω(A (1) ◦A (2)) =

Ω(A (2) ◦A (1)) ≡ Ω(A (1),A (2)). By definition, for B ∈ T one has Ω|2(B) = Ω(I ,B),

and using the addition rule for transformations and reminding the identification A ≡∑
j Aj, one has

Ω(A,B) = Ω(A, B) = Ω(I ,B) =: Ω|2(B). (2)

On the other hand, we have

ΩA,I |2(B) = Ω((I ,B) ◦ (A,I )) = Ω(A,B), (3)

namely the statement. !

Notice how the no-signaling is a mere consequence of our minimal notion of

dynamical independence in Def. 3. Notice also the consistency with the dynamical

part of the definition of addition of coexistent transformations, i. e. conditioning

ΩA,I |2(B) = ΩA,I (I ,B) =
∑

Aj∈A
ΩAj ,I (I ,B)

Ω(Aj,I )∑
Aj∈A Ω(Aj,I )

=
∑

Aj∈A

Ω(Aj, B)

Ω(Aj,I )

Ω(Aj, I )

Ω(I ,I )
=

∑

Aj∈A
Ω(Aj,B) = Ω(I ,B). (4)

Corollary 1 One has the logical equivalence

Ω(A ,I ) = 1 ⇐⇒ Ω(A ,B) = Ω(I , B), ∀B ∈ T. (5)

Proof. The implication from the left to the right is trivial. To prove the reverse

implication, just consider an other transformation A # to complete an action A =

{A ,A #}. Now 0 = Ω(A #,I ) = Ω(A #,B) + Ω(A #, B#) which implies that

Ω(A #,B#) = Ω(A #,B) = 0. This implies that Ω(I ,B) = Ω(A , B) + Ω(A #,B) =

Ω(A , B). !
Assessing the truth of statement (5) implies no-signaling, since if Ω(A, I ) = 1 =⇒

Ω(A, B) = Ω(I , B), i. e. Ω(A, B) = Ω2(B) ∀B ∈ T.

4. The quantum version of no-signaling theorem

Since assessing the truth of statement (5) implies the no-signaling, in order to prove no-

signaling in Quantum Mechanics we just need to prove validity of (5) in the quantum

case. For this purpose, we need a simple technical lemma that is reported in Appendix

A. We can then prove the quantum version of no-signaling.

Theorem 2 (Quantum version of Corollary 1) For any positive operator R ∈
HA⊗HB and any generally trace-decreasing quantum operation M which acts locally on

states on HA, one has

Tr[M ⊗I (R)] = Tr[R] ⇐⇒ Tr1[M ⊗I (R)] = Tr1[R]. (6)

No-signaling, dynamical independence, and the local observability principle 6

Definition 3 (Dynamical independence) Two physical systems are independent

if on the two systems 1 and 2 we can perform local actions A(1) and A(2) whose

transformations commute each other (i. e. A (1) ◦ B(2) = B(2) ◦ A (1), ∀A (1) ∈
A(1), ∀B(2) ∈ B(2)).

Notice that the above definition of independent systems is purely dynamical, in the sense

that it does not contain any statistical requirement, such as the existence of factorized

states. Indeed, the present notion of dynamical independence is so minimal that it

can be satisfied not only by the quantum tensor product, but also by the quantum

direct sum. As we will see in the following, it is the local observability principle of

Postulate 1 which will select the tensor product. In the following, when dealing with

more than one independent system, we will denote local transformations as ordered

strings of transformations as follows A , B, C , . . . := A (1) ◦B(2) ◦C (3) ◦ . . .. The notion

of independent systems now entails the notion of local state—the equivalent of partial

trace in Quantum Mechanics.

Definition 4 (Local state) For two independent systems in a joint state Ω, we define

the local state Ω|1 of system 1 as the probability rule Ω|1(A )
.
= Ω(A ,I ) of the joint

state Ω with a local transformation A only on the system 1 and with system 2 untouched.

Clearly, the above notion can be symmetrically defined for system 2, and can be trivially

extended to any number of independent systems, with the local state Ω|n of the nth

system representing the probability rule of the joint state in which all systems are left

untouched apart from system n.

3. The no-signaling theorem

We are now in position to prove the general no-signaling theorem.

Theorem 1 (No-signaling) Any local action on a system does not affect another

independent system. More precisely, any local action on a system is equivalent to the

identity transformation when viewed from another independent system. In equations one

has

∀Ω ∈ S×2,∀A, ΩA,I |2 = Ω|2. (1)
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Generalized weights, 
transformations, and effects

Generalize by taking differences:

convex sets/cones     (affine) linear spaces

belong, whence Rule 5 is well posed. As we will see in the following (see Rule 6),

due to Rule 5 the set T of all possible transformations of a physical system is a convex
set in form of a truncated convex cone.

Remark 3 (Algebra of generalized transformations) Using Eqs. (25) and (27) one

can extend the addition of coexistent transformations to generic linear combinations,

that we will call generalized transformations (to be contrasted with the original notion,

for which we will keep the name physical transformations). The generalized transfor-
mations constitute a real vector space—hereafter denoted as TR—which is the affine
space of the convex space T. Composition of transformations can be extended via lin-
earity to generalized transformations, making their space a real algebra, the algebra of

generalized transformations.

Remark 4 (Cone and double-cone of generalized transformations) The generalized

transformations G of the form G = !A with A physical transformation and ! ! 0

make a cone whereas for ! ∈ R make a double cone. Notice that for B ∈ TR generally

out of the double cone the conditioning "B is no longer a state (e. g. there exist a

physical transformation A for which "G (A ) > 1 or "G (A ) < 0, even though "G is

normalized. On the other hand, for generalized transformations in the double cone "G
is always a true state. We will denote the cone as T+

R and the double cone as T±
R .

Indeed, for a generalized transformation G = !A ∈ T±
R proportional to a physical

transformation A one has

"G (B) =
"(B ◦G )
"(G )

=
"(B ◦!G )
"(!G )

=
"(B ◦A )
"(A )

. (28)

However, for a generalized transformation G = A1−A2 $∈ T±
R one has

"A1−A2
=

"(A1)
"(A1)−"(A2)

"A1
− "(A2)
"(A1)−"(A2)

"A2
= !"A1

+(1−! )"A2
, (29)

and, generally one can have ! > 1, in which case consider e. g. a transformation B for
which "A1

(B) ! !−1 and "A2
(B) = 0. Then, one has "A1−A2

(B) > 1.

The linear space of generalized weightsWR can be equipped with a norm as follows.

Theorem 3 (Banach space of generalized weights) The generalized weights make a

Banach space, with norm defined as follows

||"̃ || := sup
A ∈T

|"̃(A )|. (30)

Proof. The quantity in Eq. (30) satisfies the sub-additivity relation ||"̃+ #̃ ||" ||"̃ ||+ ||#̃ ||,
since

||"̃+ #̃ || = sup
A ∈T

[|"̃(A )+ #̃ (A )|]≤ sup
A ∈T

[|"̃(A )|+ |#̃ (A )|]

≤ sup
A ∈T

|"̃(A )|+ sup
A ∈T

|#̃ (A )]| = ||"̃ ||+ ||#̃ ||.
(31)

transformations    gen. transformations           

Weights make the convex coneW which is generated by the convex set of states S.

Definition 6 (Linear real space of generalized weights) We extend the notion of

weight to that of negative weight, by taking differences. Such generalized weights span

the affine linear space WR of the convex cone W of weights.

Remark 2 The transformations A act as linear transformations over the space of

weights as follows

A !̃ = !̃(B ◦A ). (15)

We are now in position to introduce the concept of operation.

Definition 7 (Operation) To each transformation A we can associate a linear map

OpA : S−→W, which sends a state ! into the unnormalized state !̃A
.=OpA ! ∈W,

defined by the relation

OpA !
.= !̃A , !̃A (B) = !(B ◦A ). (16)

Similarly to a state, the linear form !̃A ∈W for fixed A maps from the set of transfor-

mations to the interval [0,1]. It is not strictly a state only due to lack of normalization,
since 0 < !̃A (I ) ! 1. The operation Op gives the conditioned state through the state-

reduction rule

!A =
!̃A

!(A )
≡ OpA !

OpA !(I )
. (17)

In the following we will adopt for the operation the more intuitive notation in Eq. (15),

namely we will write

A ! := !(·◦A )≡ OpA ! (18)

At first sight it is not obvious that the commutativity of local transformations in

Definition 3 implies that a transformation on system 2 does not affect the conditioned
local state on system 1. However, this is actually the case, as it is proved in the following

theorem.

Theorem 1 (No signaling, i. e. acausality of local transformations) Any local action

on a system does not affect another independent system. More precisely, any local

action on a system is equivalent to the identity transformation when viewed from an

independent system, namely, in terms of states one has

∀A !
A j∈A

"(A j, ·) ="(I , ·)≡"|2. (19)

Proof. The no-signaling condition is a direct consequence of the definition of indepen-
dent systems. Indeed, for any experiment A = {Ai} one has the normalization condition
(2) for all states of the system, in particular for all locally conditioned joint states

!
i

"I ,B(Ai) = 1, ∀" ∈S×2, ∀B ∈ T, (20)
(real algebra)

weights                     

Weights make the convex coneW which is generated by the convex set of states S.

Definition 6 (Linear real space of generalized weights) We extend the notion of

weight to that of negative weight, by taking differences. Such generalized weights span

the affine linear space WR of the convex cone W of weights.

Remark 2 The transformations A act as linear transformations over the space of

weights as follows

A !̃ = !̃(B ◦A ). (15)

We are now in position to introduce the concept of operation.

Definition 7 (Operation) To each transformation A we can associate a linear map

OpA : S−→W, which sends a state ! into the unnormalized state !̃A
.=OpA ! ∈W,

defined by the relation

OpA !
.= !̃A , !̃A (B) = !(B ◦A ). (16)

Similarly to a state, the linear form !̃A ∈W for fixed A maps from the set of transfor-

mations to the interval [0,1]. It is not strictly a state only due to lack of normalization,
since 0 < !̃A (I ) ! 1. The operation Op gives the conditioned state through the state-

reduction rule

!A =
!̃A

!(A )
≡ OpA !

OpA !(I )
. (17)

In the following we will adopt for the operation the more intuitive notation in Eq. (15),

namely we will write

A ! := !(·◦A )≡ OpA ! (18)

At first sight it is not obvious that the commutativity of local transformations in

Definition 3 implies that a transformation on system 2 does not affect the conditioned
local state on system 1. However, this is actually the case, as it is proved in the following

theorem.

Theorem 1 (No signaling, i. e. acausality of local transformations) Any local action

on a system does not affect another independent system. More precisely, any local

action on a system is equivalent to the identity transformation when viewed from an

independent system, namely, in terms of states one has

∀A !
A j∈A

"(A j, ·) ="(I , ·)≡"|2. (19)

Proof. The no-signaling condition is a direct consequence of the definition of indepen-
dent systems. Indeed, for any experiment A = {Ai} one has the normalization condition
(2) for all states of the system, in particular for all locally conditioned joint states

!
i

"I ,B(Ai) = 1, ∀" ∈S×2, ∀B ∈ T, (20)

Weights make the convex coneW which is generated by the convex set of states S.

Definition 6 (Linear real space of generalized weights) We extend the notion of

weight to that of negative weight, by taking differences. Such generalized weights span

the affine linear space WR of the convex cone W of weights.
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on a system does not affect another independent system. More precisely, any local
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gen. weights        

effects     

are dual each other, and the latter can be regarded as the set of positive linear contrac-

tions over the set of states, namely the set of positive functionals l on S with unit upper

bound, and with the functional lA corresponding to the effect A being defined as

lA (!) .= !(A ). (48)

The above duality naturally extends to generalized effects and generalized weights.

Therefore, WR and PR are a dual Banach pair.

In the following we will often identify generalized effects with their corresponding
functionals, and denote them by lowercase letters a,b,c, . . ., or l1, l2, . . ..

Definition 13 (Observable) We call observable a set of effects L = {li} which is in-
formationally equivalent to an action L ∈ A, namely such that there exists an action
A = {A j} for which one has li ∈A j.

Clearly, the generalized observable is normalized to the constant unit functional, i. e.

!i li = 1.

Definition 14 (Informationally complete observable) An observableL = {li} is infor-
mationally complete if each effect can be written as a linear combination of the of ele-

ments of L, namely for each effect l there exist coefficients ci(l) such that

l =!
i

ci(l)li. (49)

We call the informationally complete observable minimal when its effects are linearly

independent.

Clearly, using an informationally complete observable one can reconstruct any state !
from just the probabilities li(!), since one has

!(A ) =!
i

ci(lA )li(!). (50)

Definition 15 (Predictability and resolution) We will call a transformation A—and

likewise its effect—predictable if there exists a state for which A occurs with certainty

and some other state for which it never occurs. The transformation (effect) will be also

called resolved if the state for which it occurs with certainty is unique—whence pure.

An action will be called predictable when it is made only of predictable transformations,
and resolved when all transformations are resolved.

The present notion of predictability for effect corresponds to that of "decision effects"
of Ludwig [4]. For a predictable transformation A one has ||A || = 1. Notice that a

predictable transformation is not deterministic, and it can generally occur with nonunit
probability on some state ! . Predictable effectsA correspond to affine functions fA on

the state space S with 0! fA ! 1 achieving both bounds. Their set will be denoted by
Pp.

Definition 16 (Perfectly discriminable set of states) We call a set of states {!n}n=1,N
perfectly discriminable if there exists an action A = {A j} j=1,N with transformations

effects. We will denote the set of effects by P. We will also extend the notion of effect
to that of generalized effects by taking differences of effects (for the original notion, we
will use the name physical effects). The set of generalized effects will be denoted asPR.

Theorem 5 (Banach space of generalized effects) The generalized effects make a Ba-

nach space, with norm defined as follows

||A || = sup
!∈S

|!(A )|. (42)

Proof. We remind the axioms of norm: i) Sub-additivity ||A + B|| ! ||A ||+ ||B||; ii)
Multiplication by scalar ||"A ||= |" |||A ||; iii) ||A ||= 0 impliesA = 0. The quantity in
Eq. (42) satisfy the sub-additivity relation i), since

||A +B|| = sup
!∈S

|!(A )+!(B)|≤ sup
!∈S

|!(A )+ sup
! ′∈S

|! ′(B)| = ||A ||+ ||B||. (43)

Moreover, it obviously satisfies axiom ii). Finally, axiom iii) corresponds to a general-
ized effect that is the (multiple of a) difference of two informationally equivalent trans-

formations, namely the null effect. Closure with respect to the norm (42) makes the
real vector space of generalized effects a Banach space, which we will name the Ba-

nach space of generalized effects. The norm closure corresponds to an approximability
criterion for preparability of transformations in terms of probabilities (see also Remark

5)."

Theorem 6 (Bound between norms of transformation and effect) The following

bound holds

||A ||≤ ||A ||. (44)

and for transformation A ∈ T±
R one has the identity

||A || = ||A ||. (45)

Proof. One can easily check the bound

||A || = sup
!∈S

|!(A )| ! sup
!∈S,C∈T

|!(C ◦A )| = ||A ||. (46)

For A ∈ T±
R !A is a physical state, and one also has the reverse bound

||A || = sup
!∈S,C∈T

|!(C ◦A )| = sup
!∈S,C∈T

|!A (C )!(A )| ! sup
!∈S

|!(A )| = ||A ||. (47)

"
From the bound (44) it follows that for a physical effect A one has ||A || ≤ 1.

Therefore, it follows that the set T of physical effects is a spherically truncated convex
cone.

Remark 6 (Duality between the convex sets of states and of effects) From the Defi-

nition 2 of state it follows that the convex set of states S and the convex sets of effects P gen. effects 
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dual Banach pair

lA (ω)
.
= ω(A )

Weights make the convex coneW which is generated by the convex set of states S.

Definition 6 (Linear real space of generalized weights) We extend the notion of

weight to that of negative weight, by taking differences. Such generalized weights span

the affine linear space WR of the convex cone W of weights.

Remark 2 The transformations A act as linear transformations over the space of

weights as follows

A !̃ = !̃(B ◦A ). (15)

We are now in position to introduce the concept of operation.

Definition 7 (Operation) To each transformation A we can associate a linear map

OpA : S−→W, which sends a state ! into the unnormalized state !̃A
.=OpA ! ∈W,

defined by the relation

OpA !
.= !̃A , !̃A (B) = !(B ◦A ). (16)

Similarly to a state, the linear form !̃A ∈W for fixed A maps from the set of transfor-

mations to the interval [0,1]. It is not strictly a state only due to lack of normalization,
since 0 < !̃A (I ) ! 1. The operation Op gives the conditioned state through the state-

reduction rule

!A =
!̃A

!(A )
≡ OpA !

OpA !(I )
. (17)

In the following we will adopt for the operation the more intuitive notation in Eq. (15),

namely we will write

A ! := !(·◦A )≡ OpA ! (18)

At first sight it is not obvious that the commutativity of local transformations in

Definition 3 implies that a transformation on system 2 does not affect the conditioned
local state on system 1. However, this is actually the case, as it is proved in the following

theorem.

Theorem 1 (No signaling, i. e. acausality of local transformations) Any local action

on a system does not affect another independent system. More precisely, any local

action on a system is equivalent to the identity transformation when viewed from an

independent system, namely, in terms of states one has

∀A !
A j∈A

"(A j, ·) ="(I , ·)≡"|2. (19)

Proof. The no-signaling condition is a direct consequence of the definition of indepen-
dent systems. Indeed, for any experiment A = {Ai} one has the normalization condition
(2) for all states of the system, in particular for all locally conditioned joint states

!
i

"I ,B(Ai) = 1, ∀" ∈S×2, ∀B ∈ T, (20)
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from just the probabilities li(!), since one has
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Definition 15 (Predictability and resolution) We will call a transformation A—and

likewise its effect—predictable if there exists a state for which A occurs with certainty

and some other state for which it never occurs. The transformation (effect) will be also

called resolved if the state for which it occurs with certainty is unique—whence pure.

An action will be called predictable when it is made only of predictable transformations,
and resolved when all transformations are resolved.

The present notion of predictability for effect corresponds to that of "decision effects"
of Ludwig [4]. For a predictable transformation A one has ||A || = 1. Notice that a

predictable transformation is not deterministic, and it can generally occur with nonunit
probability on some state ! . Predictable effectsA correspond to affine functions fA on

the state space S with 0! fA ! 1 achieving both bounds. Their set will be denoted by
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.=OpA ! ∈W,
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Similarly to a state, the linear form !̃A ∈W for fixed A maps from the set of transfor-

mations to the interval [0,1]. It is not strictly a state only due to lack of normalization,
since 0 < !̃A (I ) ! 1. The operation Op gives the conditioned state through the state-

reduction rule

!A =
!̃A

!(A )
≡ OpA !

OpA !(I )
. (17)

In the following we will adopt for the operation the more intuitive notation in Eq. (15),

namely we will write

A ! := !(·◦A )≡ OpA ! (18)

At first sight it is not obvious that the commutativity of local transformations in

Definition 3 implies that a transformation on system 2 does not affect the conditioned
local state on system 1. However, this is actually the case, as it is proved in the following

theorem.

Theorem 1 (No signaling, i. e. acausality of local transformations) Any local action

on a system does not affect another independent system. More precisely, any local

action on a system is equivalent to the identity transformation when viewed from an

independent system, namely, in terms of states one has

∀A !
A j∈A
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Proof. The no-signaling condition is a direct consequence of the definition of indepen-
dent systems. Indeed, for any experiment A = {Ai} one has the normalization condition
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"I ,B(Ai) = 1, ∀" ∈S×2, ∀B ∈ T, (20)
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Start from norm of generalized effects, defined as follows

||A || := sup
!∈S

|!(A )|, (1)

and then define the norm on generalized weights as follows

||!̃|| := sup
PR"||A ||!1

|!̃(A )|. (2)

Then define norm for transformations as follows

||A || := sup
PR"||B||!1

||A ◦B|| = sup
PR"||B||!1

sup
!∈S

!(A ◦B). (3)

Now, for x in a Banach space and T a map on the Banach space one has

||Tx|| =
∣∣∣∣

∣∣∣∣T
x

||x||

∣∣∣∣

∣∣∣∣ ||x|| ! sup
||y||=1

||Ty||||x|| ! sup
||y||!1

||Ty||||x|| =: ||T ||||x||, (4)

namely

||Tx|| ! ||T ||||x||, (5)

and applying the last identity twice one has for operators on the Banach space

||AB|| ! ||A||||B||, (6)

since

||AB|| = sup
||x||!1

||ABx|| ! sup
||x||!1

||A||||B||||x|| = ||A||||B||. (7)

This implies that ||B ◦A || ! ||B||||A ||, whence the generalized transformations make a Banach algebra.

gen. transformations       :

belong, whence Rule 5 is well posed. As we will see in the following (see Rule 6),

due to Rule 5 the set T of all possible transformations of a physical system is a convex
set in form of a truncated convex cone.

Remark 3 (Algebra of generalized transformations) Using Eqs. (25) and (27) one

can extend the addition of coexistent transformations to generic linear combinations,

that we will call generalized transformations (to be contrasted with the original notion,

for which we will keep the name physical transformations). The generalized transfor-
mations constitute a real vector space—hereafter denoted as TR—which is the affine
space of the convex space T. Composition of transformations can be extended via lin-
earity to generalized transformations, making their space a real algebra, the algebra of

generalized transformations.

Remark 4 (Cone and double-cone of generalized transformations) The generalized

transformations G of the form G = !A with A physical transformation and ! ! 0

make a cone whereas for ! ∈ R make a double cone. Notice that for B ∈ TR generally

out of the double cone the conditioning "B is no longer a state (e. g. there exist a

physical transformation A for which "G (A ) > 1 or "G (A ) < 0, even though "G is

normalized. On the other hand, for generalized transformations in the double cone "G
is always a true state. We will denote the cone as T+

R and the double cone as T±
R .

Indeed, for a generalized transformation G = !A ∈ T±
R proportional to a physical

transformation A one has

"G (B) =
"(B ◦G )
"(G )

=
"(B ◦!G )
"(!G )

=
"(B ◦A )
"(A )

. (28)

However, for a generalized transformation G = A1−A2 $∈ T±
R one has

"A1−A2
=

"(A1)
"(A1)−"(A2)

"A1
− "(A2)
"(A1)−"(A2)

"A2
= !"A1

+(1−! )"A2
, (29)

and, generally one can have ! > 1, in which case consider e. g. a transformation B for
which "A1

(B) ! !−1 and "A2
(B) = 0. Then, one has "A1−A2

(B) > 1.

The linear space of generalized weightsWR can be equipped with a norm as follows.

Theorem 3 (Banach space of generalized weights) The generalized weights make a

Banach space, with norm defined as follows

||"̃ || := sup
A ∈T

|"̃(A )|. (30)

Proof. The quantity in Eq. (30) satisfies the sub-additivity relation ||"̃+ #̃ ||" ||"̃ ||+ ||#̃ ||,
since

||"̃+ #̃ || = sup
A ∈T

[|"̃(A )+ #̃ (A )|]≤ sup
A ∈T

[|"̃(A )|+ |#̃ (A )|]

≤ sup
A ∈T

|"̃(A )|+ sup
A ∈T

|#̃ (A )]| = ||"̃ ||+ ||#̃ ||.
(31)
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and then define the norm on generalized weights as follows

||!̃|| := sup
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Then define norm for transformations as follows

||A || := sup
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||B ◦A || = sup
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sup
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||Tx|| =
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||y||!1

||Ty||||x|| =: ||T ||||x||, (4)

namely

||Tx|| ! ||T ||||x||, (5)

and applying the last identity twice one has for operators on the Banach space

||AB|| ! ||A||||B||, (6)

since

||AB|| = sup
||x||!1

||ABx|| ! sup
||x||!1

||A||||B||||x|| = ||A||||B||. (7)

This implies that ||B ◦A || ! ||B||||A ||, whence the generalized transformations make a Banach algebra.

gen. effects        :

are dual each other, and the latter can be regarded as the set of positive linear contrac-

tions over the set of states, namely the set of positive functionals l on S with unit upper

bound, and with the functional lA corresponding to the effect A being defined as

lA (!) .= !(A ). (48)

The above duality naturally extends to generalized effects and generalized weights.

Therefore, WR and PR are a dual Banach pair.

In the following we will often identify generalized effects with their corresponding
functionals, and denote them by lowercase letters a,b,c, . . ., or l1, l2, . . ..

Definition 13 (Observable) We call observable a set of effects L = {li} which is in-
formationally equivalent to an action L ∈ A, namely such that there exists an action
A = {A j} for which one has li ∈A j.

Clearly, the generalized observable is normalized to the constant unit functional, i. e.

!i li = 1.

Definition 14 (Informationally complete observable) An observableL = {li} is infor-
mationally complete if each effect can be written as a linear combination of the of ele-

ments of L, namely for each effect l there exist coefficients ci(l) such that

l =!
i

ci(l)li. (49)

We call the informationally complete observable minimal when its effects are linearly

independent.

Clearly, using an informationally complete observable one can reconstruct any state !
from just the probabilities li(!), since one has

!(A ) =!
i

ci(lA )li(!). (50)

Definition 15 (Predictability and resolution) We will call a transformation A—and

likewise its effect—predictable if there exists a state for which A occurs with certainty

and some other state for which it never occurs. The transformation (effect) will be also

called resolved if the state for which it occurs with certainty is unique—whence pure.

An action will be called predictable when it is made only of predictable transformations,
and resolved when all transformations are resolved.

The present notion of predictability for effect corresponds to that of "decision effects"
of Ludwig [4]. For a predictable transformation A one has ||A || = 1. Notice that a

predictable transformation is not deterministic, and it can generally occur with nonunit
probability on some state ! . Predictable effectsA correspond to affine functions fA on

the state space S with 0! fA ! 1 achieving both bounds. Their set will be denoted by
Pp.

Definition 16 (Perfectly discriminable set of states) We call a set of states {!n}n=1,N
perfectly discriminable if there exists an action A = {A j} j=1,N with transformations
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belong, whence Rule 5 is well posed. As we will see in the following (see Rule 6),

due to Rule 5 the set T of all possible transformations of a physical system is a convex
set in form of a truncated convex cone.

Remark 3 (Algebra of generalized transformations) Using Eqs. (25) and (27) one

can extend the addition of coexistent transformations to generic linear combinations,

that we will call generalized transformations (to be contrasted with the original notion,

for which we will keep the name physical transformations). The generalized transfor-
mations constitute a real vector space—hereafter denoted as TR—which is the affine
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transformations G of the form G = !A with A physical transformation and ! ! 0
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out of the double cone the conditioning "B is no longer a state (e. g. there exist a

physical transformation A for which "G (A ) > 1 or "G (A ) < 0, even though "G is
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is always a true state. We will denote the cone as T+

R and the double cone as T±
R .
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R proportional to a physical
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which "A1
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Banach space, with norm defined as follows
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|"̃(A )|. (30)

Proof. The quantity in Eq. (30) satisfies the sub-additivity relation ||"̃+ #̃ ||" ||"̃ ||+ ||#̃ ||,
since

||"̃+ #̃ || = sup
A ∈T

[|"̃(A )+ #̃ (A )|]≤ sup
A ∈T

[|"̃(A )|+ |#̃ (A )|]

≤ sup
A ∈T

|"̃(A )|+ sup
A ∈T

|#̃ (A )]| = ||"̃ ||+ ||#̃ ||.
(31)

Banach algebra
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Observable: a complete set of effects       

Observable
corresponding to the "Heisenberg picture"

OpA B := B ◦A . (41)

In these terms the no signaling from the future reads

I ◦A = A . (42)

!
j

l j = I (43)

Lemma 1 In the hypothesis that there exist pure bipartite states that are not factorized, a dynamically preparationally

faithful state must be pure.

Proof. In fact, suppose that there is a faithful state"= !#+(1−!)$, 0< ! < 1, # #= $, and consider a pure bipartite
state% that is not factorized. Since " is preparationally faithful, there exists a generalized transformationA such that

"A ,I =%. Moreover, the (generalized) transformation A is unique, apart from a multiplicative constant, since " is
dynamically faithful. Now, one has

%="A ,I = !
#(A ,I )
"(A ,I )

#A ,I +(1−!)
$(A ,I )
"(A ,I )

$A ,I := ! ′#A ,I +(1−! ′)$A ,I , (44)

but since % is pure one must have #A ,I = $A ,I = %. Again, since " is preparationally faithful, there should

be a transformation G such that "G ,I = #A ,I and analogously there should be a transformation D such that

"D,I = $A ,I , but since "A ,I = "D,I = "G ,I = % and " is dynamically faithful, the transformations A , G ,
and D should be proportional each other,

Again, since " is preparationally faithful, there should be a transformation G such that "G ,I = # and a transfor-
mation D such that "D,I = $, whence "A ◦G ,I ="A ◦D,I ="A ,I =%

TOMITA TAKESAKI

E(&⊗&)(U†"
1
2 ⊗"−

1
2U∗)(A⊗ I)|"

1
2U〉〉= E(&⊗&)(U†"

1
2 ⊗"−

1
2 )(A⊗ I)|"

1
2 〉〉

=E(&⊗&)(U†"
1
2 ⊗ I)(A⊗ I)|I〉〉= E(Uᵀ("∗)

1
2 ⊗ I)(A∗ ⊗ I)|I〉〉= E(Uᵀ("

1
2A)∗ ⊗ I)|I〉〉

=I⊗Uᵀ("
1
2A)∗|I〉〉= I⊗Uᵀ("

1
2 )∗|A†〉〉= A†⊗ I|"

1
2U〉〉.

(45)

〈〈A|U"
1
2 ⊗"−

1
2U∗|A〉〉= 〈〈AU†|"

1
2 ⊗"−

1
2 |AU†〉〉" 0. (46)

S= J#
1
2 (47)

$
1
2 =U"

1
2 ⊗"−

1
2U∗, J = E(&⊗&)((U†)2⊗ I) = (I⊗Uᵀ)E(Uᵀ⊗ I)(&⊗&). (48)

E(&⊗&)(A⊗ I)|I〉〉= E(A∗ ⊗ I)|I〉〉= I⊗A∗E|I〉〉= I⊗A∗|I〉〉= A†⊗ I|I〉〉. (49)

E(&⊗&)(A⊗ I)|I〉〉= (&⊗&)(I⊗A)|I〉〉= (&⊗&)(Aᵀ⊗ I)|I〉〉= A†⊗ I|I〉〉. (50)

E(A⊗ I)E|I〉〉= (Aᵀ⊗ I)|I〉〉. (51)

(A⊗ I)|F〉〉= (I⊗A$)|F〉〉=⇒ A$ = FᵀAᵀF−1ᵀ

=⇒(A$ ⊗ I)|F〉〉= (I⊗Fᵀ)E(F−1AF⊗ I)E(I⊗F−1ᵀ)|F〉〉
(A$ ⊗ I)|F〉〉= E(W−1AW ⊗ I)E|F〉〉, W = FF−1ᵀ

(52)

ON THE MISSING AXIOM OF QUANTUM MECHANICS 13

Remark 5 (Duality between the convex sets of states and of propensities). From the
Definition 2 of state it follows that the convex set of states S and the convex sets of
propensities T are dual each other, and the latter can be regarded as the set of positive
linear contractions over the set of states, namely the set of positive functionals l on S
with unit upper bound, and with the functional l[A ] corresponding to the propensity [A ]
being defined as

(26) l[A ](ω)
.
= ω(A ).

In the following we will often identify propensities with their corresponding functionals,
and denote them by lowercase letters a, b, c, . . ., or l1, l2, . . .. Finally, notice that the notion
of coexistence (informational compatibility) extends naturally to propensities.

Remark 6 (Dual cone notation). We can write the propensity linear functionals on S
with the equivalent pairing notations

(27) lA (ω)
.
= ω(A ) ≡ (A |ω).

Definition 18 (Generalized observable). We call generalized observable a set of propen-
sities L = {li} which is informationally equivalent to an action L ∈ A, namely such that
there exists an action A = {Aj} for of which one has li ∈ Aj.

Clearly, the generalized observable is normalized to the constant unit functional, i. e.P
i li = 1.

Definition 19 (Informationally complete generalized observable). A generalized observ-
able L = {li} is informationally complete if each propensity can be written as a linear
combination of the of elements of L, namely for each propensity l there exist coefficients
ci(l) such that

(28) l =
X

i

ci(l)li.

Clearly, using an informationally complete generalized observable one can reconstruct
any state ω from just the probabilities li(ω), since one has

(29) ω(A ) =
X

i

ci(lA )li(ω).

Rule 9 (Partial ordering between propensities). For two propensities l1, l2 ∈ P we write
l1 ≤ l2 when l1(ω) ≤ l2(ω) ∀ω ∈ S.

In Ref. [6] the present partial ordering is interpreted saying that l2 is more sensitive
than l1. Upon introducing the notions of Kernel K0(l) for the propensity l, i. e. K0(l) =
{ω ∈ P |l(ω) = 0}, Ludwig introduces two axioms on increasing sensitivity of propensities:

Rule 10 (Axiom V1a of Ref.[6]). For two propensities there is always a third one such
that l3 ≥ l1, l2 and K0(l1) ∩K0(l2) ⊂ K0(l3).

Rule 11 (Axiom V1b of Ref.[6]). For each propensity there is always another one such
that l′ ≥ l and K0(l) ⊂ K0(l

′).

Introducing the notion of face generated by an ensemble C(ω), H. Neumann [7] also
considers the following axioms

Rule 12 (Axiom V2 of Ref. [7]). If C(ω2) ⊂ C(ω1) there is a propensity l with ω2 ∈ K0(l),
but ω1 (∈ K0(l)

Rule 13 (Axiom V3 of Ref. [7]). If C(ω1) ⊂ C(ω3) ⊂ C( 1
2ω1 + 1

2ω2) and C(ω2) and
C(ω3) are strictly separated, then C(ω1) = C(ω3)
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Informationally complete observable: an observable 
              is informationally complete if any effect    can 
be written as linear combination of elements of     ,
namely there exist coefficients          such that
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l =

|L|∑

i=1

ci(l)li

Informationally complete observable

affine dimension:                             , for      
minimal informationally complete on                                                                                    S

Ldim(S) = |L| − 1
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Bloch representation
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Figure 5. Preparability of transformations. Illustration of Eq. (9).

14. Affine-space notation

For the following we will fix a minimal informationally complete observable, denoted
by {nj}, in terms of which we can expand (in a unique way) any propensity as follows

(66) lA =
X

j

mj(A )nj .

It will turn out to be convenient to replace one element of the informationally complete
observable {nj} with the normalization functional n0 defined as

(67) n0(ω̃) = ω̃(I ), ∀ω̃ ∈ S̃,

[n0(ω) = 1 for normalized states ω]. We will then use the Minkowskian notation

(68) n
.
= (n0, n), mn

.
=

X

j

mjnj = m · n + m0n0.

In the following we will also denote q
.
= m0. Therefore, for any propensity A , we will

write

(69) lA (ω) = m(A )n(ω) ≡ m(A ) · n(ω) + q(A ).

Clearly one can extend the convex set of propensities P to the complexification CP of
the underlying affine space, by keeping the coefficients mj of the expansion as complex,
namely a generic element l ∈ CP will be given by

(70) l =
X

j

mjnj , mj ∈ C.

Notice that n(ω) gives a complete description of the state ω, since for any transformation
A one can write

(71) ω(A ) = m(A ) · n(ω) + q(A ).

On the other hand, by denoting with X j and lj the propensity such that [m(X j)]l = δjl

we have

(72) nj(ω) = lX j
(ω)

.
= lj(ω).

Notice that X 0 ≡ I . We will call n(ω) the Bloch vector representing the state ω. The
Bloch representation is faithful (i. e. one-to-one), since the informationally complete
observable {lj} is minimal, namely the functionals lj are linearly independent.

We now recover the linear transformation describing conditioning. The conditioning
is given by the operation. More precisely, the conditioning of the state ω given that the
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transformation A occurred is given by the unnormalized state OpA ω ≡ ω̃A , and, more
explicitely

(73) OpA ω(B) ≡ ω̃A (B) = ω(B ◦A ) = ω(B ◦A ) ≡ lB(ω̃A )

From linearity of transformations (see remark 4) one can introduce a matrix {Mjl(A )},
and write

(74) ω(X j ◦A ) =
X

l

Mjl(A )ll(ω) + Mj0(A ),

and, in particular,

(75) ω(X0 ◦A ) ≡ ω(A ) =
X

l

M0l(A )ll(ω) + M00(A ) ≡ m(A ) · n(ω) + q(A ),

from which we derive the identities

(76) M0l(A ) ≡ [m(A )]l, M00(A ) ≡ q(A ).

The real matrices Mjl(A ) are a representation of the (real) Banach algebra of transfor-
mations. The first row of the matrix is a representation of the propensity A (see Fig.
6).

In the Bloch-vector notation, one has

nj(ω̃A ) =lX j
(ω̃A ) = ω(Xj ◦A ),

n0(ω̃A ) =lX 0(ω̃A ) = ω(A ).
(77)

n(ω̃A ) =M (A )n(ω) + k(A ), n0(ω̃A ) = m(A ) · n(ω) + q(A )

kj(A )
.
=q(Xj ◦A ),

(78)

(79) ω̃A (B) = m(B) · n(ω̃A ) + q(B)n0(ω̃A )

The matrix representation of the transformation is synthesized in Fig. 6. Since the Bloch

Mij(A ) =

0

BBBBBBBBBBBBBBBB@

q(A ) m(A )

k(A ) M (A )

1

CCCCCCCCCCCCCCCCA

Figure 6. Matrix representation of the real algebra of transforma-
tions. The first row represents the propensity A of the transformation
A . It gives the transformation of the zero-component of the Bloch vec-
tor n0(ω̃A ) ≡ ω(A ) = m(A ) · n(ω) + q(A ), namely the probability of
the transformation. The following rows represent the affine transforma-
tion of the Bloch vector n(ω) corresponding to the quantum operation
OpA , the first column giving the translation k(A ) , and the remaining
square matrix M (A ) the linear part. Overall, the Bloch vector of the
state ω is transformed as n(OpA ω) = Mn(ω) + k(A ).

representation is faithful, then the dimension of the affine space of the Bloch vector n(ω)
is just the affine dimension adm(S) of the convex set of states S. The affine dimension of
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Therefore, summarizing we have found the following conditioning transformation

(80) n(ω) −→ n(ωA ) =
M (A )n(ω) + k(A )
m(A ) · n(ω) + q(A )

,

with the transformation occurring with probability given by

(81) p(A ; ω) = m(A ) · n(ω) + q(A ).

We will now make the following operational assumption

Postulate 1 (Local observability principle). For every composite system there exist infor-
mationally complete observables made only of local informationally complete observables.

The local observability principle is operationally crucial, since it reduces enormously the
complexity of informationally complete observations on composite systems, by guarantee-
ing that only local (although jointly executed!) experiments are sufficient for retrieving a
complete information, also any correlations between the component systems. This prin-
ciple directly implies the following upper bound for the affine dimension of a composed
system

(82) adm(S12) ≤ adm(S1) adm(S2) + adm(S1) + adm(S2).

In fact, if the number of outcomes of a minimal informationally complete observable on
S is N , the affine dimension is given by adm(S) = N − 1. Now, consider a global in-
formationally complete measurement made of two local minimal informationally complete
observable measured jointly. It has number of outcomes [adm(S1) + 1][adm(S2) + 1].
However, we are not guaranteed that the joint observable is itself minimal, whence the
bound (82) follows.

Using joint local informationally complete observable, we can built a Bloch represen-
tation of joint states and of transformations of the composed system. We introduce the
dual tensor notation n $ n with the following meaning

(83) (n $ n)ij(Φ) ≡ ni $ nj(Φ)
.
= lX i,X j

(Φ),

and with the matrix composition rule

(84) (M (A )$M (B))(n $ n)(Φ) = (M (A )n $M (A )n)(Φ).

For example, one has

Φ(X i ◦A , X j ◦B) =(M (A )n $M (B)n)ij(Φ) + (k(A ))n0 $M (B)n)ij(Φ)

+(M (A ))n $ k(B)n0)ij(Φ) + ki(A )kj(B)
(85)

where we used the identity (n0 $ n0)(Φ) = 1.
We now translate the concept of dynamically faithful state in the present Bloch rep-

resentation. If the state Φ is (dynamically) faithful, then the output state ΦA ,I (con-
ditioned that the transformation A occurred locally on the first system) is in one-to-one
correspondence with the transformation A .

!

!
Φ

A

ΦA ,I

Therefore, one can completely determine the transformation by determining the output
state. We need to determine the matrix M (A ) plus the vectors k(A ) and m(A ), plus the
parameter q(A ), namely adm(S)2 + 2adm(S) + 1 parameters. However, one parameter,
say q(A ) is determined by the overall probability of occurrence of A on the state Φ, from
which the conditioned state is independent. Therefore, in order to have a joint faithful
state we need to have at least adm(S)[adm(S) + 2] independent parameters for the joint
state, namely we have the lower bound for the affine dimension of the joint system

(86) adm(S×2) ≥ adm(S)[adm(S) + 2].
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Conditioning: 
fractional affine 
transformation
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Theorem 1 Let X be a real finite-dimensional normed space with unitary sphere SX , and let L(X) be the linear
operators from X into itself. It is proved that X is an inner product space if and only if for A,C ∈ L(X)

A⊥C⇔∃u ∈ SX : ||A|| = ||Au||, Au⊥Cu,

where ⊥ denotes Birkhoff orthogonality.

Theorem 2 (Existence of an infocomplete observable) There always exists a minimal informationally complete ob-

servable.

Proof. By definition PR = SpanR(P), whence there must exists a spanning set for PR that is contained in P. The
maximal number of elements of this set that are linearly independent will constitute a basis, which we suppose has

finite cardinality dim(PR). It remains to be shown that it is possible to have a basis with sum of elements equal to I ,

and that such basis is obtained operationally starting from the available observables from which we constructed P.
If all observables are uninformative (i. e. with all effects proportional to I ) , thenPR = Span(I ), I is a minimal

infocomplete observable, and the statement of the theorem is proved. Otherwise, there exists at least an observable

E = {li} with n! 2 linearly independent effects. If this is the only observable, again the theorem is proved. Otherwise,
take a new binary observable E2 = {x,y} from the set of available ones (you can take different binary observables out
of a given observable with more than two outcomes by summing up effects to yes-no observables). If x ∈ Span(E)
discard it. If x %∈ Span(E), then necessarily also y %∈ Span(E) [since if there exists coefficients !i such that y= !i!ili,
then x= !i(1−!i)li]. Now, consider the observable

E′ =
{
1
2
y, 1
2
(l1+ x), 1

2
l2, . . . , ln

}
(1)

(which operationally corresponds to the random choice between the observables E and E2 with probability 1
2
, and

with the events corresponding to x and l1 made indistinguishable). This new observable has now |E′| = n+1 linearly
independent effects (since y is linearly independent on the li and one has y = !ni=1 li − x = !ni=2 li + l1 − x). By

iterating the above procedure we reach |E′| = dim(PR), and we have so realized an apparatus that measures a minimal
informationally complete observable."

Theorem 3 (Convex set of dynamical faithful states) If a faithful state is mixed, each component state (i. e. each

state in its possible expansions as convex combination) must be faithful.
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Local observability principle

ReductionismHolism

Nonlocal experiment
Local 

experiment
Local 

experiment
Local 

experiment

For composite systems local info-complete observables provide 
global info-complete observables.

identity for the affine dimension of composite systems

dim(S12) = dim(S1) dim(S2) + dim(S1) + dim(S2)
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Local observability principle

identity for the affine dimension of composite systems

dim(S12) = dim(S1) dim(S2) + dim(S1) + dim(S2)

In Quantum Mechanics we have:

No-signaling, dynamical independence, and the local observability principle 9

Theorem 3 The affine dimension of the convex set of states S12 of a composed system

can be written in terms of the affine dimensions of the convex sets of states S1 and S2

of the component systems as

dim(S12) = dim(S1)dim(S2) + dim(S1) + dim(S2). (12)

Proof. We can first prove that the right side of Eq. (12) is an upper bound for the left

side. Indeed, as we have seen, by duality between S and P the number of outcomes of

a minimal informationally complete observable is given by dim(P) = dim(S)+1. Now,

consider a global informationally complete measurement made of two local minimal

informationally complete observables measured jointly. It has number of outcomes

[dim(S1) + 1][dim(S2) + 1]. However, we are not guaranteed that the joint observable

is itself minimal, whence the right side of Eq. (12) is just an upper bound.

The opposite bounding can be easily proved by considering that a global

informationally incomplete measurement made of minimal local informationally

complete measurements should belong to the linear span of a minimal global

informationally complete measurement. !
Identity (12) is the same that we have in Quantum Mechanics as a consequence

of the tensor product structure. In fact one has dim(S) = dim(H)2 − 1, and

dim(H12) = dim(H1)dim(H2), which gives dim(S12) + 1 = [dim(S1) + 1][dim(S2) + 1].

Therefore, the tensor product is not a consequence of dynamical independence in Def.

3, but follows from the local observability principle.

6. Conclusion

We have considered a very general operational framework, and proved that the so-

called no-signaling (a-causality at a distance of ”local actions”) is a direct consequence of

dynamical independence of systems. We have seen that the concept of purely dynamical

independence can only be defined in terms of commutativity of local transformations.

Hence, as such, dynamical independence is compatible with both tensor product and

direct sum of operator algebras in Quantum Mechanics. On the other hand, the

tensor product description of independent systems in Quantum Mechanics operationally

follows from the additional requirement of Local Observability. The Local Observability

Principle plays a crucial operational role, reconciling holism with reductionism in a non-

local theory, allowing us to observe a holistic nature in a reductionistic way—i. e. locally.

Appendix A. Technical lemma

Lemma 1 For A " 0 operator on HA and R " 0 operator on Ha ⊗ HB one has

Tr1[(A⊗ I)R] " 0. (A.1)

Proof. We first prove that the left side is a lower bound for the right side. Indeed, the

number of outcomes of a minimal informationally complete observable is dim(S)+ 1,
since it equals the dimension of the affine space embedding the convex set of states S
plus an additional dimension for normalization. Now, consider a global informationally

complete measurement made of two local minimal informationally complete observ-
ables measured jointly. It has number of outcomes [dim(S1)+ 1][dim(S2)+ 1]. How-
ever, we are not guaranteed that the joint observable is itself minimal, whence the bound.
The opposite inequality can be easily proved by considering that a global informa-

tionally incomplete measurement made of minimal local informationally complete mea-
surements should belong to the linear span of a minimal global informationally complete

measurement.!
It is worth noticing that identity (55) is the same that we have in Quantum Mechanics

for a bipartite system, due to the tensor product structure. Therefore, the tensor product
is not a consequence of dynamical independence in Def. 1, but follows from the local

observability principle.

Postulate 4 now gives a bound for the informational dimension of the convex sets of
states. In fact, if for any bipartite system made of two identical components and for some

preparations of one component there exists a discriminating observable that is informa-
tionally complete for the other component, this means that dim(S) " dim#(S×2)− 1,
with the equal sign if the informationally complete observable is also minimal, namely

dim(S) = dim#(S×2)−1. (56)

By comparing this with the affine dimension of the bipartite system, we get

dim(S×2) =dim(S)[dim(S)+2] = [dim#(S×2)−1][dim#(S×2)+1]
=dim#(S×2)2−1,

(57)

which, generalizing to any convex set, gives the identification

dim(S) = dim#(S)2−1, (58)

corresponding to the dimension of the quantum convex sets S due to the underlying

Hilbert space. Moreover, upon substituting Eq. (56) into Eq. (58) one obtain

dim#(S×2) = dim#(S)2, (59)

which is the quantum product rule for informational dimensionalities corresponding

to the quantum tensor product. To summarize, it is worth noticing that the quantum
dimensionality rules (58) and (59) follow from Postulates 3 and 4.

To conclude this section we notice that Postulate 5 immediately implies the following
identity

dim(T) = dim(S×2)+1. (60)

29



Local observability principle

Local 
observability

Dimensions of the convex set 

of states consistent with the 

quantum tensor product

Theorems
Axioms
Postulates

30



Dynamically faithful state: we say that a state      of a bipartite 
system is dynamically faithful if when acting on it with a local 
transformation      on one system the output  conditioned 
weight                  is in 1-to-1 correspondence with the 
transformation

20 GIACOMO MAURO D’ARIANO

Consider now a couple of independent physical systems, and to distinguish the second
system from the object system, let’s call the second one reference system. As we have
seen in Eq. (48), a probabilistic transformation A that occurred on the reference system
generally affects the local state of the object, which then depends on A as follows

(52) ΩA2(·, I )
.
=

Ω(·, A )
Ω(I , A )

= ω(1)
A2

.

We can then define a maximally entangled state for a two-partite system as follows

Definition 33 (Maximally entangled state). A maximally entangled state for a two-partite
system is a pure state Ω for which the local state on each system is maximally chaotic,
namely

(53) Ω(·, I ) = Ω(I , ·) = χ(S).

12. Faithful state

Definition 34 (Dynamically faithful state). We say that a state Φ of a composite system
is dynamically faithful for the nth component system when acting on it with a transfor-
mation A the resulting (unnormalized) conditional state is in one-to-one correspondence
with the dynamical equivalence class [A ] of A , namely the following map is 1-to-1.

(54) Φ̃I ,...,I ,A ,I ,... ↔ [A ]dyn,

where in the above equation the transformation A acts locally only on the nth component
system. !

"
#
$ !

!
Φ

A

ΦA ,I

Definition 35 (Informationally faithful state). We say that a state Φ of a composite
system is informationally faithful for the nth component system when acting on it with
a transformation A the resulting (unnormalized) conditional local state on the remaining
systems is in one-to-one correspondence with the informational equivalence class A of A
(i. e. its propensity), namely the following map is 1-to-1

(55) Φ(· · · , A , · · · )↔ A ,

where in the above equation the transformation A acts locally only on the nth component
system.

!

!
"

#
$A

Φ

Φ(A , ·)

In the following, unless specified, for simplicity we restrict attention to two component
systems, and take the first one for the nth. Using the definition 10 of conditional state,
we see that the state Φ is dynamically faithful when the Φ(· ◦ [A ]dyn, I ) is an invertible
function over the set of dynamical equivalence classes of transformations, namely when

(56) ∀A , Φ(B1 ◦A , I ) = Φ(B2 ◦A , I ) ⇐⇒ B1 ∈ [B2]dyn.

On the other hand, one can see that the state Φ is informationally faithful when the
Φ(A , ·) is an invertible function over the set of informationally equivalence classes of
transformations, namely when

(57) ∀A , Φ(B1, A ) = Φ(B2, A ) ⇐⇒ B1 ∈ B2.
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Faithful states

Consider a faithful state ! which is not pure, and write it as the convex combination != !"1+(1−! )"2. Since !
is faithful, one has that

(A ,I )!= 0=⇒A = 0, ∀A ∈ TR. (2)

This implies that for each component state

(A ,I )"= 0=⇒A = 0, ∀A ∈ TR, (3)

otherwise one would contradict statement (2).!
Clearly the converse of the last theorem—namely that the mixing of two faithful states is faithful—is not necessarily

true, since for a particular generalized transformation G %= 0 one may have !"1(G ) = −(1−! )"2(G ) %= 0. Notice

that it is important that the transformation A in Eq. (2) runs over all generalized ones, otherwise the state may not be

faithful (e. g. a maximally cahotic state).

!(A ◦B,C ) =!"1(B ◦A ,C )+(1−! )"2(B ◦A ,C )
=!"1(B,C ◦A1)+(1−! )"2(B,C ◦A0)
=!"1(B,C ◦A! )+(1−! )"2(B,C ◦A! )

(4)

A! = (1−! )A0+!A1−! (1−! )G (5)

AMODEL

For an explicit example, consider the group Zd×Zd and its d-dimensional projective UIR

Um,n =
d−1

#
k=0

e
2"i
d
km|k〉〈k⊕n| , m,n ∈ [0,d−1]. (6)

The composition and orthogonality relations of the set are given by

Um,nUm′,n′U
†
m,n = e

2"i
d

(nm′−mn′)Um′,n′ , Tr
[
U†p,q Um,n

]
= d #mp #nq. (7)

One has

Um,nUp,q = e
2"i
d
np Um⊕p,n⊕q (8)

and

U†m,n =
d−1

#
k=0

e−
2"i
d
km|k〉〈k⊕n| =

d−1

#
k=0

e−
2"i
d

(k+n)m|k〉〈k,n| = e−
2"i
d
nmU−m,−n, (9)

The transposed and complex conjugated operators with respect to the faithful state "= 1
d
|I〉〉〈〈I| are given by

(Um,n)ᵀ =
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An informationally complete POVM is given by
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∗
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Clearly, using an informationally complete observable one can reconstruct any state ! from just the probabilities li(!),
since one has

!(A ) =!
i

ci(lA )li(!). (46)

Definition 15 (Predictability and resolution) We will call a transformation A—and likewise its effect—predictable

if there exists a state for which A occurs with certainty and some other state for which it never occurs. The

transformation (effect) will be also called resolved if the state for which it occurs with certainty is unique—whence

pure. An action will be called predictable when it is made only of predictable transformations, and resolved when all

transformations are resolved.

The present notion of predictability for effect corresponds to that of "decision effects" of Ludwig [4]. For a predictable

transformation A one has ||A || = 1. Notice that a predictable transformation is not deterministic, and it can generally

occur with nonunit probability on some state ! . Predictable effects A correspond to affine functions fA on the state

space S with 0! fA ! 1 achieving both bounds. Their set will be denoted by Pp.

Definition 16 (Perfectly discriminable set of states) We call a set of states {!n}n=1,N perfectly discriminable if there
exists an action A = {A j} j=1,N with transformations A j ∈ l j corresponding to a set of predictable effects {ln}n=1,N
satisfying the relation

ln(!m) = "nm. (47)

Definition 17 (Informational dimensionality) We call informational dimension of the convex set of states S, de-
noted by idim(S), the maximal cardinality of perfectly discriminable set of states in S.

Definition 18 (Discriminating observable) An observable L = {l j} is discriminating for S when it discriminates a

set of states with cardinality equal to the informational dimension idim(S) of S.

7. FAITHFUL STATE

Definition 19 (Dynamically faithful state) We say that a state " of a composite system is dynamically faithful for

the nth component system when for every transformation A the following map is one-to-one

OpI ,...,I ,A ,I ,..." ↔ A , (48)

where in the above equation the transformation A acts locally only on the nth component system.

Notice that by linearity the correspondence is still one-to-one when extended to generalized transformations. Physi-

cally, the definition corresponds to say that the output conditioned state (multiplied by the probability of occurrence)

is in one-to-one correspondence with the transformation.!
"
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FIGURE 1. Illustration of the notion of dynamically faithful state for a bipartite system (see Definition 19). Physically, the state
" is faithful when the output conditioned state (multiplied by the probability of occurrence) is in one-to-one correspondence with
the transformation.
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In the following we restrict attention to bipartite systems. Using Definition 7 of operation and Definition 4 of

conditional state, we can say that the bipartite state " is dynamically faithful for system 1 when for every couple of

transformationsB,C "(B ◦A ,C ) is an invertible function of A . In equations
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Preparationally faithful state: we say that a state       
of a bipartite system is preparationally faithful if every 
joint state     can be achieved by a suitable local 
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nonzero probability
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Consider now a couple of independent physical systems, and to distinguish the second
system from the object system, let’s call the second one reference system. As we have
seen in Eq. (48), a probabilistic transformation A that occurred on the reference system
generally affects the local state of the object, which then depends on A as follows

(52) ΩA2(·, I )
.
=

Ω(·, A )
Ω(I , A )

= ω(1)
A2

.

We can then define a maximally entangled state for a two-partite system as follows

Definition 33 (Maximally entangled state). A maximally entangled state for a two-partite
system is a pure state Ω for which the local state on each system is maximally chaotic,
namely

(53) Ω(·, I ) = Ω(I , ·) = χ(S).

12. Faithful state

Definition 34 (Dynamically faithful state). We say that a state Φ of a composite system
is dynamically faithful for the nth component system when acting on it with a transfor-
mation A the resulting (unnormalized) conditional state is in one-to-one correspondence
with the dynamical equivalence class [A ] of A , namely the following map is 1-to-1.

(54) Φ̃I ,...,I ,A ,I ,... ↔ [A ]dyn,

where in the above equation the transformation A acts locally only on the nth component
system. !

"
#
$ !

!
Φ

A

ΦA ,I

Definition 35 (Informationally faithful state). We say that a state Φ of a composite
system is informationally faithful for the nth component system when acting on it with
a transformation A the resulting (unnormalized) conditional local state on the remaining
systems is in one-to-one correspondence with the informational equivalence class A of A
(i. e. its propensity), namely the following map is 1-to-1

(55) Φ(· · · , A , · · · )↔ A ,

where in the above equation the transformation A acts locally only on the nth component
system.

!

!
"

#
$A

Φ

Φ(A , ·)

In the following, unless specified, for simplicity we restrict attention to two component
systems, and take the first one for the nth. Using the definition 10 of conditional state,
we see that the state Φ is dynamically faithful when the Φ(· ◦ [A ]dyn, I ) is an invertible
function over the set of dynamical equivalence classes of transformations, namely when

(56) ∀A , Φ(B1 ◦A , I ) = Φ(B2 ◦A , I ) ⇐⇒ B1 ∈ [B2]dyn.

On the other hand, one can see that the state Φ is informationally faithful when the
Φ(A , ·) is an invertible function over the set of informationally equivalence classes of
transformations, namely when

(57) ∀A , Φ(B1, A ) = Φ(B2, A ) ⇐⇒ B1 ∈ B2.

Ω
TΩ

Faithful states

.

!

!

Φ

TΩ

Ω

.

32



Symmetric bipartite state: we call a joint state      of a 
bipartite system symmetric if
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is dynamically faithful for the nth component system when acting on it with a transfor-
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Definition 35 (Informationally faithful state). We say that a state Φ of a composite
system is informationally faithful for the nth component system when acting on it with
a transformation A the resulting (unnormalized) conditional local state on the remaining
systems is in one-to-one correspondence with the informational equivalence class A of A
(i. e. its propensity), namely the following map is 1-to-1

(55) Φ(· · · , A , · · · )↔ A ,

where in the above equation the transformation A acts locally only on the nth component
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In the following, unless specified, for simplicity we restrict attention to two component
systems, and take the first one for the nth. Using the definition 10 of conditional state,
we see that the state Φ is dynamically faithful when the Φ(· ◦ [A ]dyn, I ) is an invertible
function over the set of dynamical equivalence classes of transformations, namely when

(56) ∀A , Φ(B1 ◦A , I ) = Φ(B2 ◦A , I ) ⇐⇒ B1 ∈ [B2]dyn.

On the other hand, one can see that the state Φ is informationally faithful when the
Φ(A , ·) is an invertible function over the set of informationally equivalence classes of
transformations, namely when

(57) ∀A , Φ(B1, A ) = Φ(B2, A ) ⇐⇒ B1 ∈ B2.

Φ(A ,B) = Φ(B,A )
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Operational definition of transposed

Existence of symmetric faithful states

A ⇐⇒ A
′

“transposition” over the real algebra     of (generalized) 
transformations

A

Φ(B ◦ A ,C ) = Φ(B,C ◦ A
′)

since the linear space of generalized effects is just the space of the linear functionals over states, which has one more

dimension than the convex set of states corresponding to normalization. But from Eqs. (55) and (60) it follows that

dim(W!) = idim(S)2, (61)

whence, for finite dimensions the real Hilbert spaceW! is isomorphic to the real Hilbert space of Hermitian complex

matrices representing selfadjoint operators over a complex Hilbert space H of dimensions dim(H) = idim(S). This is
the Hilbert space formulation of Quantum Mechanics.

Theorem 7 One has the identity

||!(A )|| = ||A ||, (62)

The fact that ! is also an involutive automorphism of the set of states implies the identity

||!(A )|| = sup
"∈S

|"(!(A ))| = sup
"!∈S

|"(A )| = ||A ||. (63)

Identity (62) then follows from identity (41).

9. THE GNS REPRESENTATION OF TRANSFORMATIONS

In this section I introduce the operational definition of transposed of a physical transformation, and show how one can

then introduce the adjoint. Then I derive a Gelfand-Naimark-Segal (GNS) representation [2] for transformations.

9.1. The transposed transformation

For a bipartite state that is symmetric and faithful, both dynamically and preparationally, for every transformation

on system 1 there always exists a (generalized) transformation on system 2 corresponding to the same operation on

that state. This allows us to introduce operationally the following notion of transposed transformation

Definition 22 (Transposed transformation) For a faithful bipartite state !, the transposed transformationA ′ of the
transformation A is the generalized transformation which when applied to the second component system gives the

same conditioned state and with the same probability than the transformationA operating on the first system, namely

OpA ,I != OpI ,A ′! (64)

!
"

#
$ !

!
!

A

(A ,I )! !
"

#
$ !

!

!

A ′
(I ,A ′)!≡ (A ,I )!

FIGURE 3. Illustration of the operational concept of transposed transformation.

Eq. (64) is equivalent to the following identity

!(B ◦A ,C ) =!(B,C ◦A ′). (65)

Clearly one has I ′ = I . It is easy to check that A →A ′ satisfies the axioms of transposition

1. (A +B)′ = A ′+B′, 2. (A ′)′ = A , 3. (A ◦B)′ = B′ ◦A ′. (66)

Indeed, axiom 1 is trivially satisfied, whereas axiom 2 is proved as follows

!(B ◦A ′′,C ) =!(B,C ◦A ′) =!(C ◦A ′,B) =!(C ,B ◦A ) =!(B ◦A ,C ), (67)
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For symmetric faithful state it is easy to check that the 
involution                             satisfies the properties of the 
transposed: 

A ⇐⇒ A
′

1. (A + B)′ = A
′ + B

′

2. (A ′)′ = A ,

3. (A ◦ B)′ = B
′
◦ A

′

Operational definition of transposed

36



Positive form over generalized effects: Jordan 
decomposition of the real symmetric form     over 
generalized effects       (finite dimension)

Positive bilinear form
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seen in Eq. (48), a probabilistic transformation A that occurred on the reference system
generally affects the local state of the object, which then depends on A as follows
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=

Ω(·, A )
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= ω(1)
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We can then define a maximally entangled state for a two-partite system as follows

Definition 33 (Maximally entangled state). A maximally entangled state for a two-partite
system is a pure state Ω for which the local state on each system is maximally chaotic,
namely

(53) Ω(·, I ) = Ω(I , ·) = χ(S).

12. Faithful state

Definition 34 (Dynamically faithful state). We say that a state Φ of a composite system
is dynamically faithful for the nth component system when acting on it with a transfor-
mation A the resulting (unnormalized) conditional state is in one-to-one correspondence
with the dynamical equivalence class [A ] of A , namely the following map is 1-to-1.

(54) Φ̃I ,...,I ,A ,I ,... ↔ [A ]dyn,

where in the above equation the transformation A acts locally only on the nth component
system. !
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Definition 35 (Informationally faithful state). We say that a state Φ of a composite
system is informationally faithful for the nth component system when acting on it with
a transformation A the resulting (unnormalized) conditional local state on the remaining
systems is in one-to-one correspondence with the informational equivalence class A of A
(i. e. its propensity), namely the following map is 1-to-1

(55) Φ(· · · , A , · · · )↔ A ,

where in the above equation the transformation A acts locally only on the nth component
system.
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In the following, unless specified, for simplicity we restrict attention to two component
systems, and take the first one for the nth. Using the definition 10 of conditional state,
we see that the state Φ is dynamically faithful when the Φ(· ◦ [A ]dyn, I ) is an invertible
function over the set of dynamical equivalence classes of transformations, namely when

(56) ∀A , Φ(B1 ◦A , I ) = Φ(B2 ◦A , I ) ⇐⇒ B1 ∈ [B2]dyn.

On the other hand, one can see that the state Φ is informationally faithful when the
Φ(A , ·) is an invertible function over the set of informationally equivalence classes of
transformations, namely when

(57) ∀A , Φ(B1, A ) = Φ(B2, A ) ⇐⇒ B1 ∈ B2.

8.2. The complex Hilbert space structure

In this subsection I derive the existence of the complex Hilbert space structure of

Quantum Mechanics. The faithful state ! naturally provides a bilinear form !(A ,B)
over effects A ,B, which is certainly positive over physical effects, since !(A ,B)
is just their probability. However, unfortunately, the fact that the form is positive over

physical effects, doesn’t guarantee that it remains positive when extended to the linear
space of generalized effects, namely to their linear combinations with real (generally non

positive) coefficients. This problem can be easily cured by considering the absolute value
of the bilinear form |!| :=!+−!−, and then adopting |!|(A ,B) as the definition for
the scalar product between A and B. The absolute value |!| can be defined thanks
to the fact that ! is real symmetric, whence it can be diagonalized over the linear

space of generalized effects. Upon denoting by P± the orthogonal projectors over the
linear space corresponding to positive and negative eigenvalues, respectively, one has

!± =!(·,P±·), namely

|!|(A ,B) =!(A ,!(B)), !(A ) = (P+−P−)(A ). (62)

The map ! is an involution, namely !2 = I . Notice that there is no non zero generalized
effect C with |!|(C ,C ) = 0. Indeed, the requirement that the state ! is also prepara-

tionally faithful implies that for every state " there exists a suitable transformation T"

such that " =!I ,T"
|1 with !(I ,T") > 0, whence

"(C ) =!I ,T"
|1(C ) =!(C ,!(T̃ ")) = |!|(C ,T̃ "), T̃ " =

!(T ")
!(I ,T ")

, (63)

and due to non-negativity of |!| one has

"(C ) !
√

|!|(C ,C ) |!|(T̃ " ,T̃ "), (64)

which implies that "(C ) = 0 for all states " , i. e. C = 0. Therefore, |!|(A ,B)
defines a strictly positive real symmetric scalar product, whence the linear space PR of
generalized effects becomes a real pre-Hilbert space. The Hilbert space is then obtained

by completion in the norm topology (for the operational relevance of norm closure see
Remark 5). Notice that the Hilbert space is a real one, since both its linear space and the

scalar product are real. Let’s denote by W! such Hilbert space. Its dimension is given
by

dim(W!) = adm(S)+1, (65)

since the linear space of generalized effects is just the space of the linear functionals

over states, which has one more dimension than the convex set of states corresponding
to normalization. But from Eqs. (59) and (65) it follows that

dim(W!) = idim(S)2, (66)

whence, for finite dimensions the real Hilbert spaceW! is isomorphic to the real Hilbert

space of Hermitian complex matrices representing selfadjoint operators over a complex
Hilbert space H of dimensions dim(H) = idim(S). This is the Hilbert space formulation
of Quantum Mechanics.
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PR

PR

namely

!
i

"(Ai,B) ="(I ,B), ∀" ∈S×2, ∀B ∈ T, (120)

which is the no-signaling condition. !

Example 1

!y =
(
0 −i
i 0

)
=

1√
2

[(
1 −i
i 1

)
−

(
1 i

−i 1

)]
=: P+−P−. (121)

Remark 10 Also you need to achieve the Born rule pairing someway. Also look at the Born rule pairing as an help to

find the scalar product.

Now we need an involution which coincides with the transposition over generalized effects, i. e. such that

" (A ) = A ′ (122)

would do the job, since for any generalized transformation C = aA +bB with a,b ∈ R one has

#(C ," (C )) =#(C ,C ′) =#(C ◦C ,I ) =#|1(C ◦C ) =

a2#|1(A ◦A )+2ab#|1(A ◦B)+b2#|1(B ◦B) " 0=⇒
#|1(A ◦B)2 "#|1(A ◦A )#|1(B ◦B),

(123)

which is generally not true!

|#|(A ,B) =#(#(A ),B), #(A ) = (P+−P−)(A ) (124)
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The complex conjugation

The involution     will play the role of a complex conjugation.

9.2. Gelfand-Naimark-Segal (GNS) construction of real Hilbert space

structure

Unfortunately, even though the transposition defined in identity (67) works as an

adjoint for the symmetric bilinear form ! as in Eqs. (70) and (71), however, it is
not the right adjoint for the scalar product given by the strictly positive bilinear form

|!|(A ,B) in Eq. (62), due to the presence of the involution ! . In order to introduce
an adjoint for generalized transformations (with respect to the scalar product between

effects) one needs to extend the involution ! to generalized transformations. This can
be easily done, since the bilinear form of the faithful state is already defined over

generalized transformations, and, analogously to effects, also transformations comprise
a linear space, whose dimension is adm(S×2)+ 1, since we postulate the existence of
an informationally faithful state. Therefore, with a procedure analogous to that used for
effects we can define the absolute value of the bilinear form! also over transformations,

whence extend the scalar product to transformations. Clearly, since the bilinear form

!(A ,B) will anyway depend only on the informational equivalence classes A and B
of the two transformations, one can have different extensions of the involution ! from
generalized effects to generalized transformations, which work equally well. One has

!(A ) =:A ! ∈ !(A ), (72)

with a transformation A ! := !(A ) belonging to the informational class !(A ). Clearly
one has !2(A ) = !(A ! )∈A , and generally !2(A ) #= A , however, one can legitimately
choose the extension such that it is itself an involution (see also the following for the

choice of the extension). The idea is now that such an involution plays the role of

the complex conjugation, such that the composition with the transposition provides
the adjoint. Inspection of Eq. (71) shows that in order to have the right adjoint of

transformations with respect to the scalar product, we need to define the scalar product
via the bilinear form !(A ′,B′) over transposed transformations. Therefore, we define
the scalar product between generalized effects as follows

!〈B|A 〉! :=!(B′,!(A ′)). (73)

In the following we will equivalently write the entries of the scalar product as general-

ized transformations or as generalized effects, with !〈A |B〉! := !〈A |B〉!, the gener-
alized effects being the actual vectors of the linear factor space of generalized transfor-

mations modulo informational equivalence. Notice that from Eq. (40) it also follows the

nice rule !〈C ◦A |B〉! = !(A ′ ◦C ′,!(B′)), corresponding to the operator-like form
of the action of transformations over effect |C ′ ◦A 〉! = |C ′ ◦A 〉!. We can easily check
the following steps

!〈C ′ ◦A |B〉! =!(A ′ ◦C ,!(B′)) =!(A ′,!(B′)◦C ′)
=|!|(A ′,!(!(B′)◦C ′)).

(74)

Now, for composition-preserving involution (i. e. !(B ◦A ) = B! ◦A ! ) one can easily

verify that

!〈C ′ ◦A |B〉! = |!|(A ′,B′ ◦ !(C ′)) = !〈A |(!(C ′))′ ◦B〉!, (75)
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Theorem 1 Let X be a real finite-dimensional normed space with unitary sphere SX , and let L(X) be the linear
operators from X into itself. It is proved that X is an inner product space if and only if for A,C ∈ L(X)

A⊥C⇔∃u ∈ SX : ||A|| = ||Au||, Au⊥Cu,

where ⊥ denotes Birkhoff orthogonality.

Complex conjugation of generalized transformations

The complex conjugation ! acts linearly over effects. Since generalized transformations are completely assigned by

their action over effect (Heisenberg picture), then ! induces a linear transformation over transformations. Since any

linear action over effects corresponds to a generalized effect1 we will write

!(A ) = A ◦Z , (1)

where the generalized effect Z is an involutive isomorphism

Z ◦Z = I . (2)

The corresponding representation of the complex conjugation over transformations is then given by

!(A ) = Z ◦A ◦Z , (3)

which is evidently composition-preserving.

Theorem 2 (Existence of an infocomplete observable) There always exists a minimal informationally complete ob-

servable.

Proof. By definition PR = SpanR(P), whence there must exists a spanning set for PR that is contained in P. The
maximal number of elements of this set that are linearly independent will constitute a basis, which we suppose has

finite cardinality dim(PR). It remains to be shown that it is possible to have a basis with sum of elements equal to I ,

and that such basis is obtained operationally starting from the available observables from which we constructed P.

1 Just take the linear action over an informationally complete observable, and take any real linear combination: this corresponds to a linear
transformation over effects.

Correspondingly the involution over transformations reads

which is composition preserving, namely
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Theorem 1 Let X be a real finite-dimensional normed space with unitary sphere SX , and let L(X) be the linear
operators from X into itself. It is proved that X is an inner product space if and only if for A,C ∈ L(X)

A⊥C⇔∃u ∈ SX : ||A|| = ||Au||, Au⊥Cu,

where ⊥ denotes Birkhoff orthogonality.

Complex conjugation of generalized transformations

The complex conjugation ! acts linearly over effects. Since generalized transformations are completely assigned by

their action over effect (Heisenberg picture), then ! induces a linear transformation over transformations. Since any

linear action over effects corresponds to a generalized effect1 we will write

!(A ) = A ◦Z , (1)

where the generalized effect Z is an involutive isomorphism

Z ◦Z = I . (2)

The corresponding representation of the complex conjugation over transformations is then given by

!(A ) = Z ◦A ◦Z , (3)

which is evidently composition-preserving, namely

!(B ◦A ) = !(B)◦ !(A ). (4)

Theorem 2 (Existence of an infocomplete observable) There always exists a minimal informationally complete ob-

servable.

Proof. By definition PR = SpanR(P), whence there must exists a spanning set for PR that is contained in P. The
maximal number of elements of this set that are linearly independent will constitute a basis, which we suppose has

finite cardinality dim(PR). It remains to be shown that it is possible to have a basis with sum of elements equal to I ,

and that such basis is obtained operationally starting from the available observables from which we constructed P.

1 Just take the linear action over an informationally complete observable, and take any real linear combination: this corresponds to a linear
transformation over effects.

Extend    to transformations as follows

Definition 2 (ST) Corresponding to the FS (faithful state) ! and a fixed GMICO ! = [ fi] one has the GT T (!)
! ,

namely

A ◦T (!)
! :="

k

!(lk,A )lk. (9)

We will denote by F(!) :=M
T

(!)
!

the corresponding Bloch representation. Notice that the symmetry F(!) = F(!)ᵀ is

guaranteed only in the GMICO representation " = ! .

Definition 3 (Canonical GMICO) A GMICO is canonical for the faithful state! if it puts the corresponding bilinear

form over P in the canonical form

!(ci,c j) = s j#i j. (10)

We will denote by $ the canonical generalized state $A (ci) = (mA )i.

In order to construct a canonical GMICO, take a GMICO " ≡ [ni] which diagonalizes !, namely

n j ◦T (")
! = s j% jn j (11)

which, since [ni] are linearly independent, implies that

!(nk,n j) = #k js j%k, s j = ±1, % j > 0. (12)

Then normalize ni as

ni→ ci =
ni√

|!(ni,ni)|
(13)

and consider the generalized transformation T ($)
! with the new renormalized GMICO, getting in this way

c j ◦T (")
! = s jc j. (14)

One can easily check that the generalized transformation T ($)
! coincides with the complex conjugation, since

!(ci,&(c j)) =!(ci,c j ◦F ) = s j!(ci,c j) = #i js
2
j = #i j. (15)

We will call the GMICO [ci] leading to Eq. (15) the canonical GMICO, and we will say that the faithful state is reduced
to canonical form.

Lemma 2 (Complex conjugation) For canonical GMICO the ST coincides with the generalized transformation Z
of complex conjugation, and it is given by

A ◦Z := A ·F ($)
! ="

k

!(ck,A )ck ≡ &(A ). (16)

For generalized transformations one has

A ◦ &(B) := &(&(A )◦B) = A ◦Z ◦B ◦Z . (17)

Notice that for the identity transformation we have &(I ) = Z ◦Z = I . However, generally

&(I ) = I ◦Z = Z $= I . (18)

Clearly one has &(I ) = I if I is an element of the canonical GMICO with eigenvalue +1.
In the generic Bloch representation " we have

M&(A ) = ZMAZ, Z := F($), Z2 = I (19)

Notice that Z= Zᵀ is guaranteed only in the canonical representation $ .

9.2. Gelfand-Naimark-Segal (GNS) construction of real Hilbert space

structure

Unfortunately, even though the transposition defined in identity (67) works as an

adjoint for the symmetric bilinear form ! as in Eqs. (70) and (71), however, it is
not the right adjoint for the scalar product given by the strictly positive bilinear form

|!|(A ,B) in Eq. (62), due to the presence of the involution ! . In order to introduce
an adjoint for generalized transformations (with respect to the scalar product between

effects) one needs to extend the involution ! to generalized transformations. This can
be easily done, since the bilinear form of the faithful state is already defined over

generalized transformations, and, analogously to effects, also transformations comprise
a linear space, whose dimension is adm(S×2)+ 1, since we postulate the existence of
an informationally faithful state. Therefore, with a procedure analogous to that used for
effects we can define the absolute value of the bilinear form! also over transformations,

whence extend the scalar product to transformations. Clearly, since the bilinear form

!(A ,B) will anyway depend only on the informational equivalence classes A and B
of the two transformations, one can have different extensions of the involution ! from
generalized effects to generalized transformations, which work equally well. One has

!(A ) =:A ! ∈ !(A ), (72)

with a transformation A ! := !(A ) belonging to the informational class !(A ). Clearly
one has !2(A ) = !(A ! )∈A , and generally !2(A ) #= A , however, one can legitimately
choose the extension such that it is itself an involution (see also the following for the

choice of the extension). The idea is now that such an involution plays the role of

the complex conjugation, such that the composition with the transposition provides
the adjoint. Inspection of Eq. (71) shows that in order to have the right adjoint of

transformations with respect to the scalar product, we need to define the scalar product
via the bilinear form !(A ′,B′) over transposed transformations. Therefore, we define
the scalar product between generalized effects as follows

!〈B|A 〉! :=!(B′,!(A ′)). (73)

In the following we will equivalently write the entries of the scalar product as general-

ized transformations or as generalized effects, with !〈A |B〉! := !〈A |B〉!, the gener-
alized effects being the actual vectors of the linear factor space of generalized transfor-

mations modulo informational equivalence. Notice that from Eq. (40) it also follows the

nice rule !〈C ◦A |B〉! = !(A ′ ◦C ′,!(B′)), corresponding to the operator-like form
of the action of transformations over effect |C ′ ◦A 〉! = |C ′ ◦A 〉!. We can easily check
the following steps

!〈C ′ ◦A |B〉! =!(A ′ ◦C ,!(B′)) =!(A ′,!(B′)◦C ′)
=|!|(A ′,!(!(B′)◦C ′)).

(74)

Now, for composition-preserving involution (i. e. !(B ◦A ) = B! ◦A ! ) one can easily

verify that

!〈C ′ ◦A |B〉! = |!|(A ′,B′ ◦ !(C ′)) = !〈A |(!(C ′))′ ◦B〉!, (75)

The involution      corresponds to a generalized transformation

9.2. Gelfand-Naimark-Segal (GNS) construction of real Hilbert space

structure

Unfortunately, even though the transposition defined in identity (67) works as an

adjoint for the symmetric bilinear form ! as in Eqs. (70) and (71), however, it is
not the right adjoint for the scalar product given by the strictly positive bilinear form

|!|(A ,B) in Eq. (62), due to the presence of the involution ! . In order to introduce
an adjoint for generalized transformations (with respect to the scalar product between

effects) one needs to extend the involution ! to generalized transformations. This can
be easily done, since the bilinear form of the faithful state is already defined over

generalized transformations, and, analogously to effects, also transformations comprise
a linear space, whose dimension is adm(S×2)+ 1, since we postulate the existence of
an informationally faithful state. Therefore, with a procedure analogous to that used for
effects we can define the absolute value of the bilinear form! also over transformations,

whence extend the scalar product to transformations. Clearly, since the bilinear form

!(A ,B) will anyway depend only on the informational equivalence classes A and B
of the two transformations, one can have different extensions of the involution ! from
generalized effects to generalized transformations, which work equally well. One has

!(A ) =:A ! ∈ !(A ), (72)

with a transformation A ! := !(A ) belonging to the informational class !(A ). Clearly
one has !2(A ) = !(A ! )∈A , and generally !2(A ) #= A , however, one can legitimately
choose the extension such that it is itself an involution (see also the following for the

choice of the extension). The idea is now that such an involution plays the role of

the complex conjugation, such that the composition with the transposition provides
the adjoint. Inspection of Eq. (71) shows that in order to have the right adjoint of

transformations with respect to the scalar product, we need to define the scalar product
via the bilinear form !(A ′,B′) over transposed transformations. Therefore, we define
the scalar product between generalized effects as follows

!〈B|A 〉! :=!(B′,!(A ′)). (73)

In the following we will equivalently write the entries of the scalar product as general-

ized transformations or as generalized effects, with !〈A |B〉! := !〈A |B〉!, the gener-
alized effects being the actual vectors of the linear factor space of generalized transfor-

mations modulo informational equivalence. Notice that from Eq. (40) it also follows the

nice rule !〈C ◦A |B〉! = !(A ′ ◦C ′,!(B′)), corresponding to the operator-like form
of the action of transformations over effect |C ′ ◦A 〉! = |C ′ ◦A 〉!. We can easily check
the following steps

!〈C ′ ◦A |B〉! =!(A ′ ◦C ,!(B′)) =!(A ′,!(B′)◦C ′)
=|!|(A ′,!(!(B′)◦C ′)).

(74)

Now, for composition-preserving involution (i. e. !(B ◦A ) = B! ◦A ! ) one can easily

verify that

!〈C ′ ◦A |B〉! = |!|(A ′,B′ ◦ !(C ′)) = !〈A |(!(C ′))′ ◦B〉!, (75)
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Theorem 1 Let X be a real finite-dimensional normed space with unitary sphere SX , and let L(X) be the linear
operators from X into itself. It is proved that X is an inner product space if and only if for A,C ∈ L(X)

A⊥C⇔∃u ∈ SX : ||A|| = ||Au||, Au⊥Cu,

where ⊥ denotes Birkhoff orthogonality.

Complex conjugation of generalized transformations

The complex conjugation ! acts linearly over effects. Since generalized transformations are completely assigned by

their action over effect (Heisenberg picture), then ! induces a linear transformation over transformations. Since any

linear action over effects corresponds to a generalized effect1 we will write

!(A ) = A ◦Z , (1)

where the generalized effect Z is an involutive isomorphism

Z ◦Z = I . (2)

The corresponding representation of the complex conjugation over transformations is then given by

!(A ) = Z ◦A ◦Z , (3)

which is evidently composition-preserving.

Theorem 2 (Existence of an infocomplete observable) There always exists a minimal informationally complete ob-

servable.

Proof. By definition PR = SpanR(P), whence there must exists a spanning set for PR that is contained in P. The
maximal number of elements of this set that are linearly independent will constitute a basis, which we suppose has

finite cardinality dim(PR). It remains to be shown that it is possible to have a basis with sum of elements equal to I ,

and that such basis is obtained operationally starting from the available observables from which we constructed P.

1 Just take the linear action over an informationally complete observable, and take any real linear combination: this corresponds to a linear
transformation over effects.
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The complex conjugation

the involution    writes

9.2. Gelfand-Naimark-Segal (GNS) construction of real Hilbert space

structure

Unfortunately, even though the transposition defined in identity (67) works as an

adjoint for the symmetric bilinear form ! as in Eqs. (70) and (71), however, it is
not the right adjoint for the scalar product given by the strictly positive bilinear form

|!|(A ,B) in Eq. (62), due to the presence of the involution ! . In order to introduce
an adjoint for generalized transformations (with respect to the scalar product between

effects) one needs to extend the involution ! to generalized transformations. This can
be easily done, since the bilinear form of the faithful state is already defined over

generalized transformations, and, analogously to effects, also transformations comprise
a linear space, whose dimension is adm(S×2)+ 1, since we postulate the existence of
an informationally faithful state. Therefore, with a procedure analogous to that used for
effects we can define the absolute value of the bilinear form! also over transformations,

whence extend the scalar product to transformations. Clearly, since the bilinear form

!(A ,B) will anyway depend only on the informational equivalence classes A and B
of the two transformations, one can have different extensions of the involution ! from
generalized effects to generalized transformations, which work equally well. One has

!(A ) =:A ! ∈ !(A ), (72)

with a transformation A ! := !(A ) belonging to the informational class !(A ). Clearly
one has !2(A ) = !(A ! )∈A , and generally !2(A ) #= A , however, one can legitimately
choose the extension such that it is itself an involution (see also the following for the

choice of the extension). The idea is now that such an involution plays the role of

the complex conjugation, such that the composition with the transposition provides
the adjoint. Inspection of Eq. (71) shows that in order to have the right adjoint of

transformations with respect to the scalar product, we need to define the scalar product
via the bilinear form !(A ′,B′) over transposed transformations. Therefore, we define
the scalar product between generalized effects as follows

!〈B|A 〉! :=!(B′,!(A ′)). (73)

In the following we will equivalently write the entries of the scalar product as general-

ized transformations or as generalized effects, with !〈A |B〉! := !〈A |B〉!, the gener-
alized effects being the actual vectors of the linear factor space of generalized transfor-

mations modulo informational equivalence. Notice that from Eq. (40) it also follows the

nice rule !〈C ◦A |B〉! = !(A ′ ◦C ′,!(B′)), corresponding to the operator-like form
of the action of transformations over effect |C ′ ◦A 〉! = |C ′ ◦A 〉!. We can easily check
the following steps

!〈C ′ ◦A |B〉! =!(A ′ ◦C ,!(B′)) =!(A ′,!(B′)◦C ′)
=|!|(A ′,!(!(B′)◦C ′)).

(74)

Now, for composition-preserving involution (i. e. !(B ◦A ) = B! ◦A ! ) one can easily

verify that

!〈C ′ ◦A |B〉! = |!|(A ′,B′ ◦ !(C ′)) = !〈A |(!(C ′))′ ◦B〉!, (75)

In term of a canonical basis       for         or which

Definition 2 (ST) Corresponding to the FS (faithful state) ! and a fixed GMICO ! = [ fi] one has the GT T (!)
! ,

namely

A ◦T (!)
! :="

k

!(lk,A )lk. (9)

We will denote by F(!) :=M
T

(!)
!

the corresponding Bloch representation. Notice that the symmetry F(!) = F(!)ᵀ is

guaranteed only in the GMICO representation " = ! .

Definition 3 (Canonical GMICO) A GMICO is canonical for the faithful state! if it puts the corresponding bilinear

form over P in the canonical form

!(ci,c j) = s j#i j. (10)

We will denote by $ the canonical generalized state $A (ci) = (mA )i.

In order to construct a canonical GMICO, take a GMICO " ≡ [ni] which diagonalizes !, namely

n j ◦T (")
! = s j% jn j (11)

which, since [ni] are linearly independent, implies that

!(nk,n j) = #k js j%k, s j = ±1, % j > 0. (12)

Then normalize ni as

ni→ ci =
ni√

|!(ni,ni)|
(13)

and consider the generalized transformation T ($)
! with the new renormalized GMICO, getting in this way

c j ◦T (")
! = s jc j. (14)

One can easily check that the generalized transformation T ($)
! coincides with the complex conjugation, since

!(ci,&(c j)) =!(ci,c j ◦F ) = s j!(ci,c j) = #i js
2
j = #i j. (15)

We will call the GMICO [ci] leading to Eq. (15) the canonical GMICO, and we will say that the faithful state is reduced
to canonical form.

Lemma 2 (Complex conjugation) For canonical GMICO the ST coincides with the generalized transformation Z
of complex conjugation, and it is given by

A ◦Z := A ·F ($)
! ="

k

!(ck,A )ck ≡ &(A ). (16)

For generalized transformations one has

A ◦ &(B) := &(&(A )◦B) = A ◦Z ◦B ◦Z . (17)

Notice that for the identity transformation we have &(I ) = Z ◦Z = I . However, generally

&(I ) = I ◦Z = Z $= I . (18)

Clearly one has &(I ) = I if I is an element of the canonical GMICO with eigenvalue +1.
In the generic Bloch representation " we have

M&(A ) = ZMAZ, Z := F($), Z2 = I (19)

Notice that Z= Zᵀ is guaranteed only in the canonical representation $ .
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Theorem 1 Let X be a real finite-dimensional normed space with unitary sphere SX , and let L(X) be the linear
operators from X into itself. It is proved that X is an inner product space if and only if for A,C ∈ L(X)

A⊥C⇔∃u ∈ SX : ||A|| = ||Au||, Au⊥Cu,

where ⊥ denotes Birkhoff orthogonality.

Complex conjugation of generalized transformations

The complex conjugation ! acts linearly over effects. Since generalized transformations are completely assigned by

their action over effect (Heisenberg picture), then ! induces a linear transformation over transformations. Since any

linear action over effects corresponds to a generalized effect1 we will write

!(A ) = A ◦Z , (1)

where the generalized effect Z is an involutive isomorphism

Z ◦Z = I . (2)

The corresponding representation of the complex conjugation over transformations is then given by

!(A ) = Z ◦A ◦Z , (3)

which is evidently composition-preserving.

Theorem 2 (Existence of an infocomplete observable) There always exists a minimal informationally complete ob-

servable.

Proof. By definition PR = SpanR(P), whence there must exists a spanning set for PR that is contained in P. The
maximal number of elements of this set that are linearly independent will constitute a basis, which we suppose has

finite cardinality dim(PR). It remains to be shown that it is possible to have a basis with sum of elements equal to I ,

and that such basis is obtained operationally starting from the available observables from which we constructed P.

1 Just take the linear action over an informationally complete observable, and take any real linear combination: this corresponds to a linear
transformation over effects.

Definition 2 (ST) Corresponding to the FS (faithful state) ! and a fixed GMICO ! = [ fi] one has the GT T (!)
! ,

namely

A ◦T (!)
! :="

k

!(lk,A )lk. (9)

We will denote by F(!) :=M
T

(!)
!

the corresponding Bloch representation. Notice that the symmetry F(!) = F(!)ᵀ is

guaranteed only in the GMICO representation " = ! .

Definition 3 (Canonical GMICO) A GMICO is canonical for the faithful state! if it puts the corresponding bilinear

form over P in the canonical form

!(ci,c j) = s j#i j. (10)

We will denote by $ the canonical generalized state $A (ci) = (mA )i.

In order to construct a canonical GMICO, take a GMICO " ≡ [ni] which diagonalizes !, namely

n j ◦T (")
! = s j% jn j (11)

which, since [ni] are linearly independent, implies that

!(nk,n j) = #k js j%k, s j = ±1, % j > 0. (12)

Then normalize ni as

ni→ ci =
ni√

|!(ni,ni)|
(13)

and consider the generalized transformation T ($)
! with the new renormalized GMICO, getting in this way

c j ◦T (")
! = s jc j. (14)

One can easily check that the generalized transformation T ($)
! coincides with the complex conjugation, since

!(ci,&(c j)) =!(ci,c j ◦F ) = s j!(ci,c j) = #i js
2
j = #i j. (15)

We will call the GMICO [ci] leading to Eq. (15) the canonical GMICO, and we will say that the faithful state is reduced
to canonical form.

Lemma 2 (Complex conjugation) For canonical GMICO the ST coincides with the generalized transformation Z
of complex conjugation, and it is given by

A ◦Z := A ·F ($)
! ="

k

!(ck,A )ck ≡ &(A ). (16)
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Notice that Z= Zᵀ is guaranteed only in the canonical representation $ .

1.1. Transposition, complex conjugation, and adjoint

In the following we will consider a generic Bloch representation ! . The symmetric bilinear form of the faithful state
in the Bloch representation is given by

!(A ,B) ="
i j

(mA )i!(ni,n j)(mB) j =mA ·F(!)mB, (20)

Using the identity

!(B ◦A ,C ) =!(B,C ◦A ′), (21)

we obtain

mB ·Mᵀ
A F

(!)mC =mB ·F(!)MA ′mC , (22)

namely, since it must be true for allB,C ∈P, one has

MA ′ = F(!)−1Mᵀ
A F

(!), (23)

whereas in the canonical representation ! = " one would have

MA ′ = ZMᵀ
AZ, (24)

Generally one has

M#(A ′) = ZF(!)−1Mᵀ
A F

(!)Z (25)

and

M#(A )′ = F(!)−1ZᵀMᵀ
AZ

ᵀF(!) (26)

and one is guaranteed thatM#(A )′ =M#(A ′) in the canonical representation ! = " , where Z= Zᵀ = F("), whence

MA † = Z2Mᵀ
AZ

2 =Mᵀ
A . (27)

Notice also that #(Z ) = Z ◦Z ◦Z ≡Z , whence

Z ′ = Z †. (28)

Furthermore, in the canonical representation, one has Z= Zᵀ, implying the further symmetry

Z ′ = Z † = Z . (29)

Therefore, independently on representation, we will say that the complex conjugation # is canonical if it satisfy the
identity

Z = Z ′, (30)

This implies the identity

#(A ′) = #(A )′ (31)

since1

#(A )′ = Z ′ ◦A ′ ◦Z ′ = Z ◦A ′ ◦Z = #(A ′). (32)

Eq. (31) guarantees that the adjoint is well defined as A † := #(A ′) = #(A )′.

1 Also:
!(B ◦ #(A ′),C ) =!(B ◦Z ◦A ′ ◦Z ,C ) =!(#(B)◦A ′,#(C )) =!(#(B),#(C )◦A )

and, on the other hand,
!(B ◦ #(A )′,C ) =!(B,C ◦ #(A )) =!(B,C ◦Z ◦A ◦Z ) =!(#(B),#(C )◦A )
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namely,

!〈!(C ′)◦A |B〉! = !〈A |(B′ ◦ !2(C ′))′〉! = !〈A |C ◦B〉!, (76)

whence A † := !(A ′) works as an adjoint for the scalar product, namely

!〈C † ◦A |B〉! = !〈A |C ◦B〉!. (77)

In terms of the adjoint the scalar product can also be written as follows

!〈B|A 〉! =!|2(A †B). (78)

The involution ! is composition-preserving if !(T) = T namely if the involution

preserves physical transformations (this is true for an identity-preserving involution

!(I ) = I which is cone-preserving !(T+
R) = T+

R). Indeed, for !(T) = T one can

consider the involution on transformations induced by the involutive isomorphism

" → "! of the convex set of states S defined as follows

"(!(A )) := "! (A ), ∀" ∈S, ∀A ∈ T. (79)

Consistency of state-reduction "A =⇒ "
!

A with the involution onS corresponds to the

identity

∀" ∈S, ∀A ,B ∈ T, "
!

A (B)≡ "A ! (B! ) (80)

which, along with identity (79) is equivalent to

∀" ∈S, ∀A ,B ∈ T, "(!(B ◦A )) = "(B! ◦A ! ). (81)

The involution ! of S is just the inversion of the principal axes corresponding to

negative eigenvalues of the symmetric bilinear form ! of the faithful state in a minimal

informational complete basis (the so-called Bloch representation: see Ref. [1]).

By taking complex linear combinations of generalized transformations and defining

!(cA ) = c∗!(A ) for c ∈C, we can now extend the adjoint to complex linear combina-
tions of generalized transformations—that we will also call complex-generalized trans-

formations, and will denote their linear space by TC. Analogously we can extend the
adjoint to complex linear combinations of generalized effects—or complex-generalized

effects, that we will denote by PC. The complex algebra TC (that we will also denote
by A) is a Banach space, and likewise PC is a Banach space, and they are reciprocally
dual.

We have now a scalar product !〈A |B〉! between transformations and an adjoint of
transformations with respect to such scalar product. Symmetry and positivity imply the

bounding

!〈A |B〉! ! ||A ||!||B||!, (82)

where we introduced the norm induced by the scalar product

||A ||2!
.= !〈A |A 〉!. (83)

The bounding (82) is obtained from positivity of !〈A − zB|A − zB〉! for every z ∈C.
Using the bounding (82) for the scalar product !〈A ′ ◦A ◦X |X 〉! we also see that the
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Theorem 1 Let X be a real finite-dimensional normed space with unitary sphere SX , and let L(X) be the linear
operators from X into itself. It is proved that X is an inner product space if and only if for A,C ∈ L(X)

A⊥C⇔∃u ∈ SX : ||A|| = ||Au||, Au⊥Cu,

where ⊥ denotes Birkhoff orthogonality.

Theorem 2 (Existence of an infocomplete observable) There always exists a minimal informationally complete ob-

servable.

Proof. By definition PR = SpanR(P), whence there must exists a spanning set for PR that is contained in P. The
maximal number of elements of this set that are linearly independent will constitute a basis, which we suppose has

finite cardinality dim(PR). It remains to be shown that it is possible to have a basis with sum of elements equal to I ,

and that such basis is obtained operationally starting from the available observables from which we constructed P.
If all observables are uninformative (i. e. with all effects proportional to I ) , thenPR = Span(I ), I is a minimal

infocomplete observable, and the statement of the theorem is proved. Otherwise, there exists at least an observable

E = {li} with n! 2 linearly independent effects. If this is the only observable, again the theorem is proved. Otherwise,
take a new binary observable E2 = {x,y} from the set of available ones (you can take different binary observables out
of a given observable with more than two outcomes by summing up effects to yes-no observables). If x ∈ Span(E)
discard it. If x )∈ Span(E), then necessarily also y )∈ Span(E) [since if there exists coefficients "i such that y= "i"ili,
then x= "i(1−"i)li]. Now, consider the observable

E′ =
{
1
2
y, 1
2
(l1+ x), 1

2
l2, . . . , ln

}
(1)

(which operationally corresponds to the random choice between the observables E and E2 with probability 1
2
, and

with the events corresponding to x and l1 made indistinguishable). This new observable has now |E′| = n+1 linearly
independent effects (since y is linearly independent on the li and one has y = "ni=1 li − x = "ni=2 li + l1 − x). By

iterating the above procedure we reach |E′| = dim(PR), and we have so realized an apparatus that measures a minimal
informationally complete observable."

Theorem 3 (Convex set of dynamical faithful states) If a faithful state is mixed, each component state (i. e. each

state in its possible expansions as convex combination) must be faithful.

The adjoint
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namely,
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!〈C † ◦A |B〉! = !〈A |C ◦B〉!. (77)

In terms of the adjoint the scalar product can also be written as follows

!〈B|A 〉! =!|2(A †B). (78)

The involution ! is composition-preserving if !(T) = T namely if the involution

preserves physical transformations (this is true for an identity-preserving involution

!(I ) = I which is cone-preserving !(T+
R) = T+

R). Indeed, for !(T) = T one can

consider the involution on transformations induced by the involutive isomorphism

" → "! of the convex set of states S defined as follows

"(!(A )) := "! (A ), ∀" ∈S, ∀A ∈ T. (79)

Consistency of state-reduction "A =⇒ "
!

A with the involution onS corresponds to the

identity

∀" ∈S, ∀A ,B ∈ T, "
!

A (B)≡ "A ! (B! ) (80)

which, along with identity (79) is equivalent to

∀" ∈S, ∀A ,B ∈ T, "(!(B ◦A )) = "(B! ◦A ! ). (81)

The involution ! of S is just the inversion of the principal axes corresponding to

negative eigenvalues of the symmetric bilinear form ! of the faithful state in a minimal

informational complete basis (the so-called Bloch representation: see Ref. [1]).

By taking complex linear combinations of generalized transformations and defining

!(cA ) = c∗!(A ) for c ∈C, we can now extend the adjoint to complex linear combina-
tions of generalized transformations—that we will also call complex-generalized trans-

formations, and will denote their linear space by TC. Analogously we can extend the
adjoint to complex linear combinations of generalized effects—or complex-generalized

effects, that we will denote by PC. The complex algebra TC (that we will also denote
by A) is a Banach space, and likewise PC is a Banach space, and they are reciprocally
dual.

We have now a scalar product !〈A |B〉! between transformations and an adjoint of
transformations with respect to such scalar product. Symmetry and positivity imply the

bounding

!〈A |B〉! ! ||A ||!||B||!, (82)

where we introduced the norm induced by the scalar product

||A ||2!
.= !〈A |A 〉!. (83)

The bounding (82) is obtained from positivity of !〈A − zB|A − zB〉! for every z ∈C.
Using the bounding (82) for the scalar product !〈A ′ ◦A ◦X |X 〉! we also see that the
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Representations        of transformations                over effects 

one induced by the scalar product. The Riesz theorem implies that the affine space of
generalized propensities (linear real forms over states or, equivalently, over generalized
weights) is itself a real Hilbert space isomorphic to H.

Gelfand-Naimark-Segal (GNS) construction of real Hilbert space
structure

With the introduction of a generalized adjoint given in Definition in 24 corresponding
to the operational concept of twin involution, the real algebra A of generalized trans-
formations becomes a real ∗-algebra. Then each real positive form ϕ over the ∗-algebra
A—e. g. the local state ϕ .= Φ|1 of a faithful symmetric state Φ—defines a Hilbert space
Hϕ and a representation πϕ of A by linear operators acting on Hϕ . Indeed, A is a linear
space over R and ϕ defines a symmetric (positive semi-definite) scalar product on A as
follows

ϕ〈A |B〉ϕ
.= ϕ(A ′ ◦B)≡ Φ(A ′,B′), A ,B ∈A, (82)

where we remind the use of notation defined in Eq. (9). Indeed, condition a) of Definition
25 implies the symmetry ϕ〈B|A 〉ϕ = ϕ〈A |B〉ϕ , whereas condition b) implies the
positivity ϕ〈A |A 〉ϕ ≥ 0. Also, it is easy to check that

ϕ〈C ′ ◦A |B〉ϕ = ϕ〈A |C ◦B〉ϕ , (83)

as it can be derived from the definition (82) as follows

ϕ〈C ′ ◦A |B〉ϕ =Φ(A ′ ◦C ,B′) = Φ̃C ,I (A ′,B′) = Φ̃I ,C ′(A ′,B′)
=Φ(A ′,B′ ◦C ′) = ϕ〈A |C ◦B〉ϕ

(84)

Symmetry and positivity imply the bounding

ϕ〈A |B〉ϕ ≤
√

ϕ〈A |A 〉ϕ ϕ〈B|B〉ϕ . (85)

Using the bounding (85) for the scalar product ϕ〈A ′ ◦A ◦X |X 〉ϕ we can easily see
that the set I⊆A consisting of all elements X ∈A with ϕ(X ′ ◦X ) = 0 is a left ideal,
i. e. a linear subspace of A which is stable under multiplication by any element of A
on the left (i. e. X ∈ I, A ∈ A implies A ◦X ∈ I). The set of equivalence classes
A/I thus becomes a real pre-Hilbert space equipped with a symmetric scalar product,
an element of the space being an equivalence class. Notice that the scalar product does
not depend on the algebraic representatives chosen for classes, namely

ϕ〈{A }|{B}〉ϕ = ϕ〈A |B〉ϕ , ∀A ∈ {A }, ∀B ∈ {B}, (86)

{A } denoting the equivalence class containing A . For the equivalence classes we can
define the norm

||X ||2ϕ
.= ϕ〈X |X 〉ϕ , X ∈A/I. (87)

We keep the subindex ϕ for the norm in order to distinguish it from the previously
defined norm (22). The Hilbert space is then obtained by completion of A/I in the

norm topology (the Hilbert space closure is not operationally relevant: see Remark 5).
The product in A defines the action of A on the vectors in A/I, by associating to each
element A ∈ A the linear operator πϕ(A ) defined on the dense domain A/I ⊆ Hϕ as
follows

πϕ(A )|X 〉ϕ
.= |{A ◦B}〉ϕ , X = {B}. (88)

The norm (87) can be extended to a seminorm on the whole A as follows

||A ||ϕ
.= ||{A }||ϕ =

√
ϕ〈{A }|{A }〉ϕ . (89)

On the other hand, on A/I one can easily verify that || · ||ϕ indeed satisfies all axioms of
norm, since clearly ||A ||ϕ = 0 implies that A ∈ I, corresponding to the null vector, and

||{λA }||ϕ = ||λ{A }||ϕ = λ ||{A }||ϕ ,

||{A +B}||ϕ = ||{A }+{B}||ϕ ≤ ||{A }||ϕ + ||{B}||ϕ .
(90)

If A were a Banach ∗-algebra the domain of definition of πϕ(A ) could be easily
extended to the whole Hϕ by continuity, since to a Cauchy sequence Xn ∈ A/I there
correspond Cauchy sequences A Bn, Bn ∈Xn as a consequence of the norm bounding

||πϕ(A )Xn−πϕ(A )Xm||ϕ =||{A (Bn−Bm)}||ϕ = ||A (Bn−Bm)||ϕ
≤||A ||ϕ ||Bn−Bm||ϕ .

(91)

However, the last step is not necessarily true, since conditions ||B◦A ||ϕ ≤ ||B||ϕ ||A ||ϕ ,
and ||A ′||ϕ = ||A ||ϕ do not necessarily hold, whence the possibility of representing
generalized transformations as operators over Hϕ remains an open problem for the
infinite dimensional case. Also, the use of the seminorm (30) closure is not of much
help, since one can just prove that

||A ||ϕ ≤ ||A ′||, ||A ||2ϕ ≤ ||A ′||||A ||, (92)

but we cannot prove a bounding ||B||≤ ||X ||ϕ , B ∈X . The first bound in Eq. (92) can
be derived as follows

||A ||ϕ = Φ(A ′,A ′) = ΦI ,A ′(A ′,I )Φ(I ,A ′) = ΦI ,A ′|1(A ′)Φ|2(A ′)≤ ||A ′||2,
(93)

where Φ is any faithful state corresponding to ϕ . The second bound in Eq. (92) is implied
by the inequality

||A ||2ϕ = ϕ(A ′ ◦A )≤ ||A ′A ||≤ ||A ′||||A ||. (94)

Also we do not have that ||A ′|| = ||A ||, not even ||A ′||≤ ||A ||.
In terms of the faithful state Φ and of its Bloch representation the scalar product (82)

rewrites as

ϕ〈A |B〉ϕ = Φ(A ′,B′) = (A′FB′τ)00 = (FτAτFτ−1BF)00. (95)

Remark 10 (Pairing between states and propensities) From the definition (82) of the
scalar product we have

ϕ〈A ′|B〉ϕ = ϕB(A )ϕ(B) = ΦI ,B′ |1(A ), (96)

πΦ(A )|B〉Φ
.
= |A ◦ B〉Φ

πΦ

GNS construction for representing 
transformations

The Born rule rewrites in the form of pairing:

for the scalar product it follows that the set I ⊆ A of zero norm elements X ∈ A is a
left ideal (i. e. X ∈ I, A ∈ A implies A ◦ X ∈ I), whence using our scalar product
defined as Φ〈A |B〉Φ = Φ2(A † ◦ B) we can represent elements of A (A ≡ TC are the
generalized complex transformations) as operators over the pre-Hilbert space of effects
and make A a C∗-algebra. We just need to introduce the norm on transformations as
||A ||Φ := supB∈PC,||B||Φ!1 ||A ◦B||Φ. Completion of A/I ' PC in the norm topology will
make it a Hilbert space that we will denote by HΦ. Such completion also implies that
TC ' A can be completed to a complex C∗-algebra (i. e. a Banach algebra satisfying the
identity ||A † ◦A || = ||A ||2), as it can be easily proved by standard techniques [1].

The product in A defines the action of A on the vectors in A/I, by associating to
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as πΦ(A )|B〉Φ
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= |A ◦B〉Φ. The fact that A is a Banach algebra also implies that the

domain of definition of πΦ(A ) can be easily extended to the whole HΦ by continuity.
From the definition of the scalar product, and using the fact that the state Φ is also
preparationally faithful according to Postulate 2, the Born rule can be written in the GNS
representation as ω(A ) = Φ〈A †|#〉Φ, with representation of state # = T ′

ω/Φ(T ω,I )
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An explicit representation

1.2. The quantum case

We will use the same notation for the generalized transformations and for the corresponding CP maps. Similarly we

will denote the state and its corresponding density operator with the same letter. For example, we will write

!(A ) = Tr[A (!)] = Tr

[
!
n

An!A
†
n

]
=: Tr[!PA ], PA =!

n

A†nAn. (34)

We will now construct explicitly the C∗-algebra TC of c-generalized transformations for some faithful symmetric
quantum states.

1.2.1. The maximally entangled state of a qudit

The maximally entangled state of a qudit

"= d−1|I〉〉〈〈I|, (35)

is clearly faithful, both dynamically and preparationally. In fact, the fact that it is dynamically faithful is just the

equivalent to the Choi-Jamiolowski representation of CP maps. On the other hand, any pure joint state d−
1
2 |S〉〉 can

be written as (S⊗ I)d−
1
2 |I〉〉 with d−1 Tr[S†S] = 1, S = S · S being a generalized transformation. The state is also

symmetric, since for physical transformations we have

"(A ,B) = 1
d
Tr[A ⊗B(")] = 1

d!
nm

Tr[|AmBᵀ
n〉〉〈〈AmBᵀ

n |] = 1
d!
nm

〈〈AmBᵀ
n |AmBᵀ

n〉〉= 1
d!
nm

Tr[A†mAmB
ᵀ
nB

∗
n]

= 1
d
Tr[PA P∗B],

(36)

and for generalized transformation A PA is selfadjoint, whence

"(A ,B) = 1
d
Tr[PA P

ᵀ
B] = Tr[PBP

ᵀ
A ] ="(B,A ). (37)

We now construct a canonical GMICO. Consider the following selfadjoint operators

Xkl = 1√
2
(|k〉〈l|+ |l〉〈k|), Ykl = i√

2
(|k〉〈l|− |l〉〈k|), k < l, Zl = |l〉〈l|. (38)

One has

Tr[XklXk′l′ ] = "kl′"lk′ +"kk′"ll′ ≡ "kk′"ll′ . (39)

since for k = l′ > k′ one has k′ = l > k. Similarly we have Tr[YklYk′l′ ] = "kk′"ll′ , and Tr[ZkZk′ ] = "kk′ , and, moreover

Tr[XklYk′l′ ] = Tr[ZlYk′l′ ] = Tr[ZlXk′l′ ] = 0. (40)

Therefore, the following is a GMICO

[n j] = (Z0,Z1, . . . ,Zd−1,X01,X02, . . . ,X0,d−1,X12,X13, . . . ,X1,d−1, . . .Xd−2,d−1,Y01, . . . ,Yd,d−1)

=: 1√
d
(W0,W1, . . . ,Wd2−1),

(41)

with canonical form

"(ni,n j) = 1
d
Tr[WiW

∗
j ] = "i js j, (42)

Ykl (0 " k < l " d − 1) spanning the eigenspace with negative eigenvalue of the symmetric form ". It follows
that the transformation # corresponds to the complex conjugation $(P) = P∗. We can construct the Kraus form
for the corresponding generalized transformation Z , passing through the construction of the corresponding Choi-

Jamiolowski operator

R# = Z ⊗I (|I〉〉〈〈I|) = Z ⊗I

(
1
d!

j

W ∗
j ⊗Wj

)
= 1

d!
j

Wj⊗Wj = 1
d!

j

W
†
j ⊗Wj = E, (43)
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with canonical form
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∗
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Ykl (0 " k < l " d − 1) spanning the eigenspace with negative eigenvalue of the symmetric form ". It follows
that the transformation # corresponds to the complex conjugation $(P) = P∗. We can construct the Kraus form
for the corresponding generalized transformation Z , passing through the construction of the corresponding Choi-

Jamiolowski operator

R# = Z ⊗I (|I〉〉〈〈I|) = Z ⊗I

(
1
d!

j

W ∗
j ⊗Wj

)
= 1

d!
j

Wj⊗Wj = 1
d!

j

W
†
j ⊗Wj = E, (43)

which is just the unitary swap operator E, with eigenvectors

E|Wj〉〉= |W ∗
j 〉〉= s j|Wj〉〉, (44)

corresponding to the Kraus form for the generalized transformation Z

Z =!
j

s jWj ·Wj. (45)

We now show that the GNS representation of transformations over effects is equivalent to the following scalar

product

〈A |B〉 := 1
d
〈〈I|Ǎ†B̌|I〉〉, (46)

where we remind that Ǎ := !n An⊗A∗n. We can check the identity

〈A |B〉 :="(A †,B′) = Tr[A †⊗B′(")] = 1
d!
nm

Tr[|A†mBn〉〉〈〈A†mBn|] = 1
d!
nm

〈〈A†mBn|A†mBn〉〉

= 1
d!
nm

〈〈I|(I⊗Aᵀ
mB

∗
n)(A

†
mBn⊗ I)|I〉〉= 1

d!
nm

〈〈I|(A†m⊗Aᵀ
m)(Bn⊗B∗n)|I〉〉= 1

d
〈〈I|Ǎ†B̌|I〉〉

= 1
d
Tr

[
!
m

AmA
†
m!

n

BnB
†
n

]
= 1

d
Tr[P̃∗A P̃∗B]

(47)

whence we will work out this as the definition of scalar product. The GNS representation of transformation over effects

will be

Ǎ|I〉〉= |A ᵀ(I)〉〉= |P∗A 〉〉=: |A 〉, (48)

Tr[A ⊗B(")] = 1
d
Tr[PA P∗B] (49)

A ᵀ(PB) = Tr1[(PB⊗ I)R!A ] (50)

R!A = A ⊗I (E) (51)

A A

A !n An ·A†n !n A
†
nAn =: P

A ′ !n A
ᵀ
n ·A∗n !n A

∗
nA

ᵀ
n := P̃

"(A ) := A ∗ !n A
∗
n ·Aᵀ

n !n A
ᵀ
nA

∗
n := P∗

"(A ′)≡A † !n A
†
n ·An !n AnA

†
n := P̃∗

The GNS representation of the generalized transformation " is given by

Ř" = (R!" E)! = (E!E)! = (E! )! = E (52)

1.2.2. The maximally entangled state of a qubit

It is instructive to restrict the previous example to the qubit, with the set of four Pauli matrices #0 ≡ I,#x,#y,#z
making a GMICO

n j ⇐⇒ 1√
2
# j, (53)

corresponding to the canonical form

"(ni,n j)
.= 1
2
Tr[#i#∗j ] =





1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1



 := $i js j. (54)
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Z =!
j

s jWj ·Wj. (45)

We now show that the GNS representation of transformations over effects is equivalent to the following scalar

product

〈A |B〉 := 1
d
〈〈I|Ǎ†B̌|I〉〉, (46)

where we remind that Ǎ := !n An⊗A∗n. We can check the identity
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whence we will work out this as the definition of scalar product. The GNS representation of transformation over effects

will be

Ǎ|I〉〉= |A ᵀ(I)〉〉= |P∗A 〉〉=: |A 〉, (48)

Tr[A ⊗B(")] = 1
d
Tr[PA P∗B] (49)

A ᵀ(PB) = Tr1[(PB⊗ I)R!A ] (50)

R!A = A ⊗I (E) (51)
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The GNS representation of the generalized transformation " is given by

Ř" = (R!" E)! = (E!E)! = (E! )! = E (52)

1.2.2. The maximally entangled state of a qubit

It is instructive to restrict the previous example to the qubit, with the set of four Pauli matrices #0 ≡ I,#x,#y,#z
making a GMICO

n j ⇐⇒ 1√
2
# j, (53)

corresponding to the canonical form
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which is just the unitary swap operator E, with eigenvectors

E|Wj〉〉= |W ∗
j 〉〉= s j|Wj〉〉, (44)

corresponding to the Kraus form for the generalized transformation Z
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whence we will work out this as the definition of scalar product. The GNS representation of transformation over effects

will be

Ǎ|I〉〉= |A ᵀ(I)〉〉= |P∗A 〉〉=: |A 〉, (48)

Tr[A ⊗B(")] = 1
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R!A = A ⊗I (E) (51)

A A

A !n An ·A†n !n A
†
nAn =: P

A ′ !n A
ᵀ
n ·A∗n !n A

∗
nA

ᵀ
n := P̃

"(A ) := A ∗ !n A
∗
n ·Aᵀ

n !n A
ᵀ
nA

∗
n := P∗

"(A ′)≡A † !n A
†
n ·An !n AnA

†
n := P̃∗

The GNS representation of the generalized transformation " is given by

Ř" = (R!" E)! = (E!E)! = (E! )! = E (52)

1.2.2. The maximally entangled state of a qubit

It is instructive to restrict the previous example to the qubit, with the set of four Pauli matrices #0 ≡ I,#x,#y,#z
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which is just the unitary swap operator E, with eigenvectors

E|Wj〉〉= |W ∗
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(47)

whence we will work out this as the definition of scalar product. The GNS representation of transformation over effects

will be

Ǎ|I〉〉= |A ᵀ(I)〉〉= |P∗A 〉〉=: |A 〉, (48)

Tr[A ⊗B(")] = 1
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A ᵀ(PB) = Tr1[(PB⊗ I)R!A ] (50)
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The GNS representation of the generalized transformation " is given by

Ř" = (R!" E)! = (E!E)! = (E! )! = E (52)

1.2.2. The maximally entangled state of a qubit

It is instructive to restrict the previous example to the qubit, with the set of four Pauli matrices #0 ≡ I,#x,#y,#z
making a GMICO
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corresponding to the canonical form
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which is just the unitary swap operator E, with eigenvectors

E|Wj〉〉= |W ∗
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corresponding to the Kraus form for the generalized transformation Z

Z =!
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(47)

whence we will work out this as the definition of scalar product. The GNS representation of transformation over effects

will be

Ǎ|I〉〉= |A ᵀ(I)〉〉= |P∗A 〉〉=: |A 〉, (48)

Tr[A ⊗B(")] = 1
d
Tr[PA P∗B] (49)

A ᵀ(PB) = Tr1[(PB⊗ I)R!A ] (50)

R!A = A ⊗I (E) (51)
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The GNS representation of the generalized transformation " is given by

Ř" = (R!" E)! = (E!E)! = (E! )! = E (52)

1.2.2. The maximally entangled state of a qubit

It is instructive to restrict the previous example to the qubit, with the set of four Pauli matrices #0 ≡ I,#x,#y,#z
making a GMICO

n j ⇐⇒ 1√
2
# j, (53)

corresponding to the canonical form

"(ni,n j)
.= 1
2
Tr[#i#∗j ] =





1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1



 := $i js j. (54)

which is just the unitary swap operator E, with eigenvectors

E|Wj〉〉= |W ∗
j 〉〉= s j|Wj〉〉, (44)

corresponding to the Kraus form for the generalized transformation Z

Z =!
j

s jWj ·Wj. (45)

We now show that the GNS representation of transformations over effects is equivalent to the following scalar

product

〈A |B〉 := 1
d
〈〈I|Ǎ†B̌|I〉〉, (46)

where we remind that Ǎ := !n An⊗A∗n. We can check the identity
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d!
nm
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= 1
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Tr[P̃∗A P̃∗B]

(47)

whence we will work out this as the definition of scalar product. The GNS representation of transformation over effects

will be

Ǎ|I〉〉= |A †(I)〉〉= |P̃∗A 〉〉=: |A 〉, (48)

Tr[A ⊗B(")] = 1
d
Tr[PA P∗B] (49)

A ᵀ(PB) = Tr1[(PB⊗ I)R!A ] (50)

R!A = A ⊗I (E) (51)
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The GNS representation of the generalized transformation " is given by

Ř" = (R!" E)! = (E!E)! = (E! )! = E (52)

1.2.2. The maximally entangled state of a qubit

It is instructive to restrict the previous example to the qubit, with the set of four Pauli matrices #0 ≡ I,#x,#y,#z
making a canonical GMICO

c j ⇐⇒ 1√
2
# j, (53)

corresponding to the canonical form

"(ci,c j)
.= 1
2
Tr[#i#∗j ] =


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1 0 0 0
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0 0 −1 0

0 0 0 1



 := $i js j. (54)

44



An explicit representation

1.2. The quantum case

We will use the same notation for the generalized transformations and for the corresponding CP maps. Similarly we

will denote the state and its corresponding density operator with the same letter. For example, we will write

!(A ) = Tr[A (!)] = Tr

[
!
n

An!A
†
n

]
=: Tr[!PA ], PA =!

n

A†nAn. (34)

We will now construct explicitly the C∗-algebra TC of c-generalized transformations for some faithful symmetric
quantum states.

1.2.1. The maximally entangled state of a qudit

The maximally entangled state of a qudit

"= d−1|I〉〉〈〈I|, (35)

is clearly faithful, both dynamically and preparationally. In fact, the fact that it is dynamically faithful is just the

equivalent to the Choi-Jamiolowski representation of CP maps. On the other hand, any pure joint state d−
1
2 |S〉〉 can

be written as (S⊗ I)d−
1
2 |I〉〉 with d−1 Tr[S†S] = 1, S = S · S being a generalized transformation. The state is also

symmetric, since for physical transformations we have

"(A ,B) = 1
d
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ᵀ
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∗
n]
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d
Tr[PA P∗B],

(36)

and for generalized transformation A PA is selfadjoint, whence

"(A ,B) = 1
d
Tr[PA P

ᵀ
B] = Tr[PBP

ᵀ
A ] ="(B,A ). (37)

We now construct a canonical GMICO. Consider the following selfadjoint operators

Xkl = 1√
2
(|k〉〈l|+ |l〉〈k|), Ykl = i√

2
(|k〉〈l|− |l〉〈k|), k < l, Zl = |l〉〈l|. (38)

One has

Tr[XklXk′l′ ] = "kl′"lk′ +"kk′"ll′ ≡ "kk′"ll′ . (39)

since for k = l′ > k′ one has k′ = l > k. Similarly we have Tr[YklYk′l′ ] = "kk′"ll′ , and Tr[ZkZk′ ] = "kk′ , and, moreover

Tr[XklYk′l′ ] = Tr[ZlYk′l′ ] = Tr[ZlXk′l′ ] = 0. (40)

Therefore, the following is a GMICO

[c j] = (Z0,Z1, . . . ,Zd−1,X01,X02, . . . ,X0,d−1,X12,X13, . . . ,X1,d−1, . . .Xd−2,d−1,Y01, . . . ,Yd,d−1)

=: 1√
d
(W0,W1, . . . ,Wd2−1),

(41)

with canonical form

"(ci,c j) = 1
d
Tr[WiW

∗
j ] = "i js j, (42)

Ykl (0 " k < l " d − 1) spanning the eigenspace with negative eigenvalue of the symmetric form ". It follows
that the transformation # corresponds to the complex conjugation $(P) = P∗. We can construct the Kraus form
for the corresponding generalized transformation Z , passing through the construction of the corresponding Choi-

Jamiolowski operator

R# = Z ⊗I (|I〉〉〈〈I|) = Z ⊗I

(
1
d!

j

W ∗
j ⊗Wj

)
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1.2. The quantum case

We will use the same notation for the generalized transformations and for the corresponding CP maps. Similarly we

will denote the state and its corresponding density operator with the same letter. For example, we will write

!(A ) = Tr[A (!)] = Tr
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An!A
†
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]
=: Tr[!PA ], PA =!
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A†nAn. (34)

We will now construct explicitly the C∗-algebra TC of c-generalized transformations for some faithful symmetric
quantum states.

1.2.1. The maximally entangled state of a qudit

The maximally entangled state of a qudit

"= d−1|I〉〉〈〈I|, (35)

is clearly faithful, both dynamically and preparationally. In fact, the fact that it is dynamically faithful is just the

equivalent to the Choi-Jamiolowski representation of CP maps. On the other hand, any pure joint state d−
1
2 |S〉〉 can

be written as (S⊗ I)d−
1
2 |I〉〉 with d−1 Tr[S†S] = 1, S = S · S being a generalized transformation. The state is also

symmetric, since for physical transformations we have
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and for generalized transformation A PA is selfadjoint, whence

"(A ,B) = 1
d
Tr[PA P

ᵀ
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A ] ="(B,A ). (37)

We now construct a canonical GMICO. Consider the following selfadjoint operators
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(|k〉〈l|− |l〉〈k|), k < l, Zl = |l〉〈l|. (38)

One has

Tr[XklXk′l′ ] = "kl′"lk′ +"kk′"ll′ ≡ "kk′"ll′ . (39)

since for k = l′ > k′ one has k′ = l > k. Similarly we have Tr[YklYk′l′ ] = "kk′"ll′ , and Tr[ZkZk′ ] = "kk′ , and, moreover

Tr[XklYk′l′ ] = Tr[ZlYk′l′ ] = Tr[ZlXk′l′ ] = 0. (40)

Therefore, the following is a GMICO

[c j] = (Z0,Z1, . . . ,Zd−1,X01,X02, . . . ,X0,d−1,X12,X13, . . . ,X1,d−1, . . .Xd−2,d−1,Y01, . . . ,Yd,d−1)

=: 1√
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(W0,W1, . . . ,Wd2−1),

(41)

with canonical form

"(ci,c j) = 1
d
Tr[WiW

∗
j ] = "i js j, (42)

Ykl (0 " k < l " d − 1) spanning the eigenspace with negative eigenvalue of the symmetric form ". It follows
that the transformation # corresponds to the complex conjugation $(P) = P∗. We can construct the Kraus form
for the corresponding generalized transformation Z , passing through the construction of the corresponding Choi-

Jamiolowski operator

R# = Z ⊗I (|I〉〉〈〈I|) = Z ⊗I

(
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= 1
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which is just the unitary swap operator E, with eigenvectors

E|Wj〉〉= |W ∗
j 〉〉= s j|Wj〉〉, (44)

corresponding to the Kraus form for the generalized transformation Z

Z =!
j

s jWj ·Wj. (45)

We now show that the GNS representation of transformations over effects is equivalent to the following scalar

product

〈A |B〉 := 1
d
〈〈I|Ǎ†B̌|I〉〉, (46)

where we remind that Ǎ := !n An⊗A∗n. We can check the identity
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whence we will work out this as the definition of scalar product. The GNS representation of transformation over effects

will be
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The GNS representation of the generalized transformation " is given by

Ř" = (R!" E)! = (E!E)! = (E! )! = E (52)

1.2.2. The maximally entangled state of a qubit

It is instructive to restrict the previous example to the qubit, with the set of four Pauli matrices #0 ≡ I,#x,#y,#z
making a canonical GMICO
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which is just the unitary swap operator E, with eigenvectors
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corresponding to the Kraus form for the generalized transformation Z

Z =!
j

s jWj ·Wj. (45)

We now show that the GNS representation of transformations over effects is equivalent to the following scalar
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whence we will work out this as the definition of scalar product. The GNS representation of transformation over effects

will be
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R!A = A ⊗I (E) (51)

A A

A !n An ·A†n !n A
†
nAn =: P

A ′ !n A
ᵀ
n ·A∗n !n A

∗
nA

ᵀ
n := P̃

"(A ) := A ∗ !n A
∗
n ·Aᵀ

n !n A
ᵀ
nA

∗
n := P∗

"(A ′)≡A † !n A
†
n ·An !n AnA

†
n := P̃∗

The GNS representation of the generalized transformation " is given by
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1.2.2. The maximally entangled state of a qubit
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〈〈I|Ǎ†B̌|I〉〉, (46)
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〈〈I|Ǎ†B̌|I〉〉, (46)
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〈〈I|Ǎ†B̌|I〉〉

= 1
d
Tr

[
!
m

AmA
†
m!

n

BnB
†
n

]
= 1

d
Tr[P̃∗A P̃∗B]

(47)

whence we will work out this as the definition of scalar product. The GNS representation of transformation over effects
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It is instructive to restrict the previous example to the qubit, with the set of four Pauli matrices #0 ≡ I,#x,#y,#z
making a canonical GMICO
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The C*-algebra of transformations is isometrically 
*-homomorphic to the usual operator C*-algebra.

Then the GNS representation is irreducible if the 
faithful state (cyclic vector) is pure, corresponding 
to QM

The representation is abelian if the faithful state is 
separable corresponding to CM

Quantum vs Classical C*-algebras 
(in progress)
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C*-algebra of transformations

Now, for x in a Banach space and T a map on the Banach space one has

||Tx|| =
∣∣∣∣

∣∣∣∣T
x

||x||

∣∣∣∣

∣∣∣∣ ||x|| ! sup
||y||=1

||Ty||||x|| ! sup
||y||!1

||Ty||||x|| =: ||T ||||x||, (35)

namely

||Tx|| ! ||T ||||x||, (36)

and applying the last identity twice one has for operators on the Banach space

||AB|| ! ||A||||B||, (37)

since

||AB|| = sup
||x||!1

||ABx|| ! sup
||x||!1

||A||||B||||x|| = ||A||||B||. (38)

This implies that ||B ◦A || ! ||B||||A ||, whence the generalized transformations make a Banach algebra.

DIMENSIONALITY THEOREMS

=⇒

state-effect duality dim(P) = dim(S)+1 (D1)

P2 (prep. faith.) dim(T) = dim(S×2)+1 (T)

(T)+GNS dim(S×2)+1= (dim(S)+1)2 (T4)≡(D2)
P3 (loc. observability) dim(S12) = dim(S1)dim(S2)+dim(S1)+dim(S2) (D2)

P4 (infoc. as joint discr.) dim(S) = dim#(S×2)−1 (D4)

(D2)+(D4) dim(S×2) = dim#(S×2)2−1 (D24)

(T)+(D24) dim(T) = dim#(S×2)2 (T2)

Faithful GNS dim(TC) = dim(PC)2 (T3)

dim(TC) = dim(TR), dim(PC) = dim(PR)

(T3)+(T2)+(D4)+(D2) dim(PR) = dim#(S×2) =
√
dim(S×2)+1= dim(S)+1 (T3)

(D24) dim(S) = dim#(S)2−1 (D24b)

(D4+D24b) dim#(S×2) = dim#(S)2 (⊗)
(D1)+(D24b) dim(P) = dim#(S)2 (P)

New things

Remark 2 (No conditioning from the future) Ozawa noticed that when defining conditional states we are actually

assuming normalization for every complete experiment, namely that

!
B j∈B

!(B j ◦A ) = !(A ), ∀B, ∀A . (39)

This is a kind of equivalent to a sort of “no-signaling from the future”.

This is relevant to define the Heisenberg picture. Indeed, one has !A (B) ≡ !A (B), since !A is a state by the

no-signaling from the future. This implies that !(B ◦A ) = !(B ◦A ) which gives the chaining rule

B ◦A = B ◦A (40)
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Open problems

                      Existence of     (i.e. existence of the decomposition 
of the Banach space        into positive and negative parts for the 
symmetric real form 

9.2. Gelfand-Naimark-Segal (GNS) construction of real Hilbert space

structure

Unfortunately, even though the transposition defined in identity (67) works as an

adjoint for the symmetric bilinear form ! as in Eqs. (70) and (71), however, it is
not the right adjoint for the scalar product given by the strictly positive bilinear form

|!|(A ,B) in Eq. (62), due to the presence of the involution ! . In order to introduce
an adjoint for generalized transformations (with respect to the scalar product between

effects) one needs to extend the involution ! to generalized transformations. This can
be easily done, since the bilinear form of the faithful state is already defined over

generalized transformations, and, analogously to effects, also transformations comprise
a linear space, whose dimension is adm(S×2)+ 1, since we postulate the existence of
an informationally faithful state. Therefore, with a procedure analogous to that used for
effects we can define the absolute value of the bilinear form! also over transformations,

whence extend the scalar product to transformations. Clearly, since the bilinear form

!(A ,B) will anyway depend only on the informational equivalence classes A and B
of the two transformations, one can have different extensions of the involution ! from
generalized effects to generalized transformations, which work equally well. One has

!(A ) =:A ! ∈ !(A ), (72)

with a transformation A ! := !(A ) belonging to the informational class !(A ). Clearly
one has !2(A ) = !(A ! )∈A , and generally !2(A ) #= A , however, one can legitimately
choose the extension such that it is itself an involution (see also the following for the

choice of the extension). The idea is now that such an involution plays the role of

the complex conjugation, such that the composition with the transposition provides
the adjoint. Inspection of Eq. (71) shows that in order to have the right adjoint of

transformations with respect to the scalar product, we need to define the scalar product
via the bilinear form !(A ′,B′) over transposed transformations. Therefore, we define
the scalar product between generalized effects as follows

!〈B|A 〉! :=!(B′,!(A ′)). (73)

In the following we will equivalently write the entries of the scalar product as general-

ized transformations or as generalized effects, with !〈A |B〉! := !〈A |B〉!, the gener-
alized effects being the actual vectors of the linear factor space of generalized transfor-

mations modulo informational equivalence. Notice that from Eq. (40) it also follows the

nice rule !〈C ◦A |B〉! = !(A ′ ◦C ′,!(B′)), corresponding to the operator-like form
of the action of transformations over effect |C ′ ◦A 〉! = |C ′ ◦A 〉!. We can easily check
the following steps

!〈C ′ ◦A |B〉! =!(A ′ ◦C ,!(B′)) =!(A ′,!(B′)◦C ′)
=|!|(A ′,!(!(B′)◦C ′)).

(74)

Now, for composition-preserving involution (i. e. !(B ◦A ) = B! ◦A ! ) one can easily

verify that

!〈C ′ ◦A |B〉! = |!|(A ′,B′ ◦ !(C ′)) = !〈A |(!(C ′))′ ◦B〉!, (75)

Errors in How to Derive the Hilbert-Space Formulation ....

Giacomo Mauro D’Ariano

QUIT Group, Dipartimento di Fisica “A. Volta”, via Bassi 6, I-27100 Pavia, Italy, http://www.qubit.it
Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208

Abstract.

Keywords: Foundations, Axiomatics, Measurement Theory
PACS: 03.65.-w

dim(P) ! !

dim(P) = !

See C. Benítez, M. Fernández, M. L. Soriano, Orthogonality of matrices, Linear Algebra and its Applications 422

(2007) 155-163.

Theorem 1 Let X be a real finite-dimensional normed space with unitary sphere SX , and let L(X) be the linear
operators from X into itself. It is proved that X is an inner product space if and only if for A,C ∈ L(X)

A⊥C⇔∃u ∈ SX : ||A|| = ||Au||, Au⊥Cu,

where ⊥ denotes Birkhoff orthogonality.

Theorem 2 (Existence of an infocomplete observable) There always exists a minimal informationally complete ob-

servable.

Proof. By definition PR = SpanR(P), whence there must exists a spanning set for PR that is contained in P. The
maximal number of elements of this set that are linearly independent will constitute a basis, which we suppose has

finite cardinality dim(PR). It remains to be shown that it is possible to have a basis with sum of elements equal to I ,

and that such basis is obtained operationally starting from the available observables from which we constructed P.
If all observables are uninformative (i. e. with all effects proportional to I ) , thenPR = Span(I ), I is a minimal

infocomplete observable, and the statement of the theorem is proved. Otherwise, there exists at least an observable

E = {li} with n" 2 linearly independent effects. If this is the only observable, again the theorem is proved. Otherwise,
take a new binary observable E2 = {x,y} from the set of available ones (you can take different binary observables out
of a given observable with more than two outcomes by summing up effects to yes-no observables). If x ∈ Span(E)
discard it. If x %∈ Span(E), then necessarily also y %∈ Span(E) [since if there exists coefficients !i such that y= "i!ili,
then x= "i(1−!i)li]. Now, consider the observable

E′ =
{
1
2
y, 1
2
(l1+ x), 1

2
l2, . . . , ln

}
(1)

(which operationally corresponds to the random choice between the observables E and E2 with probability 1
2
, and

with the events corresponding to x and l − 1 made indistinguishable). This new observable has now |E′| = n+ 1
linearly independent effects (since y is linearly independent on the li and one has y="ni=1 li−x="ni=2 li+ l1−x). By
iterating the above procedure we reach |E′| = dim(PR), and we have so realized an apparatus that measures a minimal
informationally complete observable.#

Theorem 3 (Convex set of dynamical faithful states) If a faithful state is mixed, each component state (i. e. each

state in its possible expansions as convex combination) must be faithful.

are dual each other, and the latter can be regarded as the set of positive linear contrac-

tions over the set of states, namely the set of positive functionals l on S with unit upper

bound, and with the functional lA corresponding to the effect A being defined as

lA (!) .= !(A ). (48)

The above duality naturally extends to generalized effects and generalized weights.

Therefore, WR and PR are a dual Banach pair.

In the following we will often identify generalized effects with their corresponding
functionals, and denote them by lowercase letters a,b,c, . . ., or l1, l2, . . ..

Definition 13 (Observable) We call observable a set of effects L = {li} which is in-
formationally equivalent to an action L ∈ A, namely such that there exists an action
A = {A j} for which one has li ∈A j.

Clearly, the generalized observable is normalized to the constant unit functional, i. e.

!i li = 1.

Definition 14 (Informationally complete observable) An observableL = {li} is infor-
mationally complete if each effect can be written as a linear combination of the of ele-

ments of L, namely for each effect l there exist coefficients ci(l) such that

l =!
i

ci(l)li. (49)

We call the informationally complete observable minimal when its effects are linearly

independent.

Clearly, using an informationally complete observable one can reconstruct any state !
from just the probabilities li(!), since one has

!(A ) =!
i

ci(lA )li(!). (50)

Definition 15 (Predictability and resolution) We will call a transformation A—and

likewise its effect—predictable if there exists a state for which A occurs with certainty

and some other state for which it never occurs. The transformation (effect) will be also

called resolved if the state for which it occurs with certainty is unique—whence pure.

An action will be called predictable when it is made only of predictable transformations,
and resolved when all transformations are resolved.

The present notion of predictability for effect corresponds to that of "decision effects"
of Ludwig [4]. For a predictable transformation A one has ||A || = 1. Notice that a

predictable transformation is not deterministic, and it can generally occur with nonunit
probability on some state ! . Predictable effectsA correspond to affine functions fA on

the state space S with 0! fA ! 1 achieving both bounds. Their set will be denoted by
Pp.

Definition 16 (Perfectly discriminable set of states) We call a set of states {!n}n=1,N
perfectly discriminable if there exists an action A = {A j} j=1,N with transformations
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Consider now a couple of independent physical systems, and to distinguish the second
system from the object system, let’s call the second one reference system. As we have
seen in Eq. (48), a probabilistic transformation A that occurred on the reference system
generally affects the local state of the object, which then depends on A as follows

(52) ΩA2(·, I )
.
=

Ω(·, A )
Ω(I , A )

= ω(1)
A2

.

We can then define a maximally entangled state for a two-partite system as follows

Definition 33 (Maximally entangled state). A maximally entangled state for a two-partite
system is a pure state Ω for which the local state on each system is maximally chaotic,
namely

(53) Ω(·, I ) = Ω(I , ·) = χ(S).

12. Faithful state

Definition 34 (Dynamically faithful state). We say that a state Φ of a composite system
is dynamically faithful for the nth component system when acting on it with a transfor-
mation A the resulting (unnormalized) conditional state is in one-to-one correspondence
with the dynamical equivalence class [A ] of A , namely the following map is 1-to-1.

(54) Φ̃I ,...,I ,A ,I ,... ↔ [A ]dyn,

where in the above equation the transformation A acts locally only on the nth component
system. !

"
#
$ !

!
Φ

A

ΦA ,I

Definition 35 (Informationally faithful state). We say that a state Φ of a composite
system is informationally faithful for the nth component system when acting on it with
a transformation A the resulting (unnormalized) conditional local state on the remaining
systems is in one-to-one correspondence with the informational equivalence class A of A
(i. e. its propensity), namely the following map is 1-to-1

(55) Φ(· · · , A , · · · )↔ A ,

where in the above equation the transformation A acts locally only on the nth component
system.

!

!
"

#
$A

Φ

Φ(A , ·)

In the following, unless specified, for simplicity we restrict attention to two component
systems, and take the first one for the nth. Using the definition 10 of conditional state,
we see that the state Φ is dynamically faithful when the Φ(· ◦ [A ]dyn, I ) is an invertible
function over the set of dynamical equivalence classes of transformations, namely when

(56) ∀A , Φ(B1 ◦A , I ) = Φ(B2 ◦A , I ) ⇐⇒ B1 ∈ [B2]dyn.

On the other hand, one can see that the state Φ is informationally faithful when the
Φ(A , ·) is an invertible function over the set of informationally equivalence classes of
transformations, namely when

(57) ∀A , Φ(B1, A ) = Φ(B2, A ) ⇐⇒ B1 ∈ B2.

and applying the last identity twice one has for operators on the Banach space

||AB|| ! ||A||||B||, (35)

since

||AB|| = sup
||x||!1

||ABx|| ! sup
||x||!1

||A||||B||||x|| = ||A||||B||. (36)

This implies that ||B ◦A || ! ||B||||A ||, whence the generalized transformations make a Banach algebra.

DIMENSIONALITY THEOREMS

=⇒

state-effect duality dim(PR) = dim(S)+1 (D1)

P3 (loc. observability) dim(S12) = dim(S1)dim(S2)+dim(S1)+dim(S2) (D2)

P4 (infoc. as joint discr.) dim(S) = dim#(S×2)−1 (D4)

(D2)+(D4) dim(S×2) = dim#(S×2)2−1 (D24)

(D24) dim(S) = dim#(S)2−1 (D24b)

(D4+D24b) dim#(S×2) = dim#(S)2 (⊗)
P2 (faith.) dim(T) = dim(S×2)+1 (T)

(D1)+(D24b) dim(PR) = dim#(S)2 (P)
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dim(P) ! !
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See C. Benítez, M. Fernández, M. L. Soriano, Orthogonality of matrices, Linear Algebra and its Applications 422

(2007) 155-163.

Theorem 1 Let X be a real finite-dimensional normed space with unitary sphere SX , and let L(X) be the linear
operators from X into itself. It is proved that X is an inner product space if and only if for A,C ∈ L(X)

A⊥C⇔∃u ∈ SX : ||A|| = ||Au||, Au⊥Cu,

where ⊥ denotes Birkhoff orthogonality.

Theorem 2 (Existence of an infocomplete observable) There always exists a minimal informationally complete ob-

servable.

Proof. By definition PR = SpanR(P), whence there must exists a spanning set for PR that is contained in P. The
maximal number of elements of this set that are linearly independent will constitute a basis, which we suppose has

finite cardinality dim(PR). It remains to be shown that it is possible to have a basis with sum of elements equal to I ,

and that such basis is obtained operationally starting from the available observables from which we constructed P.
If all observables are uninformative (i. e. with all effects proportional to I ) , thenPR = Span(I ), I is a minimal

infocomplete observable, and the statement of the theorem is proved. Otherwise, there exists at least an observable

E = {li} with n" 2 linearly independent effects. If this is the only observable, again the theorem is proved. Otherwise,
take a new binary observable E2 = {x,y} from the set of available ones (you can take different binary observables out
of a given observable with more than two outcomes by summing up effects to yes-no observables). If x ∈ Span(E)
discard it. If x &∈ Span(E), then necessarily also y &∈ Span(E) [since if there exists coefficients !i such that y= "i!ili,
then x= "i(1−!i)li]. Now, consider the observable

E′ =
{
1
2
y, 1
2
(l1+ x), 1

2
l2, . . . , ln

}
(1)

(which operationally corresponds to the random choice between the observables E and E2 with probability 1
2
, and

with the events corresponding to x and l − 1 made indistinguishable). This new observable has now |E′| = n+ 1
linearly independent effects (since y is linearly independent on the li and one has y="ni=1 li−x="ni=2 li+ l1−x). By
iterating the above procedure we reach |E′| = dim(PR), and we have so realized an apparatus that measures a minimal
informationally complete observable.#

Theorem 3 (Convex set of dynamical faithful states) If a faithful state is mixed, each component state (i. e. each

state in its possible expansions as convex combination) must be faithful.
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dim(P) ! !

dim(P) = !

See C. Benítez, M. Fernández, M. L. Soriano, Orthogonality of matrices, Linear Algebra and its Applications 422

(2007) 155-163.

Theorem 1 Let X be a real finite-dimensional normed space with unitary sphere SX , and let L(X) be the linear
operators from X into itself. It is proved that X is an inner product space if and only if for A,C ∈ L(X)

A⊥C⇔∃u ∈ SX : ||A|| = ||Au||, Au⊥Cu,

where ⊥ denotes Birkhoff orthogonality.

Theorem 2 (Existence of an infocomplete observable) There always exists a minimal informationally complete ob-

servable.

Proof. By definition PR = SpanR(P), whence there must exists a spanning set for PR that is contained in P. The
maximal number of elements of this set that are linearly independent will constitute a basis, which we suppose has

finite cardinality dim(PR). It remains to be shown that it is possible to have a basis with sum of elements equal to I ,

and that such basis is obtained operationally starting from the available observables from which we constructed P.
If all observables are uninformative (i. e. with all effects proportional to I ) , thenPR = Span(I ), I is a minimal

infocomplete observable, and the statement of the theorem is proved. Otherwise, there exists at least an observable

E = {li} with n" 2 linearly independent effects. If this is the only observable, again the theorem is proved. Otherwise,
take a new binary observable E2 = {x,y} from the set of available ones (you can take different binary observables out
of a given observable with more than two outcomes by summing up effects to yes-no observables). If x ∈ Span(E)
discard it. If x %∈ Span(E), then necessarily also y %∈ Span(E) [since if there exists coefficients !i such that y= "i!ili,
then x= "i(1−!i)li]. Now, consider the observable

E′ =
{
1
2
y, 1
2
(l1+ x), 1

2
l2, . . . , ln

}
(1)

(which operationally corresponds to the random choice between the observables E and E2 with probability 1
2
, and

with the events corresponding to x and l − 1 made indistinguishable). This new observable has now |E′| = n+ 1
linearly independent effects (since y is linearly independent on the li and one has y="ni=1 li−x="ni=2 li+ l1−x). By
iterating the above procedure we reach |E′| = dim(PR), and we have so realized an apparatus that measures a minimal
informationally complete observable.#

Theorem 3 (Convex set of dynamical faithful states) If a faithful state is mixed, each component state (i. e. each

state in its possible expansions as convex combination) must be faithful.

Exploit purity of 
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Consider now a couple of independent physical systems, and to distinguish the second
system from the object system, let’s call the second one reference system. As we have
seen in Eq. (48), a probabilistic transformation A that occurred on the reference system
generally affects the local state of the object, which then depends on A as follows

(52) ΩA2(·, I )
.
=

Ω(·, A )
Ω(I , A )

= ω(1)
A2

.

We can then define a maximally entangled state for a two-partite system as follows

Definition 33 (Maximally entangled state). A maximally entangled state for a two-partite
system is a pure state Ω for which the local state on each system is maximally chaotic,
namely

(53) Ω(·, I ) = Ω(I , ·) = χ(S).

12. Faithful state

Definition 34 (Dynamically faithful state). We say that a state Φ of a composite system
is dynamically faithful for the nth component system when acting on it with a transfor-
mation A the resulting (unnormalized) conditional state is in one-to-one correspondence
with the dynamical equivalence class [A ] of A , namely the following map is 1-to-1.

(54) Φ̃I ,...,I ,A ,I ,... ↔ [A ]dyn,

where in the above equation the transformation A acts locally only on the nth component
system. !

"
#
$ !
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Φ

A

ΦA ,I

Definition 35 (Informationally faithful state). We say that a state Φ of a composite
system is informationally faithful for the nth component system when acting on it with
a transformation A the resulting (unnormalized) conditional local state on the remaining
systems is in one-to-one correspondence with the informational equivalence class A of A
(i. e. its propensity), namely the following map is 1-to-1

(55) Φ(· · · , A , · · · )↔ A ,

where in the above equation the transformation A acts locally only on the nth component
system.

!

!
"

#
$A

Φ

Φ(A , ·)

In the following, unless specified, for simplicity we restrict attention to two component
systems, and take the first one for the nth. Using the definition 10 of conditional state,
we see that the state Φ is dynamically faithful when the Φ(· ◦ [A ]dyn, I ) is an invertible
function over the set of dynamical equivalence classes of transformations, namely when

(56) ∀A , Φ(B1 ◦A , I ) = Φ(B2 ◦A , I ) ⇐⇒ B1 ∈ [B2]dyn.

On the other hand, one can see that the state Φ is informationally faithful when the
Φ(A , ·) is an invertible function over the set of informationally equivalence classes of
transformations, namely when

(57) ∀A , Φ(B1, A ) = Φ(B2, A ) ⇐⇒ B1 ∈ B2.
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