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In this talk
w.l.g.

* finite dimensions

* only one kind of system




Operational framework

PRIMITIVE NOTIONS

* probability
* events
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STRONGLY COPENHAGEN

* everything is defined
operationally, including all
mathematical objects

operational indistinguishability
= identification

Examples:

notion of system

identification of events

sets of states separating effects
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MATHEMATICAL
CLOSURE

mathematical
completion is taken for
convenience

Examples:

norm closure

algebraic closure

linear span
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(General principles

OPERATIONAL
CLOSURE

* every operational
option implicit in the
formulation is
incorporated in the
framework

Examples:

¥ convex closure

* closure under coarse-graining




Postulates

* INSF: No signaling from the
future (=definition of cascade.)

*¥ NS: No signaling (=definition
of independent systems)

* PFAITH: There exists
preparationally faithful states
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Postulates under exploration

¥ FAITHE: There exists
a faithful effect

¥ PURIFY: There exists

a purification for each
state

* SUPER-PFAITH

» Stinespring dilation




Reconstructing QM from
probabilities

Algebra of effects <>
* AE: Atomicity of evolution

* CJ: Choi-Jamiolkowski

isomorphism
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TESTS

¢ Test/experiment: A = {JZ{j}set of possible eventngfj

(deterministic test/transformation:[l) = {@ })

Notice: the same event can occur 1n different tests
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TESTS

Unions of events: &/ U XA Dy = U X%

R

Coarse-graining

aof; €A

—_—)
A ={a, o, A3} A" = {o, o5 U s}

Refinement
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STATES

State(W: probability rule w (JZ% ) for any possible event &7

in any test

Normalization: Z w(;) =1

ézfj cA

Convex set of states: 6

States will also be regarded as tests themselves:
“preparation-tests’.
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CASCADES OF TESTS
Time-cascade: :

o A\ — {%j O CQ%L} cascade of tests A = {«sz}a D = {%j}v

collection of joined events with the following rule for marginals:

NSFZ w(Bj o) =: [f( 3, &, w

%jEB

= Convex monoid
* composition of events: % o &f L

of events:




Events = transformations

A, eB

B, Vof, Wi




Events = transtormations

NSF O W(Biod) =w(d),
LB B

B, Vof, Wi

—> conditional probability: p(% |CQ7 ) — w(c%’ o of ) / w(xz/ )
—> conditional ; e .
conditional state w@f w(fo;zf)/w(gz%)

variable
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Events = transtormations

NSF Z w(%jod):w(d)v V%; \V/JZ%, Vw
BB

—> conditional probability: p(% |<Q7 ) — w(%’ o of ) / w(d )
—> conditional state: Wy — uj( O %)/W(%)

—> evolution = state conditioning: AW = (,u(- o )

— | events = transformations

= | linearity of evolution
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Test:= set of Events as
probabilistic events transformations
NSF

Evolution as
conditioning
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SYSTEM

5 — {wl,wg,...,A, %,C,...}

collection of tests closed under

* coarse-graining

* conditioning

Copenhagen

* cascading

¥ convex combination

W A dirrerent systems: tests

as letters in a “language”




Iwo equivalence classes for transformations




Iwo equivalence classes for transformations

Two transformations .o and B are
conditioning equivalent 1f

Weogy — Wxr VYweb




Iwo equivalence classes for transformations

Two transformations .o and B are
conditioning equivalent 1f

Weogy — Wxr VYweb

Two transformations &7 and %4 are
probabilistically equivalent 1f

w( ) = w(AB) Ywed




Iwo equivalence classes for transformations

Two transformations .o and B are
conditioning equivalent 1f

Weogy — Wxr VYweb

Conditioning-equivalence class

Two transformations &7 and %4 are
probabilistically equivalent 1f

w( ) = w(AB) Ywed

Probabilistic-equivalence class
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Iwo equivalence classes for transformations

A transtormation 1s completely specified by the two classes:

A w = w( A )Wy

?

probabilistic

conditioning

variable

A w = w(

l

=O

o )
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EFFECTS

Effect | |eff : equivalence class of transformations occurring
with the same probability as 27 for all states.

VweG: w(A)

Q effect —»cQ{ & ( means w(&zf)

6 := convex set of effects

Duality: effects & positive linear functionals over states

(bounded by 1) a € €, we &, w(a)=a(w)
€ deterministic ettect 1.e. w(e) — | v =
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EFFECTS

State-conditioning = Iranstformations act linearly over etfects:

[%] off 0 I = [93 o o ] off (Heisenberg picture)

Eftects will also be regarded as tests themselves: “etfect-tests™

A » (1) effect




OBSERVABLE

Observable [, = {lz} : complete set of effects of a test

Normalization: ZiGL lz — €
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Logical low-diagram

Test:= set of
\, probabilistic events

| NSF

Events as
transformations

Evolution as
conditioning

e
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| Test:= set of Events as
probabilistic events transformations

Evolution as
conditioning
Observable

Addition/rescaling
of transformations
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tests are test-compatible 1f for every state (w one has
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For any two test-compatible transformations 277 and 2o we define
the transformation [27] + %‘ as the union event 277 U 2% as if
they belong to the same test
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Two transformations &7 and %8 generally occurring in different
tests are test-compatible 1f for every state (w one has

w()+w(A) <1

For any two test-compatible transformations 271 and 2o we define
: ‘ ‘ : 7 Z -

w(szfl + ﬁ/g) — w(szfl) + W(%) (probabilistic class)

Wty ) W, ditioning cl
) L | ot + oty (conditioning class)




Addition of transtformations

Two transformations &7 and %8 generally occurring in different
tests are test-compatible 1f for every state (w one has

w()+w(A) <1

For any two test-compatible transformations 277 and 2o we define
the transformation [27] + %‘ as the union event 277 U 2% as if
they belong to the same test

(@ + h)w = 1w + ow
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Rescaling of transtormations

The rescaled transformation A2/ of &7, A € [0, 1] is the

transtormation giving the same conditioning but occurring with

probability rescaled by A for all states.

Atomic: a transformation that cannot be “nontrivially” refined
in any test, 1.e. it cannot be written as @/ = g f; with
Gy #£ A& forsometand 0 < A\; < 1.

[Notice: the identity transformation .# is not necessarily atomic]
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Convex sets, CGones and Linear spaces

Convex set of states: 6 , cone: 6_|_

Convex set of effects: QE ot QE :

Convex monoid of
transformations:

, cone: z+

Linear spaces:
Gr = Spany &
Sc = Span:6
Er, €c, LR, LC

Hypothesis of no limitation to preparability: 6 — = (QE = ) .
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Informational completeness

Informationally complete observable: 1l

Er = Spang (L)

Separating set of states: S

Quantum Bureau International des Poids et Measures (Fuchs):
S = {7}
Fiw = w(F)w;, Yw € G, {w;} separating

{|-% et } informationally complete observable




Informational completeness

Informationally complete observable: i

QER — SpanR( 4)

Separating set of states: S

Gr = Spang(S)
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(*-algebra of transtormations (finite dim.)

Iranstormations/events are linear maps over
eftects, 1.e. they make a matrix algebra over effects
(or over states)

One can introduce a scalar product over eftects ...
=> transtormations become a G*-algebra ...
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Logical low-diagram

Test:= set of Events as
probabilistic events transformations
Addition of

Evolution as
conditioning
Observable
transformations v
Linear span

NSF

,

l scalar product |

Linear span
(*-algebra of transformations
as linear operators over effects




INDEPENDENT SYSTEMS

'Two systems are independent 1f on each system it 1s possible to
perform all their tests as local tests, 1.e. such that on every joint
state one has the commutativity of the transtormations from
ditferent systems
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INDEPENDENT SYSTEMS

'Two systems are independent 1f on each system it 1s possible to
perform all their tests as local tests, 1.e. such that on every joint
state one has the commutativity of the transtormations from

different sistems

_ .
—-
7D o 22 _ 22 o 0

(A, B,C,..)=dDo0oB?Dot®o. ..

(o, B,E, ...




COMPOSTING SYSTEMS

We compose the two systems S1and S ]‘
into the bipartite system 951 © S2 ]_

considered as a new system containing
all local tests S1 X S2 plus other tests,

and closing w.r.t. coarse graining, convex
combination and cascading:
591 ©® 52 2 51 X 59

Nonlocal tests: S1 ® Sa\ 51 X So




MARGINAL STATE

For a multipartite system we define the marginal state §) ‘ ~of
the n-th system the state that gives the probability of any local
transformation .7 on the n-th system with all other systems
untouched, namely

() = UI, ... I o I, ...
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MARGINAL STATE

For a multipartite system we define the marginal state §) ‘ ~of
the n-th system the state that gives the probability of any local
transformation .7 on the n-th system with all other systems
untouched, namely

() = UI, ... I o I, ...

"~

— =
Ql,(a) = Qe, ...
nth

NS: (no-signaling) any local test on a system 1s equivalent to no-
test on another independent system.
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Matrix algebra ot

transformations over eftects!

Independent
Systems =
no-signaling
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Convex sets:

6 states
QE etfects

f S transformations

cones: G—I— QE_|_ ‘Z+

S—{C o, ..

3,.C,. . ab =

* S =

System tests

dw=w(oH)

&/ € q-a—effect

!

variable

?

transformation
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6 states 1 -

QE etfects

f S transformations

System tests

A = w(- o sz) &/ € q -w—effect

! A

cones: O 4 3 4 53 4 variable transformation

€ deterministic effect
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Review of notation
Convex sets: S:{Cawa--wAa %7(?:---7@7
6 states } }

System tests
QE etfects

f S transformations

Aw=w( o) 9 € aq-a—effect

! |

cones: O 4 3 4 ‘T 4 variable transformation

partite: o (Sl 0 52) € deterministic effect

2 ®2
6@ QE(S ) W, o - S Q, P = 6@2
a,be €  F e ¢®?

%12,(<Qf,f) = ‘ZQQ




Review of notation

%120w

%@ 0

E23<I>w—0€6 —wa€6_|_

<> ¢ ( »
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FAITHFUL STATES

A state @ of a bipartite system is dynamically faithful when
the output state (427 o )(I) from a local transformation .27 on
one system 1s in 1-to-1 correspondence with the transformation .o/

)
@ (o, )b calibrability of tests

local state-preparability

A state P of a bipartite system 1s
preparationally faithful if every joint @ -
state \Ifcan be achieved by a suitable

local transtormation yq, on one system
occurring with nonzero probability

—
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Postulate PFAI'T'H

PFAITH: lor any couple of 1dentical systems, there exist
a symmetric” state ¢ that is preparationally faithful.

Theorem: @ is also dynamically faithful.

() invariant under permutation of the two systems
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Consequences of PFAI'TH

» Calibrability & Preparability by just a single preparation

» Impossibility of secure bit commitment

» Marginal state | X = (I)(ea ) internal and invariant under

a “transposed” deterministic test

» Local observability: There exist global info-complete
gbservables made of local info-com
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» Weak self-duality: State and eftect cones are isomorphic:
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Conseauences of PFAITH
» Gp(59%) ~ IF()

» Weak self-duality: State and eftect cones are isomorphic:

L da— w, =P(a,) €S

» Tensor product representation:

Er(SY?) = Er(S)%? ||65(SP?) = Sp(S)*?

»Space of transformations is complete: | ¥p = Lin(Ep)
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Consequences of PFAI'TH

The faithful state P provides a non-degenerate scalar product
over effects via 1ts Jordan form ( Jordan involution):

It allows to introduce an operational notion ot transposition
for transtormations:

(o +B) = + P
(‘Q%/)/:‘va

(gaf)q):(jyyl)q) 3: (o 0 B) =B oA’




Properties of
marginal
state

Impossibility
of bit

commitment

calibrability
&
preparability

PFAITH

local
observability

<<

scalar

self-duality

weak

Y

product

transposition




INTERLUDE

Exploring
Postulates:
FAITHE and
PURIFY
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Faithtul etfect

Remind the cone-isomorphism from

the faithful state P

G CL3a— w, =

FAITHE: There exist a bipartite effect /' achieving the inverse of
the isomorphism a — w, = ®(a, -) namely:
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Consequences of FAITHE

» leleportation:

» Fis com

» y -/

sletely faithful, i.e. Foy := F o (S, ) < o

realizes t

ne cone-1somorphism: QE_|_ (SQQ) ~ ‘Z+ (S)



Consequences of FAITHE

EL(SPY) 3 A Qyu 1= Ax3(P, @) € 64(5%?)

1s a bijective map between G]F(S@z)and @F(SQQ)

however, 1t does not necessarily realize the cone-1somorphism:

G4 (S97) ~ €, (S%?%)

namely 1t 1s not the 4-partite equivalent of:

€+9ana—<I> €6+

1.e. we don’t have: Q <
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probabilistic theory




Consequences of FAITHE

leleportation: <
o =0 = (X

a(S) = EE%%%2){(¢>¢)(6»E»€)}

15 a property of the system and depends on the particular
probabilistic theory

In Quantum Mechanics: v = dlm( H ) —2
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Consequences of PURIFY

PURIFY: LEvery state has a purification on two 1dentical systems.

E S

» Fach state can be obtained by applying an atomic transformation
to the marginal state X = P (e, -

» Each ellect contains an atomic transtormation.

» .7 is atomic.

» P is pure.
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SUPER-PFAI'TH

SUPERFAITH: |here exists a symmetric bipartite state such
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In any case, 1t must give that:

effects make a C*-algebra
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Quantum Tomography for Measuring Experimentally the Matrix Elements
of an Arbitrary Quantum Operation

G.M. D’Ariano and P. Lo Presti

at our disposal a general method Tor experimentally deter-
mining the quantum operation matrix, using any available
quantum-tomographic scheme for the system in consid-
eration, and a single fixed state at the input, which is
an entangled (not even maximally) state. In the optical
domain we show that one can achieve the tomographic
reconstruction of the operation using exactly the same ap-
paratus of the recently performed experiment of Ref. [9].

Let us consider for simplicity a “pure” quantum opera-
tion in the form (5). Given an orthonormal basis {| j)}
corresponding to some physical observable, how can
we determine the matrix A;; = (i|A|j) experimentally?
Instead of acting with the contraction A on an “isolated”
system, we perform the map on a system which is en-
tangled in the state |¢)) € H ® FH with an identical
system; 1.e.,

_Aelly)
)= o)) = T ©)

With the double ket we denote bipartite vectors |¢)) €

H ® H , which, keeping the basis {| j)} as fixed, are in
one-to-one correspondence with matrices as follows:

) = D wiili) @ ). ()
e L]

Ai; = k(Ei;j(¥)), (10)
where the operator E;;(i) is given by

E;;j(p) = lig) (il ® | jo) " (j)l, (11)

and the proportionality constant is given by

_ eia PA(‘#)
< JWW@MWEV (2

Since A;; 1s written only in terms of output ensemble av-
erages, it can be estimated through quantum tomography.
Quantum tomography [10,11] is a method to estimate
the ensemble average (H) of any arbitrary operator
H on JHH by using only measurement outcomes of a
quorum of observables {O(l)}. A quorum is just a set of
operators {O(1)} which are observable (i.e., have orthonor-
mal resolution) and span the linear space of operators on
JH . This means that any operator H can be expanded
as H =Y, Ti{OT(1)H]O(l), where {Q(])} and {O(1)}
form a biorthogonal set such that Tr[QT(i)O( )] = Sij.
Hence, the tomographic estimation of the ensemble
average (H) is obtained as the double average—over
both the ensemble and the quorum—of the unbiased

L o S L s S St ) o 4 —
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(apart from a phase) 1.e. events that

cannot be written as sum of other events
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AE (Atomicity of evolution):
the Comp051t10n of “atomic™

events 1S atomic

J

One can prove that the phase (two-cocycle) 1s trivial.
Introduce the generalized transtormation via the polarization

1dentity:
-k
b — Z c7&4—2’“ b

compositon of etfects as: ab = €0 f Z,b
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