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universal programmability of POVM’s4,5. It is still possible to achieve pro-
grammability probabilistically6, or even deterministically7, though within
some accuracy. Then, for the deterministic case, the problem is to deter-
mine the most efficient programmability, namely the optimal dimension of
the program-ancilla for given accuracy. Recently, it has been shown 5 that
a dimension increasing polynomially with precision is possible: however,
even though this is a dramatical improvement compared to preliminary
indications of an exponential grow8, still it is not optimal.

In establishing the theoretical limits to state-programmability of chan-
nels and POVM’s the starting problem is to find the joint system-ancilla
unitary which achieves the best accuracy for fixed dimension of the ancilla:
this is exactly the problem that is addressed in the present paper. The
problem turned out to be hard, even for low dimension, and here we will
give a solution for the qubit case, for both system and ancilla.

2. Statement of the problem

We want to program the channel by a fixed device as follows

PV,σ(ρ) .= Tr2[V (ρ⊗ σ)V †], (1)

with the system in the state ρ interacting with an ancilla in the state σ via
the unitary operator V of the programmable device (the state of the ancilla
is the program). For fixed V the above map can be regarded as a linear map
from the convex set of the ancilla states A to the convex set of channels for
the system C . We will denote by PV,A the image of the ancilla states A
under such linear map: these are the programmable channels. According
to the well known no-go theorem by Nielsen and Chuang it is impossible
to program all unitary channels on the system with a single V and a finite-
dimensional ancilla, namely the image convex PV,A ⊂ C is a proper subset
of the whole convex C of channels. This opens the following problem:

Problem: For given dimension of the ancilla, find the unitary
operators V that are the most efficient in programming channels,
namely which minimize the largest distance ε(V ) of each channel
C ∈ C from the programmable set PV,A :

ε(V ) .= max
C∈C

min
P∈PV,A

δ(C,P) ≡ max
C∈C

min
σ∈A

δ(C,PV,σ). (2)

As a definition of distance it would be most appropriate to use the CB-
norm distance ||C−P||CB . However, this leads to a very hard problem. We
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Problem: The most efficient Unitary

For given d = dim(A ) find the uni-
tary operators V that are the most
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On the most efficient unitary transformation for programming quantum channels 3

will use instead the following distance

δ(C,P) .=
√

1− F (C,P), (3)

where F (C,P) denotes the Raginsky fidelity 9, which for unitary map C ≡
U = U · U† is equivalent to the channel fidelity 1

F (U ,P) =
1
d2

∑

i

|Tr[C†
i U ]|2, (4)

where C =
∑

i Ci · C†
i . Such fidelity is also related to the input-output

fidelity averaged over all pure states F io(U ,P), by the formula F io(U ,P) =
[1+dF (U ,P)]/(d+1). Therefore, our optimal unitary V will maximize the
fidelity

F (V ) .= min
U∈U(H)

F (U, V ), F (U, V ) .= max
σ∈A

F (U ,PV,σ) (5)

3. Reducing the problem to an operator norm

In the following we will use the GNS representation |Ψ〉〉 = (Ψ ⊗ I)|I〉〉 of
operators Ψ ∈ B(H), and denote by Xᵀ the transposed with respect to the
cyclic vector |I〉〉, i. e. |Ψ〉〉 = (Ψ ⊗ I)|I〉〉 = (I ⊗ Ψᵀ)|I〉〉, and by X∗ the
complex conjugated operator X∗ .= (Xᵀ)†, and write |υ∗〉 for the vector
such that (|υ〉〈υ| ⊗ I)|I〉〉 = |υ〉|υ∗〉. Upon spectralizing the unitary V as
follows

V =
∑

k

eiθk |Ψk〉〉〈〈Ψk|, (6)

we obtain the Kraus operators for the map PV,σ(ρ)

PV,σ(ρ) =
∑

nm

CnmρC†
nm, Cnm =

∑

k

eiθkΨk|υ∗n〉〈υ∗m|Ψ†
k

√
λm (7)

where |υn〉 denotes the eigenvector of σ corresponding to the eigenvalue λn.
We then obtain∑

nm

|Tr[C†
nmU ]|2 =

∑

kh

ei(θk−θh) Tr[Ψ†
kU†ΨkσᵀΨ†

hUΨh]

=Tr[σᵀS(U, V )†S(U, V )]
(8)

where

S(U, V ) =
∑

k

e−iθkΨ†
kUΨk . (9)

The fidelity (5) can then be rewritten as follows

F (U, V ) =
1
d2

||S(U, V )||2. (10)

one would like to use δ(C,P) = ||C − P||CB
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• Bipartite states |Ψ〉〉 ∈ H ⊗ K ⇐⇒ operators Ψ ∈ HS(K,H)

|Ψ〉〉 =
∑

nm

Ψnm|n〉 ⊗ |m〉.

• Matrix notation (for fixed reference basis in the Hilbert spaces)

A ⊗ B|C〉〉 = |AC Bᵀ〉〉,

〈〈A|B〉〉 ≡ Tr[A†B].
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i

|Tr[C†
i U ]|2, (4)

where C =
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i Ci · C†
i . Such fidelity is also related to the input-output
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transposition
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complex conjugation

Ψ ∈ HS(K,H), |Ψ〉〉 = (Ψ ⊗ I)|I〉〉

cyclic vector |I〉〉 ∈ H ⊗ K
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Krauss form

Max over σ
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3. Reducing the problem to an operator norm

In the following we will use the GNS representation |Ψ〉〉 = (Ψ ⊗ I)|I〉〉 of
operators Ψ ∈ B(H), and denote by Xᵀ the transposed with respect to the
cyclic vector |I〉〉, i. e. |Ψ〉〉 = (Ψ ⊗ I)|I〉〉 = (I ⊗ Ψᵀ)|I〉〉, and by X∗ the
complex conjugated operator X∗ .= (Xᵀ)†, and write |υ∗〉 for the vector
such that (|υ〉〈υ| ⊗ I)|I〉〉 = |υ〉|υ∗〉. Upon spectralizing the unitary V as
follows

V =
∑

k

eiθk |Ψk〉〉〈〈Ψk|, (6)

we obtain the Kraus operators for the map PV,σ(ρ)

PV,σ(ρ) =
∑

nm

CnmρC†
nm, Cnm =

∑

k

eiθkΨk|υ∗n〉〈υ∗m|Ψ†
k

√
λm (7)

where |υn〉 denotes the eigenvector of σ corresponding to the eigenvalue λn.
We then obtain∑

nm

|Tr[C†
nmU ]|2 =

∑

kh

ei(θk−θh) Tr[Ψ†
kU†ΨkσᵀΨ†

hUΨh]

=Tr[σᵀS(U, V )†S(U, V )]
(8)

where

S(U, V ) =
∑

k

e−iθkΨ†
kUΨk . (9)

The fidelity (5) can then be rewritten as follows

F (U, V ) =
1
d2

||S(U, V )||2. (10)
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4. Solution for the qubit case

The operator S(U, V ) in Eq. (9) can be written as follows

S(U, V ) = Tr1[(Uᵀ ⊗ I)V ∗] . (11)

Changing V by local unitary operators transforms S(U, V ) in the following
fashion

S(U, (W1 ⊗W2)V (W3 ⊗W4)) = W ∗
2 S(W †

1 UW †
3 , V )W ∗

4 , (12)

namely the local unitaries do not change the minimum fidelity, since the
unitaries on the ancilla just imply a different program state, whereas the
unitaries on the system just imply that the minimum fidelity is achieved
for a different unitary—say W †

1 UW †
3 instead of U .

For system and ancilla both two-dimensional, one can parameterize all
possible joint unitary operators as follows10

V = (W1⊗W2) exp[i(α1σ1⊗σ1
ᵀ+α2σ2⊗σ2

ᵀ+α3σ3⊗σ3
ᵀ)](W3⊗W4) . (13)

A possible quantum circuit to achieve V in Eq. (13) can be designed using
the identities

[σα ⊗ σα,σβ ⊗ σβ ] = 0,

C(σx ⊗ I)C = σx ⊗ σx,

C(I ⊗ σz)C = −σz ⊗ σz,(
e−

iπ
4 σz ⊗ e−

iπ
4 σz

)
C(σx ⊗ I)C

(
e

iπ
4 σz⊗ iπ

4 σz

)
= σy ⊗ σy,

(14)

where C denotes the controlled-NOT

C = |0〉〈0|⊗ I + |1〉〈1|⊗ σx. (15)

This gives the quantum circuit in Fig. 1. The problem is now reduced to

W1 • Xα1 • Z−π
4 • X−α2 • Zπ

4 W3

W2
!"#$%&'( Zα3

!"#$%&'( Z−π
4
!"#$%&'( !"#$%&'( Zπ

4 W4

Figure 1. Quantum circuit scheme for the general joint unitary operator V in Eq. (13).
Here we use the notation Gφ = exp(iφσG) with G = X, Y, Z.

study only joint unitary operators of the form

V = exp[(i(α1σ1 ⊗ σ1
ᵀ + α2σ2 ⊗ σ2

ᵀ + α3σ3 ⊗ σ3
ᵀ)] . (16)
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This has eigenvectors

|Ψj〉〉 =
1√
2

|σj〉〉, (17)

where σj , j = 0, 1, 2, 3 denote the Pauli matrices σ0 = I, σ1 = σx, σ2 = σy,
σ3 = σz. This means that we can rewrite S(U, V ) in Eq. (9) as follows

S(U, V ) =
1
2

3∑

j=0

e−iθj σjUσj , (18)

with

θ0 = α1 + α2 + α3 , θi = 2αi − θ0 . (19)

The unitary U belongs to SU(2), and can be written in the Bloch form

U = n0I + in · σ , (20)

with nk ∈ R and n2
0 + |n|2 = 1. Using the identity

σjσlσj = εjlσl, εj0 = εjj = 1, εjl = −1 , l %= 0, j, (21)

we can rewrite

S(U, V ) = ñ0I + ñ · σ, (22)

where

ñj =tjnj , 0 ≤ j ≤ 3, t0 =
1
2

3∑

j=0

e−iθj ,

tj =e−iθ0 + e−iθj − t0, 1 ≤ j ≤ 3, tj = |tj |eiφj , 0 ≤ j ≤ 3,

(23)

It is now easy to evaluate the operator S(U, V )†S(U, V ). One has

S(U, V )†S(U, V ) =v0I + v · σ,

v0 =|ñ0|2 + |ñ|2, v = i [2'(ñ0ñ∗) + ñ∗ × ñ] .
(24)

Now, the maximum eigenvalue of S(U, V )†S(U, V ) is v0 + |v|, and one has

|v|2 =
3∑

i,j=0

|ñi|2|ñj |2 − ñ∗2i ñ2
j = 2

3∑

i,j=0

|ñi|2|ñj |2 sin2(φi − φj), (25)

whence the norm of S(U, V ) is given by

||S(U, V )||2 =
3∑

j=0

n2
j |tj |2 +

√√√√2
3∑

i,j=0

n2
i n

2
j |ti|2|tj |2 sin2(φi − φj) . (26)
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j = 2

3∑

i,j=0
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2
j |ti|2|tj |2 sin2(φi − φj) . (26)
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j = 2

3∑

i,j=0
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ñj =tjnj , 0 ≤ j ≤ 3, t0 =
1
2

3∑

j=0

e−iθj ,

tj =e−iθ0 + e−iθj − t0, 1 ≤ j ≤ 3, tj = |tj |eiφj , 0 ≤ j ≤ 3,

(23)

It is now easy to evaluate the operator S(U, V )†S(U, V ). One has

S(U, V )†S(U, V ) =v0I + $v · $σ,
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4. Solution for the qubit case

The operator S(U, V ) in Eq. (9) can be written as follows

S(U, V ) = Tr1[(Uᵀ ⊗ I)V ∗] . (11)

Changing V by local unitary operators transforms S(U, V ) in the following
fashion

S(U, (W1 ⊗W2)V (W3 ⊗W4)) = W ∗
2 S(W †

1 UW †
3 , V )W ∗

4 , (12)

namely the local unitaries do not change the minimum fidelity, since the
unitaries on the ancilla just imply a different program state, whereas the
unitaries on the system just imply that the minimum fidelity is achieved
for a different unitary—say W †

1 UW †
3 instead of U .

For system and ancilla both two-dimensional, one can parameterize all
possible joint unitary operators as follows10

V = (W1⊗W2) exp[i(α1σ1⊗σ1
ᵀ+α2σ2⊗σ2

ᵀ+α3σ3⊗σ3
ᵀ)](W3⊗W4) . (13)

A possible quantum circuit to achieve V in Eq. (13) can be designed using
the identities

[σα ⊗ σα,σβ ⊗ σβ ] = 0,

C(σx ⊗ I)C = σx ⊗ σx,

C(I ⊗ σz)C = −σz ⊗ σz,(
e−

iπ
4 σz ⊗ e−

iπ
4 σz

)
C(σx ⊗ I)C

(
e

iπ
4 σz⊗ iπ

4 σz

)
= σy ⊗ σy,

(14)

where C denotes the controlled-NOT

C = |0〉〈0|⊗ I + |1〉〈1|⊗ σx. (15)

This gives the quantum circuit in Fig. 1. The problem is now reduced to

W1 • Xα1 • Z−π
4 • X−α2 • Zπ

4 W3

W2
!"#$%&'( Zα3

!"#$%&'( Z−π
4
!"#$%&'( !"#$%&'( Zπ

4 W4

Figure 1. Quantum circuit scheme for the general joint unitary operator V in Eq. (13).
Here we use the notation Gφ = exp(iφσG) with G = X, Y, Z.

study only joint unitary operators of the form

V = exp[(i(α1σ1 ⊗ σ1
ᵀ + α2σ2 ⊗ σ2

ᵀ + α3σ3 ⊗ σ3
ᵀ)] . (16)
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Notice that the unitary U which is programmed with minimum fidelity in
general will not not be unique, since the expression for the fidelity depends
on {n2

j}. Notice also that using the decomposition in Eq. (13) the minimum
fidelity just depends on the phases {θj}, and the local unitaries will appear
only in the definitions of the optimal program state and of the worstly
approximated unitary. It is convenient to write Eq. (26) as follows

||S(U, V )||2 = u · t +
√

u · Tu . (27)

where u = (n2
0, n

2
1, n

2
2, n

2
3), t = (|t0|2, |t1|2, |t2|2, |t3|2), and Tij =

|ti|2|tj |2 sin2(φi − φj). One has the bounds

u · t +
√

u · Tu ≥ u · t ≥ min
j

|tj |2, (28)

and the bound is achieved on one of the for extremal points ul = δlj of
the domain of u which is the convex set {u, uj ≥ 0,

∑
j uj = 1} (the

positive octant of the unit four dimensional ball S4
+). Therefore, the fidelity

minimized over all unitaries is given by

F (V ) =
1
d2

min
j

|tj |2. (29)

The optimal unitary V is now obtained by maximizing F (V ). We need
then to consider the decomposition Eq. (13), and then to maximize the
minimum among the four eigenvalues of S(U, V )†S(U, V ). Notice that tj =∑

µ Hjµeiθµ , where H is the Hadamard matrix

H =
1
2





1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1



 , (30)

which is unitary, and consequently
∑

j |tj |2 =
∑

j |eiθj |2 = 4. This implies
that minj |tj | ≤ 1. We now provide a choice of phases θj such that |tj | = 1
for all j, achieving the maximum fidelity allowed. For instance, we can
take θ0 = 0, θ1 = π/2, θ2 = π, θ3 = π/2, corresponding to the eigenvalues
i, 1,−i, 1 for V . Another solution is θ0 = 0, θ1 = −π/2, θ2 = π, θ3 = −π/2.
Also one can set θi → −θi. The eigenvalues of S(U, V )†S(U, V ) are then
1, 1, 1, 1, while for the fidelity we have

F
.= max

V ∈U(H⊗2)
F (V ) =

1
d2

=
1
4
, (31)

and the corresponding optimal V has the form

V = exp
[
±i

π

4
(σx ⊗ σx ± σz ⊗ σz)

]
. (32)
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on {n2

j}. Notice also that using the decomposition in Eq. (13) the minimum
fidelity just depends on the phases {θj}, and the local unitaries will appear
only in the definitions of the optimal program state and of the worstly
approximated unitary. It is convenient to write Eq. (26) as follows

||S(U, V )||2 = u · t +
√

u · Tu . (27)

where u = (n2
0, n

2
1, n

2
2, n

2
3), t = (|t0|2, |t1|2, |t2|2, |t3|2), and Tij =

|ti|2|tj |2 sin2(φi − φj). One has the bounds

u · t +
√

u · Tu ≥ u · t ≥ min
j

|tj |2, (28)

and the bound is achieved on one of the for extremal points ul = δlj of
the domain of u which is the convex set {u, uj ≥ 0,

∑
j uj = 1} (the

positive octant of the unit four dimensional ball S4
+). Therefore, the fidelity

minimized over all unitaries is given by

F (V ) =
1
d2

min
j

|tj |2. (29)

The optimal unitary V is now obtained by maximizing F (V ). We need
then to consider the decomposition Eq. (13), and then to maximize the
minimum among the four eigenvalues of S(U, V )†S(U, V ). Notice that tj =∑

µ Hjµeiθµ , where H is the Hadamard matrix

H =
1
2





1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1



 , (30)

which is unitary, and consequently
∑

j |tj |2 =
∑

j |eiθj |2 = 4. This implies
that minj |tj | ≤ 1. We now provide a choice of phases θj such that |tj | = 1
for all j, achieving the maximum fidelity allowed. For instance, we can
take θ0 = 0, θ1 = π/2, θ2 = π, θ3 = π/2, corresponding to the eigenvalues
i, 1,−i, 1 for V . Another solution is θ0 = 0, θ1 = −π/2, θ2 = π, θ3 = −π/2.
Also one can set θi → −θi. The eigenvalues of S(U, V )†S(U, V ) are then
1, 1, 1, 1, while for the fidelity we have

F
.= max

V ∈U(H⊗2)
F (V ) =

1
d2

=
1
4
, (31)

and the corresponding optimal V has the form

V = exp
[
±i

π

4
(σx ⊗ σx ± σz ⊗ σz)

]
. (32)
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Figure 2. Quantum circuit scheme for the optimal unitary operator V in Eq. (31). For
the notation see Fig. 1. For the derivation of the circuit see Eqs. (14).

We now show that such fidelity cannot be achieved by any V of the
controlled-unitary form

V =
2∑

k=1

Vk ⊗ |ψk〉〈ψk|, 〈ψ1|ψ2〉 = 0, V1, V2 unitary on H $ C2. (33)

For spectral decomposition Vk =
∑2

j=1 eiθ(j)
k |φ(k)

j 〉〈φ(k)
j | the eigenvectors

of V are |Ψjk〉〉 = |φ(k)
j 〉|ψk〉, and the corresponding operators are Ψjk =

|φ(k)
j 〉〈ψ∗k|, namely the operator S(U, V ) is

S(U, V ) =
∑

j,k

e−iθ(j)
k |ψ∗k〉〈φ

(k)
j |U |φ(k)

j 〉〈ψ∗k| , (34)

with singular values
∑2

j=1 e−iθ(j)
k 〈φ(k)

j |U |φ(k)
j 〉 = Tr[V †

k U ]. Then, the op-
timal program state is |ψh〉, with h = arg maxk |Tr[V †

k U ]|, and the corre-
sponding fidelity is

F (U, V ) =
1
4
|Tr[V †

h U ]|2 , (35)

and one has

F (V ) = min
U

F (U, V ) = 0, (36)

since for any couple of unitaries Vk there always exists a unitary U such that
Tr[V †

k U ] = 0 for k = 1, 2. Indeed, writing the unitaries in the Bloch form
(20), their Hilbert-Schmidt scalar is equal to the euclidean scalar product
in R4 of their corresponding vectors, whence it is always possible to find a
vector orthogonal to any given couple in R4. The corresponding U is then
orthogonal to both Vk, and the minimum fidelity for any controlled-unitary
is zero.
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4. Solution for the qubit case

The operator S(U, V ) in Eq. (9) can be written as follows

S(U, V ) = Tr1[(Uᵀ ⊗ I)V ∗] . (11)

Changing V by local unitary operators transforms S(U, V ) in the following
fashion

S(U, (W1 ⊗W2)V (W3 ⊗W4)) = W ∗
2 S(W †

1 UW †
3 , V )W ∗

4 , (12)

namely the local unitaries do not change the minimum fidelity, since the
unitaries on the ancilla just imply a different program state, whereas the
unitaries on the system just imply that the minimum fidelity is achieved
for a different unitary—say W †

1 UW †
3 instead of U .

For system and ancilla both two-dimensional, one can parameterize all
possible joint unitary operators as follows10

V = (W1⊗W2) exp[i(α1σ1⊗σ1
ᵀ+α2σ2⊗σ2

ᵀ+α3σ3⊗σ3
ᵀ)](W3⊗W4) . (13)

A possible quantum circuit to achieve V in Eq. (13) can be designed using
the identities

[σα ⊗ σα,σβ ⊗ σβ ] = 0,

C(σx ⊗ I)C = σx ⊗ σx,

C(I ⊗ σz)C = −σz ⊗ σz,(
e−

iπ
4 σz ⊗ e−

iπ
4 σz

)
C(σx ⊗ I)C

(
e

iπ
4 σz⊗ iπ

4 σz

)
= σy ⊗ σy,

(14)

where C denotes the controlled-NOT

C = |0〉〈0|⊗ I + |1〉〈1|⊗ σx. (15)

This gives the quantum circuit in Fig. 1. The problem is now reduced to

W1 • Xα1 • Z−π
4 • X−α2 • Zπ

4 W3

W2
!"#$%&'( Zα3

!"#$%&'( Z−π
4
!"#$%&'( !"#$%&'( Zπ

4 W4

Figure 1. Quantum circuit scheme for the general joint unitary operator V in Eq. (13).
Here we use the notation Gφ = exp(iφσG) with G = X, Y, Z.

study only joint unitary operators of the form

V = exp[(i(α1σ1 ⊗ σ1
ᵀ + α2σ2 ⊗ σ2

ᵀ + α3σ3 ⊗ σ3
ᵀ)] . (16)
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Notice that the unitary U which is programmed with minimum fidelity in
general will not not be unique, since the expression for the fidelity depends
on {n2

j}. Notice also that using the decomposition in Eq. (13) the minimum
fidelity just depends on the phases {θj}, and the local unitaries will appear
only in the definitions of the optimal program state and of the worstly
approximated unitary. It is convenient to write Eq. (26) as follows

||S(U, V )||2 = u · t +
√

u · Tu . (27)

where u = (n2
0, n

2
1, n

2
2, n

2
3), t = (|t0|2, |t1|2, |t2|2, |t3|2), and Tij =

|ti|2|tj |2 sin2(φi − φj). One has the bounds

u · t +
√

u · Tu ≥ u · t ≥ min
j

|tj |2, (28)

and the bound is achieved on one of the for extremal points ul = δlj of
the domain of u which is the convex set {u, uj ≥ 0,

∑
j uj = 1} (the

positive octant of the unit four dimensional ball S4
+). Therefore, the fidelity

minimized over all unitaries is given by

F (V ) =
1
d2

min
j

|tj |2. (29)

The optimal unitary V is now obtained by maximizing F (V ). We need
then to consider the decomposition Eq. (13), and then to maximize the
minimum among the four eigenvalues of S(U, V )†S(U, V ). Notice that tj =∑

µ Hjµeiθµ , where H is the Hadamard matrix

H =
1
2





1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1



 , (30)

which is unitary, and consequently
∑

j |tj |2 =
∑

j |eiθj |2 = 4. This implies
that minj |tj | ≤ 1. We now provide a choice of phases θj such that |tj | = 1
for all j, achieving the maximum fidelity allowed. For instance, we can
take θ0 = 0, θ1 = π/2, θ2 = π, θ3 = π/2, corresponding to the eigenvalues
i, 1,−i, 1 for V . Another solution is θ0 = 0, θ1 = −π/2, θ2 = π, θ3 = −π/2.
Also one can set θi → −θi. The eigenvalues of S(U, V )†S(U, V ) are then
1, 1, 1, 1, while for the fidelity we have

F
.= max

V ∈U(H⊗2)
F (V ) =

1
d2

=
1
4
, (31)

and the corresponding optimal V has the form

V = exp
[
±i

π

4
(σx ⊗ σx ± σz ⊗ σz)

]
. (32)
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The optimal unitary V is now obtained by maximizing F (V ). We need
then to consider the decomposition Eq. (13), and then to maximize the
minimum among the four eigenvalues of S(U, V )†S(U, V ). Notice that tj =∑

µ Hjµeiθµ , where H is the Hadamard matrix

H =
1
2


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1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1



 , (30)

which is unitary, and consequently
∑

j |tj |2 =
∑

j |eiθj |2 = 4. This implies
that minj |tj | ≤ 1. We now provide a choice of phases θj such that |tj | = 1
for all j, achieving the maximum fidelity allowed. For instance, we can
take θ0 = 0, θ1 = π/2, θ2 = π, θ3 = π/2, corresponding to the eigenvalues
i, 1,−i, 1 for V . Another solution is θ0 = 0, θ1 = −π/2, θ2 = π, θ3 = −π/2.
Also one can set θi → −θi. The eigenvalues of S(U, V )†S(U, V ) are then
1, 1, 1, 1, while for the fidelity we have

F
.= max

V ∈U(H⊗2)
F (V ) =

1
d2

=
1
4
, (31)

and the corresponding optimal V has the form

V = exp
[
±i

π

4
(σx ⊗ σx ± σz ⊗ σz)

]
. (32)
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A possible circuit scheme for the optimal V is given in Fig. 2.

• X±π
4 •!"#$%&'( Z∓π
4
!"#$%&'(

Figure 2. Quantum circuit scheme for the optimal unitary operator V in Eq. (31). For
the notation see Fig. 1. For the derivation of the circuit see Eqs. (14).

We now show that such fidelity cannot be achieved by any V of the
controlled-unitary form

V =
2∑

k=1

Vk ⊗ |ψk〉〈ψk|, 〈ψ1|ψ2〉 = 0, V1, V2 unitary on H $ C2. (33)

For spectral decomposition Vk =
∑2

j=1 eiθ(j)
k |φ(k)

j 〉〈φ(k)
j | the eigenvectors

of V are |Ψjk〉〉 = |φ(k)
j 〉|ψk〉, and the corresponding operators are Ψjk =

|φ(k)
j 〉〈ψ∗k|, namely the operator S(U, V ) is

S(U, V ) =
∑

j,k

e−iθ(j)
k |ψ∗k〉〈φ

(k)
j |U |φ(k)

j 〉〈ψ∗k| , (34)

with singular values
∑2

j=1 e−iθ(j)
k 〈φ(k)

j |U |φ(k)
j 〉 = Tr[V †

k U ]. Then, the op-
timal program state is |ψh〉, with h = arg maxk |Tr[V †

k U ]|, and the corre-
sponding fidelity is

F (U, V ) =
1
4
|Tr[V †

h U ]|2 , (35)

and one has

F (V ) = min
U

F (U, V ) = 0, (36)

since for any couple of unitaries Vk there always exists a unitary U such that
Tr[V †

k U ] = 0 for k = 1, 2. Indeed, writing the unitaries in the Bloch form
(20), their Hilbert-Schmidt scalar is equal to the euclidean scalar product
in R4 of their corresponding vectors, whence it is always possible to find a
vector orthogonal to any given couple in R4. The corresponding U is then
orthogonal to both Vk, and the minimum fidelity for any controlled-unitary
is zero.
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No go theorem

Suppose M distinct observables                              are implemented 
by some programmable quantum gate array. Then the program 
register is at least M dimensional. Moreover, the corresponding 
programs                          are mutually orthogonal. 

Proof:

Programmability	
 of	
 observables

X1,X2, . . . ,XM

|ψ1〉, . . . , |ψM 〉

X l = Tr2[(I ⊗ |ψl〉〈ψl|)Z]

|x(j)
l 〉〈x(j)

l | = Tr2[(I ⊗ |ψl〉〈ψl|)Z
(j)]

〈x(n)
l |〈ψl|Z

(j)|x(m)
l 〉|ψl〉 = δjnδjm

Z(j)|x(j)
l 〉|ψl〉 = |x(j)

l 〉|ψl〉

Z(j)|x(i)
l 〉|ψl〉 = δij |x

(i)
l 〉|ψl〉Z

(i)
Z

(j)
= δijZ

(j)

〈ψl|ψk〉〈x
(j)
l |x(i)

k 〉 = 0, i #= j

Xl != Xk ⇒ 〈ψl|ψk〉 = δlk !



The joint observable that programs perfectly the 
observables                               is the controlled-O 
operator

X1,X2, . . . ,XM

Z =

∑

l

Xl ⊗ |ψl〉〈ψl|

Xl = U
†
l
XUl
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σ
Z
!"#$ρ

Universal detector.

ν
Universal detector

!"#$ρ data processing
1

ε(Z)
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 of	
 observables



PZ

Contro
lled

-U
Using a joint observable Z of the form

Zi = U†(|ψi〉〈ψi| ⊗ IA)U, U =

dim(A)
∑

k=1

Wk ⊗ |φk〉〈φk|

with {ψi} and {φk} orthonormal sets and Wk unitary, we can
program observables with accuracy ε−1 using an ancilla with
polynomial growth

dim(A) ! κ(N)

(

1

ε

)N(N−1)

programmability with accuracy ε−1:

ε(Z)
.
= max

Q∈PN

min
P∈PZ

δ(P,Q)

δ(P,Q) = max
ρ

∑

i

|Tr[ρ(Pi − Qi)]|
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For qubits: linear growth!
Programmable detector.

σ
Z
!"#$ρ

Indirect measurement scheme.

ν
U %&!!!!

ρ ρn

Programmable operation.

σ
U

ρ M (ρ)

Programmable detector.

σ
Z
!"#$ρ

Universal detector.

ν
Universal detector

!"#$ρ data processing
1

Program for the observable P = {U (1/2)
g | ± 1

2 〉〈±
1
2 |U

(1/2)
g

†}

σ = U (j)
g |jj〉〈jj|U (j)

g
†

in dimension dim(A) = 2j + 1, with joint observable

Z = {Π(j± 1

2
)}

gives the programmability accuracy
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dim(A) = 2ε
−1ε(Z) =

2

2j + 1
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Covariant measurements 
are exactly programmable

G-covariant POVM densities (Holevo theorem)

Pg d g = UgξU
†
g d g, g ∈ G

programmable as

Pg = Tr2[(I ⊗ σ)Fg], ξ = V σᵀV †

with covariant Bell POVM density

Fg = (Ug ⊗ I)|V 〉〉〈〈V |(U†
g ⊗ I)

Exact	
 Programmability	
 of	
 POVMs



Unitary operator U connecting the Bell
observable with local observables

U(|m〉 ⊗ |n〉) =
1√
d
|Um,n〉〉

of the controlled-U form

U =
∑

n

|n〉〈n| ⊗ W
n

e. g. for projective d-dimensional UIR of the Abelian group G = Zd×Zd

Um,n = ZmWn, Z =
∑

j

ωj |j〉〈j|, W =
∑

k

|k〉〈k ⊕ 1|, ω = e
2πi
d .

Contro
lled

-U

G. M. D’Ariano and P. Perinotti, 
Phys. Lett A 329 188-192 
(2004)
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Programmable channels:

Nielsen-Chuang theorem revisited

Exact programming for finite set of unitaries: controlled-U

Optimal programming in 2x2 dimensions: two controlled-NOT

Programmable POVMs:

No go theorem

Exact programming for finite set of observables: controlled-O

controlled-O: polynomial complexity programming

for qubits: linear complexity programming

Conclusions


