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On experimental science

Experiments are performed to get information on
the state of an object physical system.

Knowledge on such state will allow us to predict

the results of fort

ncoming experiments on the

same (similar) object system in a similar situation.

Since necessarily

we work with only partial prior

knowledge of both system and experimental

apparatus, the rules for the experiment must be

given in a probab

ilistic setting.







What is an experiment

An experiment on a object system consists in making it
interact with an apparatus.




What is an experiment

An experiment on a object system consists in making it
interact with an apparatus.

The interaction between object and apparatus produces
one of a set of possible transformations of the object,
each one occurring with some probability.







Postulates

Postulate 1 (Independent systems) There exist independent systems.

Postulate 2 (Informationally complete observable) For each physical system
there exists an informationally complete observable (Hardy, Fuchs).

Postulate 3 (Local observability principle) For every composite system there
exist informationally complete observables made only of local informationally
complete observables.

Postulate 4 (Informationally complete discriminating observable) For every
system there exists a minimal informationally complete observable that can be
achieved using a joint discriminating observable on the system + an “ancilla” .

Postulate 5 (Symmetric faithful state) For every composite system made of two
identical physical systems there exist a symmetric joint state that is both
dynamically and preparationally faithful.




Actions and outcomes

Experiment (or “action”): every experiment is described

by aset A = {a7;} of possible transformations .27
having overall unit probability, with the apparatus
signaling the outcome ] labeling which transformation
actually occurred.
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States

State: A state w for a physical system is a rule which
provides the probability for any possible transformati
within an experiment, namely:

w : state, w() : probability that the transformation o/ occurs

Normalization: Z w(e;) =1
dj cA

Identity transformation: W (f )




Convex structure of states

The possible states of a physical system
make a convex set ©

w1, W2 any two states:

w = Aw1 + (1 — Mwa2,

corresponding to the probability rule

w() = M1 () + (1 — Nwa ()




Monoid of transformations

Transformations make a monoid: the composition

& o B of two transformations .7 and 24 is itself

a trans
transfo

'ormation. Consistency of composition of

rmations requires associativity, namely

Co(HBod)=(oRB)o

There exists the identical transformation .# which
leaves the physical system invariant, and which for every
transformation .27 satisfies the composition rule

T ool — ol o9 — of



Independent systems and local transtormations

Independent systems and local experiments: two
physical systems are “independent” if on each
system it is possible to perform “local experiments”
for which on every joint state one has the
commutativity of the pertaining transformations
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Independent systems and local transtormations

Independent systems and local experiments: two
physical systems are “independent” if on each
system it is possible to perform “local experiments”
for which on every joint state one has the
commutativity of the pertaining transformations

SN g o 0

(Q/,gg,%,.n)id(l)o%@)o%ﬂ(g)o...

Multipartite system: a collection of independent systems



[L.ocal state

For a multipartite system we define the local state w ' n
of the n-th system the state that gives the probability of
any local transformation &7on the n-th system with all
other systems untouched, namely

Wn ()




Conditional state

When composing two transformations 2/ and & the
probability that ZBoccurs conditioned that & occurred
before is given by the Bayes rule
w(PB o )

w()

Conditional state: the conditional state W gy gives the probability

p(B|F) =

that a transformation & occurs on the physical system in the
state W after the transformation .2/ occurred, namely

w(PB o of )

kB =




Weights and Operations

Weight: un-normalized state

0 <&()
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Weights and Operations

Weight: un-normalized state

O0<w(d) <w(S)<

convex cone of weights: )i

Operation: |Op,, o = ®y= w(-0) Wy (AB) = w(HBo)

Action of a transformation over a state (“Schrodinger picture”):

A :=O0p, w

(HW)(F) := w(B o)
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* there are different transformations which
always occur with the same probability, but
generally affect a different state change
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Dynamical and informational equivalence

Dynamical equivalence of transformations: two
transformations 27 and & are dynamically
equivalent if

Weoy — Wz Vw € &

Informational equivalence of transformations: two
transformations &7and %4 are informationally
equivalent if

w() = w(HB) Yweb

A transformation is completely specified by the two classes
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Addition of transformations

Two transformations .27 and Zare informationally
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For any two coexistent transformations .2/jand .2/o we define the
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corresponding to the event e = {1,2} namely the apparatus
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Addition of transformations

Two transformations .27 and Zare informationally
compatible (or coexistent) if for every state w one has

w()+w(HB) <1
For any two coexistent transformations .2/jand .2/o we define the
transformation‘ of = o1+ oo ‘ as the transformation

corresponding to the event e = {1,2} namely the apparatus

signals that either @7 or @/ 0ccurred, but doesn’t specify which
one:

Vw € 6 (info-class)

Yw € S

(dyn-class)

o, + distributive
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No-signaling

The occurrence of the transformation &4 on system 1 generally
affects the local state on system 2, i. e.

Qo 7o # 2

However a local action A = {.7; } on system 2 does
not affect the local state on system 1, more precisely:

acausality of local actions: any local action on a
system is equivalent to the identity transformation




No-signaling

Theorem 2 (No signaling, i. e. acausality of local actions) Any local "action" (i. e. ex-
periment) on a system does not affect another independent system. More precisely, any
local action on a system is equivalent to the identity transformation when viewed from
another independent system. In equations one has

VQE G VA, Qo) sh=8. (25)

Proof. By definition, for % € ¥ one has Q|,(#) = Q(.#,%), and using Eq. (24)
according to Rule 4 one has

Q(S(A),B) _}Ag(gfj,%) = Q(I,B) =: Q|,(B). (26)

On the other hand, we have
Qoa),s2(B) =Q(I,B)o(F(A), ) =Q(F(A),B),
namely the statement. l

Notice the consistency with Rule 4:
Q(, I)
Q2 j‘z(%) =) j(j,gg): Qd.,j(f,gg) L
S (A), Z(A), ey S iea ), 7)

Q) B) ), I ) _ i
Q7)) QI T _%EEAQ(%’%) Q(I,B).

jE
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Informational compatibility

Multiplication by a scalar: for each transformation.o?
the transformation A& for 0 < X < 1 is defined as the
transformation which is dynamically equivalent to.o?

but occurs with probability w(AZ) = Aw()




Informational compatibility

Multiplication by a scalar: for each transformation.o?

t
t

he transformation \.@Z for < X\ < 1 isdefined as the

-ansformation which is dynamically equivalent to.g/

but occurs with probability w(AZ) = Aw()

Convex structure for transformations ‘$
and for actions
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Effect

We call effect an informational equivalence class %
of transformations 27

“Heisenberg picture”: | Opy B=HBoAd =HBod

duality

effects as positive linear [ functionals over states:

log (W) = w(A)

Convex structure for effects ‘:B



Generalized weights,
transformations, and effects

Generalize by taking differences:




Generalized weights,
transformations, and effects

Generalize by taking differences:

convex sets/cones = (affine) linear spaces




Generalized weights,
transformations, and effects

Generalize by taking differences:

convex sets/cones = (affine) linear spaces

weights JYf =9 gen. weightsp




Generalized weights,
transformations, and effects

Generalize by taking differences:

convex sets/cones = (affine) linear spaces

weights JYf =9 gen. weightsp

transformations S =g gen. transformations ‘S
(real algebra)
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transformations, and effects

Generalize by taking differences:

convex sets/cones = (affine) linear spaces

weights JYf =9 gen. weightsp

transformations S =g gen. transformations ‘S
(real algebra)

effects 23 = gen. effects Pr
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Real Banach spaces

norms.

gen. effects SR : ||| := sup |w(Z)]

weS

gen. weights 2 p: |of| := sup [@(L)
Pr|lL|<1

gen. transformations‘zR: ||| := sup |HBoA|
Pro[2|<1

W Pr dual Banach pair under the pairing
oy (W) = w()

‘e Banach algebra
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Banach-space structures
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Observable

Observable: the complete set of effects 6} of an

experiment A = {.7;}, namely I, = o, Vj




Informationally complete observable

Informationally complete observable: an observable

= {I;} is informationally complete if any effect [ can
be written as linear combination of elements of I,
namely there exist coefficients c¢;(l) such that

L

=% il
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Informationally complete observable

Informationally complete observable: an observable

= {I;} is informationally complete if any effect [ can
be written as linear combination of elements of I,
namely there exist coefficients c¢;(l) such that
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Postulate 3: Local observability principle

For every composite system there exist informationally complete
observables made only of local informationally complete observables.

QL QOO

|
: . § Local ; | Local | oca
ocal experi ' experiment T experiment [ | experimen

My,
Holism p&E>»Y Reductionism

oo

identity for the affine dimension of composite systems

dim(@lg) == dlm(Gl) dlm(62) — dlm(Gl) o dlm(Gg)
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Block representation

loy = Z m (& )n;




Block representation

loy = Z m (& )n;

Conditioning;:
fractional affine

transformation




Faithful states

Dynamically faithful state: we say that a state ¢ of a bipartite
system is dynamically faithful if when acting on it with a local
transformation .2/ on one system the output conditioned
weight (I);zf,f is in 1-to-1 correspondence with the
transformation o

e
g

b

>




Faithful states

Dynamically faithful state: we say that a state ¢ of a bipartite
system is dynamically faithful if when acting on it with a local
transformation &7 on one system the output conditioned
weight @ o, & isin 1-to-1 correspondence with the
transformation o

e
g

by o o

>

(of, #)® =0 -




Faithful states

Preparationally faithful state: we say that a state P

of a bipartite system is preparationally fa

ithful if every

joint states {2 can be achieved by a suitable local
ing with

transformation Zq on one system occurr
nonzero probability




Faithful states

Clearly a preparationally faithful state @ of a bipartite
system is also locally preparationally faithful, namely
every local state W of one component system can be
achieved by a suitable local transformation 7, on the
other component system




Faithful states

Symmetric bipartite state: we call a joint state D of a
bipartite system symmetric if

b(of, B) = O(B, o)




Pertectly discriminating observable

Perfectly discriminable states/observable {w;}: there
exists an observable I. = {I;} such that

li(wj) = 04




Pertectly discriminating observable

Perfectly discriminable states/observable {w;}: there
exists an observable I. = {I;} such that




Postulate 4: Informationally complete

discriminating observable

For every system there exists a minimal informationally
complete observable that can be achieved using a joint
discriminating observable on the system + an
“ancilla” (identical independent system).




Postulate 4: Informationally complete
discriminating observable

For every system there exists a minimal informationally
complete observable that can be achieved using a joint
discriminating observable on the system + an
“ancilla” (identical independent system).
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P3 (loc. obs.) dim(SG12) = dim(6;1) dim(G3) + dim(G;1) 4+ dim(Ss)
P4 (infoc. discr.) dim(G) = dimy (6%%) — 1

D3)+(D5) dim(G*?) = dimy (6%%)? — 1

D35) dim(G) = dim4(6)? — 1

)5—|—D35b) dim#(GXZ) == dim#(6)2

P5 (faith.) dim(%) = dim(&*?) + 1

(D2)+(D35b) | dim(Pr) = dimx(6)?

dim(Pr) = dim4 (S)?
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Positive form over generalized effects: from D real
symmetric form over effects obtain the positive form
(via informationally complete observable)

|(I)‘ . — (I)_|_ —@P_

|, L) = (L, 5(Z)), s(&)=(F—-2P)(L)
ct =

D|(f,PB) strictly positive scalar product over *Pr

Br real (pre)Hilbert space of dimension dim#(6)2
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The complex Hilbert space formulation

For finite dimensions the real Hilbert space ‘3R is
isomorphic to the real Hilbert space of Hermitian complex
matrices representing selfadjoint operators over a complex
Hilbert space H of dimensions dim(H) = dimx (G) .

This is the Hilbert space formulation
of Quantum Mechanics
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Positive bilinear form

[f the state is also preparationally faithful then one can
make every state correspond to an effect

Then one can write the probability rule in terms of a

real scalar product pairing between states and ettfects,
with the convex cones of effects and states corresponding
to the convex cone of positive matrices.

This is the Quantum Mechanical Born rule
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Positive bilinear form

Since D is preparationally faithful, then for every state (0
there exists a suitable transformation .7, such that
w =P, 7 |1 with probability ®(.#,.7,) >0

Then we can write the probability rule in terms of the
pairing between states and effects:

o

0(E) =Py 7,1(&)=1P(€,Z,).
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The complex Hilbert space formulation

End of story:

construct complex operators by complex linear
combination of effects

physical transformations are described by CP
trace-decreasing maps

etc.




Operational definition of transposed

Existence of symmetric faithful states

“transposition” over the real algebra .4 of (generalized)

transformations
o — o’

@i
\T/

)
X




Operational definition of transposed

Existence of symmetric faithful states

“transposition” over the real algebra .4 of (generalized)
transformations

of <— of’




Operational definition of transposed

For symmetric faithful state it is easy to check that the
involution .of <— &/ ! satisfies the properties of the

transposed:

)/ Sa %l C%/
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GNS construction for representing
transformations

Extend Gto an involution over transformations

() =: A° € c(L)

Scalar product over B :

o8| )o :=P(Z (L))

For composition-preserving G, i.e. ¢(Bo ) = B o/

G works as a complex-conjugation in the sense that

A c( /) works as an adjoint, namely

o€ o A | B = (A |C 0 B
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GNS construction for representing
transformations

Take complex linear combinations of generalized transtformations

and define¢(ce/') = c*¢c (& )forc € C

c-generalized transformations: ¢ complex

c-generalized etfects: ‘B@ \ Banach spaces

complex *-algebra
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GNS construction for representing
transformations

Representations 7T & of transformations & € A over effects.A /J

To ()| LB)e = | A o HB)e

The Born rule rewrites in the form of pairing;:

(&) = @2 (110 (0) 70 (L)) = o (70 (L) |70 (0))o

with representation of states and effects given by

y/

The representation of transformations is given by

w(Bod)=o(L|ne(d*)|70(0))e.
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