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OUTLINE
Informational axiomatization of Quantum Theory 

How space-time and relativistic covariance emerge from the 
quantum computation

What is the information-theoretical meaning of inertial mass 
and ℏ, and how the quantum field emerges

Observational consequences: mass-dependent refraction 
index of vacuum

mercoledì 20 ottobre 2010



OPERATIONAL  FRAMEWORK

be seen from the actual re-derivation of QFT. Apart from a matter of taste related to the

circuit as an ontology, the two crucial criteria will be Occam razor and mathematical

simplicity. I must however emphasize that in any case the QCFT program remains a

must, and this for at least two reasons. The first reason is that QCFT solves a number

of logical and mathematical problems that plague QFT [3, 4], besides allowing a unified

framework for different fields, giving a mechanism for relativistic invariance, and, last

but not least, providing a systematic way for consistently generalizing the whole theo-

retical framework in view of Quantum Gravity, e. g. moving to higher order input-output

computation with no pre-established causal relations by changing QM toward an oper-

ational noncausal theory with purification. All these nice features may motivate even
to adopt QCFT in place of QFT, QFT being still operationally and logically not well

founded (see e. g. the Poisson-bracket quantization rules, the Feynman path integral, the

Grassman variables, ...) We will discuss these issues more at the end of the paper. The

second reason is that QCFT represents the first test of the Lucien Hardy’s program of an

operational approach to Quantum Gravity. In fact, before building up a theory of Quan-

tum Gravity, we first should check the approach against a well assessed phenomenology,

such as that of particle physics (this would also be much easier than deriving a theory

of Quantum Gravity) QCFT would also bring the powerful point of view of Quantum

Information inside the world of particle physics.

2. THE OPERATIONAL FRAMEWORK.

The starting point of the operational framework is the notion of test. A test is made of

the following ingredients: a) a complete collection of outcomes, b) input systems, c)

output systems. It is represented in form of a box, as follows

A1

{Ai}
B1

A2 B2

A1

A

B1

A2 B2

The left wires represent the input systems, the right wires the output systems, and

{Ai} the collection of outcomes. We often represent not the complete test, but just a
single outcomeAi, or, more generally, a subsetA ⊂ {Ai} of the collection of outcomes,
i. e. an event, as in the right box in figure. The number of wires at the input and at

the output can vary, and one can even have no wire at the input and/or at the input.

Depending on the context, the test can be regarded as a man-made apparatus or as a

nature-made physical interaction. The set of events of a test is closed under union (also

called coarse-graining), intersection, and complementation, thus making a Boolean

algebra. A refinement of an event A is a set of events {Ai} occurring in some test
such that A = ∪iAi. Generally an event can have different refinements depending on

the test to which it belongs, or it may be unrefinable within some test. An event that is

unrefinable within any test is called atomic.

The natural place for a test/event is inside a network of other tests/events, and to
understand the origin of the box representation and the intimatemeaning of the test/event

you should imagine it actually connected to other tests/events in a circuit, e. g. as follows
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The different letters A,B,C, . . . labeling the wires denote different “types of system”.
We can connect only an input wire of a box with an output wire of another box, the two

wires having the same label. Loops are forbidden. Among the different kinds of systems,

we have a special one called trivial system, denoted by I, which we conveniently

represent by no wire, but instead, by drawing the corresponding side of the box convexly

rounded as follows )*+," A := I " A , and A -./0a := A a I .

The fact that there are no closed loops gives to the circuit the structure of a DAG

(directed acyclic graph), with vertices corresponding to operations, and edges to wires.

The absence of closed loops corresponds to the requirement that the test/event is one-use

only. We also must keep in mind that there are no constraints for disconnected parts of

the network, i. e. they can be arranged freely as long as they are disconnected (this would
not be true e. g. for a quaternionic quantum network). Finally, we will also consider

conditioned tests, where one can choose a different test depending on the outcome

of an input one. The construction of the network mathematically is equivalent to the

construction of a symmetric strict monoidal category (see Ref.[5]).

In order to make predictions about the occurrence probability of events based on cur-

rent knowledge, one needs a “theory”. An operational theory [2] is specified by a col-

lection of systems, closed under parallel composition, and by a collection of tests, closed

under parallel/sequential composition and under randomization. The operational theory

is probabilistic if every test from the trivial system to the trivial system is associated to a

probability distribution of outcomes.

Therefore a probabilistic theory provides us with the joint probabilities for all possible

events for any closed network (namely with no overall input and output). The probability

itself will be conveniently represented by the corresponding network of events. We must

keep in mind that the probability of an event is independent on the test to which it

belongs, and this legitimates using networks of events, without the need of specifying

the test. In the following, we will denote the set of events from system A to system B as

T(A,B), and use the abbreviation T(A) := T(A,A).
Two wires in a circuit are input-output adjacent if they are the input and the output of

the same box. By following input-output adjacent wires in a circuit following the input-

to-output direction we draw an input-output chain. Two systems (wires) that are not
in the same input-output chain are called independent. A set of pairwise independent

systems is a slice. The slice is called global if it partitions the circuit into two parts.

By construction it is clear that a global slice always partitions a closed bounded circuit

into two parts, a preparation test and an observation test. Thus, a diagram of the form#!$"Ai
A '%(&B j generally represents the event corresponding to an istance of a

concluded experiment, which starts with a preparation and ends with an observation.

The probability of such event will be denoted as
(

B j |Ai

)

, using the “Dirak-like” nota-

no loops (DAG)

D’Ariano in Philosophy of Quantum Information 
and Entanglement, A. Bokulich and G. Jaeger 
(Cambridge Un. Press 2010)

Transformation (equivalence 
class of events)

State   (equivalence classes of ...) Effect

systems

test eventNotions: coarse-graining, 
refinement, refinement set, 
atomic/indivisible 

Probabilistic operational theory: 
every closed circuit made of events  
is associated to a probability.

Chiribella, D’Ariano, and Perinotti, PRA 
81 062348 (2010)
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CAUSAL PROBABILISTIC 
THEORIES

1.1. THE OPERATIONAL FRAMEWORK 21

transformation

e. g. A ∈ T(A , B), A : |ρ)A �→ |A ρ)B. Then, every event A ∈ T(A,B) induces a

map from S(AC) to S(BC) for every system C, uniquely defined by

A : |ρ)AC ∈ S(AC) �→ (A ⊗IC) |ρ)AC ∈ S(BC). (1.30)

The map is linear from SR(AC) to SR(BC). From a probabilistic point of view, if for

every possible system C two events A and A �
induce the same maps, then they are

indistinguishable. We are thus lead to the definition of transformation.

Transformations: Equivalence classes of indistinguishable events from A to B are
called transformations from A to B.

Again, we will assume that the equivalence classes have been already done since

the start, and, consequently, we will identify events with transformations, without in-

troducing new notation. Accordingly, a test will be a collection of transformations.

Notice that generally two transformations A ,A � ∈ T(A, B) can be different even

if A |ρ)A = A � |ρ)A for every ρ ∈ S(A). Indeed one has A �= A �
different if that

there exists an ancillary system C and a joint state |ρ)AC such that

(A ⊗IC) |ρ)AC �= (A � ⊗IC) |ρ)AC. (1.31)

We will come back on this point when discussing local discriminability in Subsect. ??

Notes
The assumption of the convex closure BLA BLA. Nevertheless, we will see that for

most of our results the assumption of convexity is not essential, and we will discuss

the validity of our results in non-convex theories, like the toy-theories considered by

Spekkens in Ref. [?]. Having this in mind, whenever possible we will present our

results in a convexity-independent language.

1.1.5 The causality arrow.
Although in the networks discussed until now we had sequences of tests, such se-

quences were not necessarily temporal, or causal sequences, namely the order of tests

in a sequence was not necessarily following the causal or the time arrow.

We now introduce the causality condition, also called no signalling from the fu-
ture [D’A09] if one identifies the causal arrow with the time arrow. This allows us to

interpret the sequential composition as a causal cascade.

Causality condition 1. We say that a theory is causal, if for any two tests {Ai}i∈X

and {Bj}∈Y that are connected with at least an input of test {Bj}∈Y connected to
an output of {Ai}∈Y as follows

. . . . . . C

{Bj}
F . . .

. . . A

{Ai}
D G . . .

. . . B E . . . . . .

(1.32)

February 1, 2010
A theory is causal if for any two tests that are 
input-output connected the marginal probability 
of the input event is independent on the choice 
of the output test.

Input → Output

DAG

G. M. D’Ariano in Philosophy of Quantum 
Information and Entanglement, A. Bokulich 

and G. Jaeger (CUP, Cambridge UK, 2010).

SKIP
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TRANSLATION  IN TERMS OF 
INFORMATION PROCESSING

• Test/Event → subroutine

• Transformation → information processing

• System → register 

• States → initialization 

• Effects → readout 

• ... Pure state → indivisible initialization, etc.. 

We can compose processings connecting 
input with outputs of the same type 

A

S1

A�

C

S2B B�

• A box precisely represents a single call of the processing
• The circuit represents the entire run, not a flow diagram

A
{Si}

A�

B B� (subroutines are 
generally refinable) 
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TRANSLATION  IN TERMS OF 
INFORMATION PROCESSING

The domain of a processing is the set of 
its possible initializations, its range the set 
of its possible readouts.

Two initializations       and       are discriminable when:A2A1����A1
A ����B ����A2

A ����B�=
and the discrimination is perfect when the two probabilities are 0 and 1

����A A
S

B ����A�
B

= Initialization followed by a processing = new initialization

An initialization is specific when its refinement 
set is not the whole set of initializations.
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P1. Causality: The occurrence of a component processing cannot depend on the 
choice of the processing at its output (i. e. information flows only from input to output).

P2. Local Readability:  We can discriminate two initializations of multiple registers 
by readouts on single registers.

P3. Reversibility and Indivisibility of Computation: Every information 
processing can be achieved with a reversible one by adding a register in an indivisible 
initialization.

P4. Indivisibility of Processing Composition: The processing corresponding to 
the input-output sequence of two indivisible processings is itself indivisible.

P5. Discriminability of Specific Initializations: For any specific initialization 
there exists another initialization that can be perfectly discriminated from it.

P6. Lossless Compressibility: For any initialization there exists an encoding which is 
perfectly decodeable on its refinement set, and the encoded initialization is not specific.

THE PRINCIPLE OF THE QUANTUMNESS
POSTULATES   FOR   QT

. . . . . . C

{Bj}
F . . .

. . . A

{Ai}
D G . . .

. . . B E . . . . . .
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choice of the processing at its output (i. e. information flows only from input to output).
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P3. Reversibility and Indivisibility of Computation: Every information 
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the input-output sequence of two indivisible processings is itself indivisible.

P5. Discriminability of Specific Initializations: For any specific initialization 
there exists another initialization that can be perfectly discriminated from it.

P6. Lossless Compressibility: For any initialization there exists an encoding which is 
perfectly decodeable on its refinement set, and the encoded initialization is not specific.

THE PRINCIPLE OF THE QUANTUMNESS
POSTULATES   FOR   QT

crucial in reducing experimental 
complexity, by guaranteeing that only 
local (jointly executed) measurements 
are sufficient to retrieve a complete 
information of a composite system, 
including all correlations between the 
components

The origin of the 
complex tensor 

product

Reductionism

Holism

Local 
experiment

Local 
experiment

Local 
experimentNonlocal experiment
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P1. Causality: The occurrence of a component processing cannot depend on the 
choice of the processing at its output (i. e. information flows only from input to output).

P2. Local Readability:  We can discriminate two initializations of multiple registers 
by readouts on single registers.

P3. Reversibility and Indivisibility of Computation: Every information 
processing can be achieved with a reversible one by adding a register in an indivisible 
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THE PRINCIPLE OF THE QUANTUMNESS
POSTULATES   FOR   QT

computation 

can be done 
reversibly

coputation runs in 
quantum parallelism

The most “quantum” postulate 

•  All postulates apart from P3 are 
satisfied by classical theory, P3 is not 
satisfied by PR boxes 

•  No known theory (apart from QT) 
satisfying P1, P2, and P3

•  It is the basis of most quantum 
information protocols: teleportation, 
error correction, no-cloning 
theorem,  ancilla-assisted 
tomography, .... 
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P1. Causality: The occurrence of a component processing cannot depend on the 
choice of the processing at its output (i. e. information flows only from input to output).

P2. Local Readability:  We can discriminate two initializations of multiple registers 
by readouts on single registers.

P3. Reversibility and Indivisibility of Computation: Every information 
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THE PRINCIPLE OF THE QUANTUMNESS
POSTULATES   FOR   QT

 no reason why the same 
processing obtained by 
composing two ones could 
not be itself achieved in 
principle by a subroutine 
which is divisible
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THE PRINCIPLE OF THE QUANTUMNESS
POSTULATES   FOR   QT

it is easy to 
construct a 
theory that 
violates it
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P1. Causality: The occurrence of a component processing cannot depend on the 
choice of the processing at its output (i. e. information flows only from input to output).

P2. Local Readability:  We can discriminate two initializations of multiple registers 
by readouts on single registers.
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THE PRINCIPLE OF THE QUANTUMNESS
POSTULATES   FOR   QT

NOt obvious for information processing 
with different kinds of registers 

Crucial for Shannon's & Schumaker's 
compressioN
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What is out of there?
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Physics is Information
“It from 

Bit”

“Information 
is physical”

(Bit from It)
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ThE UNIVERSE 

IS A HUGE 

COMPUTER
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HOW RELATIVITY EMERGES 
FROM THE COMPUTATION?
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Relativity from QT
(from causality)

In
pu

t 
→

 O
ut

pu
t

events

systems

mercoledì 20 ottobre 2010



 

Relativity from QT
In

pu
t 
→

 O
ut

pu
t

causally 
connected 

systems

(from causality)
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Relativity from QT
In

pu
t 
→

 O
ut
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t independent 

systems 

“slice” 

(from causality)
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causal chain = time (observer)

Relativity from QT
causal antichain = space

In
pu

t 
→

 O
ut

pu
t

metric =
event-counting

topology 
(Alexandrov)

 

(from causality)
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Relativity from QT
build a 
uniform 
foliation

(from causality)
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Relativity from QT
change 

reference

(from causality)
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Relativity from QT
speed of 

light

(from causality)
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Relativity from QT

clock tic-tac

(from causality)
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Relativity from QT
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(from causality)
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Relativity from QT
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Relativity from QT
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(from causality)
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WE GOT RELATIVITY FROM 
CAUSALITY!
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WE GOT MUCH MORE: 

FROM CAUSALITY  WE GOT 
SPACE AND TIME ENDOWED 

WITH RELATIVITY!
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A theory of quantum gravity based on quantum computation

Seth Lloyd
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Abstract: This paper proposes a method of unifying quantum mechanics and gravity based

on quantum computation. In this theory, fundamental processes are described in terms

of pairwise interactions between quantum degrees of freedom. The geometry of space-

time is a construct, derived from the underlying quantum information processing. The

computation gives rise to a superposition of four-dimensional spacetimes, each of which

obeys the Einstein-Regge equations. The theory makes explicit predictions for the back-

reaction of the metric to computational ‘matter,’ black-hole evaporation, holography, and

quantum cosmology.

Quantum computation can be thought of as a universal theory for discrete quantum

mechanics. Quantum computers are discrete systems that evolve by local interactions [1],

and every discrete quantum system that evolves by local interactions, including lattice

gauge theories, can be simulated efficiently on a quantum computer [2-6] The quantiza-

tion of gravity remains one of the primary challenges to physics [7-31]. If, at bottom,

quantum gravity is a discrete, local quantum theory, then quantum gravity, too, should be

describable as a quantum computation.

Unlike conventional approaches to quantum gravity such as string theory [14], canon-

ical quantization [7], loop quantum gravity [15-20], and Euclidean quantum gravity [10]

the theory proposed here does not set out to quantize gravity directly. Gravity is a theory

based on geometry and distance: the normal approach to gravity is to quantize the metric

1

The geometry of 
space-time is a 

construct derived 
from the underlying 
quantum information 

processing
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Lorentz transformations  from causality 
and topological homogeneity
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Galileo’s principle
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Lorentz transformations  from causality 
and topological homogeneity
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Lorentz transformations  from causality 
and topological homogeneity

Coarse-graining
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a∗

Lorentz transformations  from causality 
and topological homogeneity

z1 = 12 z2 = 3

Ka :→ Z2, b �→ Ka(b) := �z(b) =
�
z1(b)
z2(b)

�
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The foliation has an “origin” a defined by the observer
Oa. Homogeneity of foliations follows from that of the ob-
server. Notice that a foliation does not generally contain
all the events of the CN (it certainly does for α = β = 1):
this fact is related to the sparsness issue raised in Ref.
[12] for Lorentz-transformed regular lattices of points.

For a given foliation L(Oa) we can now define a pair of
coordinates z(b) for any event b ∈ L(Oa) via the map

KOa : N → Z2, b #→ KOa(b) := z(b) =

[
z1(b)
z2(b)

]
,

z1(b) := inf
b∗∈J+b

|Oa(a, b∗)|±, z2(b) := inf
a∗∈J+a

|Ob(b, a
∗)|±.

(5)

Thus, to each observer Oa it corresponds a coordinate

z =4 z =221

a

b

a*b*

FIG. 3: Illustration of the coordinate map in Eq. (5) (the
observer has α = 3 and β = 2).

map, and this is what is commonly called a reference
frame—shortly frame. The coordinates z1 and z2 do not
have an immediate meaning, but get an simple interpre-
tation thanks to the following Lemma.

Lemma 1 An event b ∈ L(Oa) belongs to the t-th leaf
Lt(Oa) for t = (z1 − z2)/2, and the number of events on
such leaf between b and Oa is given by s = (z1 + z2)/2.

Proof. There exists t ∈ Z such that ot is simultaneous
to b. By definition one has b ∈ Lt(Oa), and

inf
b∗∈J+b

|Oot(ot, b
∗)|± = inf

ot
∗∈{jfot

|Ob(b, ot
∗)|±. (6)

One has

z1(b) = t + inf
b∗∈J+b

|Oot(ot, b
∗)|±, (7)

whereas

z2(b) = inf
o∗

t∈J+ot

inf
a∗∈J+a

(
|Ob(b, o

∗
t )|± + |Ob(o

∗
t , a

∗)|±
)
. (8)

Topological homogeneity implies that

z2(b) = inf
ot

∗∈J+ot

|Ob(b, o
∗
t )|± − t. (9)

Using the simultaneity condition in Eq. (6) we can com-
bine Eqs. (7) and (9) to get t = 1

2 (z1 − z2). !
According to the last Lemma the coordinates

[
t(b)
s(b)

]
:= 2

1
2 U(π/4)

[
z(b)
z(b)

]
, (10)

where U(θ) is the matrix performing a θ-rotation, can be
interpreted as the space-time coordinates of the event b
in the frame L(Oa).

Frames in standard configuration (boosted). Consider
now two observers O1

a = {o1
i } and O2

a = {o2
j} sharing

the same origin (homogeneity guarantees the existence
of observers sharing the origin). We will shortly denote
the two frames as R1 and R2, and the corresponding co-
ordinate maps as K1 and K2. We will say that the two
frames R1 and R2 are in standard configuration if there
exist positive α12, β12, such that ∀i ∈ Z

K1(o2
i ) = D12K2(o2

i ), D12 := diag(α12, β12). (11)

It turns out that having chosen only simply periodic ob-
servers, one has αij = αj/αi ∈ Z+, βij = βj/βi ∈ Z+.

Examples of observers corresponding to frames in stan-
dard configuration are shown in Fig. 4. Clearly different
frames correspond to generally different sets of events,
and what follows applies to the events in their intersec-
tion: thus, again, the transformation includes an implicit
event coarse-graining. We now see how it is possible to
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FIG. 4: Example of three observers related as in Eq. (11) and
then generating reference frames in standard configuration.

define a relative velocity between two frames in standard
configuration. It is readily seen that K2(o2

n) = (n,−n),
whence K1(o2

l ) = (lα12,−lβ12). We can now define the
relative velocity between R1 and R2 as the quotient be-
tween the space and time coordinates of the observer O2

with respect to observer O1, namely, by Lemma 1

v12 =
nα12 − nβ12

nα12 + nβ12
=

α12 − β12

α12 + β12
. (12)

Of course one has K2(o2
i ) = D21K1(o2

i ) ∀i ∈ Z, with

D21 = D12−1
= diag(1/α12, 1/β12), whence upon rewrit-

ing Eq. (12) for v21 one obtains v21 = −v12.

3

The foliation has an “origin” a defined by the observer
Oa. Homogeneity of foliations follows from that of the ob-
server. Notice that a foliation does not generally contain
all the events of the CN (it certainly does for α = β = 1):
this fact is related to the sparsness issue raised in Ref.
[12] for Lorentz-transformed regular lattices of points.

For a given foliation L(Oa) we can now define a pair of
coordinates z(b) for any event b ∈ L(Oa) via the map

KOa : N → Z2, b #→ KOa(b) := z(b) =

[
z1(b)
z2(b)

]
,

z1(b) := inf
b∗∈J+b

|Oa(a, b∗)|±, z2(b) := inf
a∗∈J+a

|Ob(b, a
∗)|±.

(5)

Thus, to each observer Oa it corresponds a coordinate

z =4 z =221

a

b

a*b*

FIG. 3: Illustration of the coordinate map in Eq. (5) (the
observer has α = 3 and β = 2).

map, and this is what is commonly called a reference
frame—shortly frame. The coordinates z1 and z2 do not
have an immediate meaning, but get an simple interpre-
tation thanks to the following Lemma.

Lemma 1 An event b ∈ L(Oa) belongs to the t-th leaf
Lt(Oa) for t = (z1 − z2)/2, and the number of events on
such leaf between b and Oa is given by s = (z1 + z2)/2.

Proof. There exists t ∈ Z such that ot is simultaneous
to b. By definition one has b ∈ Lt(Oa), and

inf
b∗∈J+b

|Oot(ot, b
∗)|± = inf

ot
∗∈{jfot

|Ob(b, ot
∗)|±. (6)

One has

z1(b) = t + inf
b∗∈J+b

|Oot(ot, b
∗)|±, (7)

whereas

z2(b) = inf
o∗

t∈J+ot

inf
a∗∈J+a

(
|Ob(b, o

∗
t )|± + |Ob(o

∗
t , a

∗)|±
)
. (8)

Topological homogeneity implies that

z2(b) = inf
ot

∗∈J+ot

|Ob(b, o
∗
t )|± − t. (9)

Using the simultaneity condition in Eq. (6) we can com-
bine Eqs. (7) and (9) to get t = 1

2 (z1 − z2). !
According to the last Lemma the coordinates

[
t(b)
s(b)

]
:= 2

1
2 U(π/4)

[
z(b)
z(b)

]
, (10)

where U(θ) is the matrix performing a θ-rotation, can be
interpreted as the space-time coordinates of the event b
in the frame L(Oa).

Frames in standard configuration (boosted). Consider
now two observers O1

a = {o1
i } and O2

a = {o2
j} sharing

the same origin (homogeneity guarantees the existence
of observers sharing the origin). We will shortly denote
the two frames as R1 and R2, and the corresponding co-
ordinate maps as K1 and K2. We will say that the two
frames R1 and R2 are in standard configuration if there
exist positive α12, β12, such that ∀i ∈ Z

K1(o2
i ) = D12K2(o2

i ), D12 := diag(α12, β12). (11)

It turns out that having chosen only simply periodic ob-
servers, one has αij = αj/αi ∈ Z+, βij = βj/βi ∈ Z+.

Examples of observers corresponding to frames in stan-
dard configuration are shown in Fig. 4. Clearly different
frames correspond to generally different sets of events,
and what follows applies to the events in their intersec-
tion: thus, again, the transformation includes an implicit
event coarse-graining. We now see how it is possible to
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FIG. 4: Example of three observers related as in Eq. (11) and
then generating reference frames in standard configuration.

define a relative velocity between two frames in standard
configuration. It is readily seen that K2(o2

n) = (n,−n),
whence K1(o2

l ) = (lα12,−lβ12). We can now define the
relative velocity between R1 and R2 as the quotient be-
tween the space and time coordinates of the observer O2

with respect to observer O1, namely, by Lemma 1

v12 =
nα12 − nβ12

nα12 + nβ12
=

α12 − β12

α12 + β12
. (12)

Of course one has K2(o2
i ) = D21K1(o2

i ) ∀i ∈ Z, with

D21 = D12−1
= diag(1/α12, 1/β12), whence upon rewrit-

ing Eq. (12) for v21 one obtains v21 = −v12.
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The foliation has an “origin” a defined by the observer
Oa. Homogeneity of foliations follows from that of the ob-
server. Notice that a foliation does not generally contain
all the events of the CN (it certainly does for α = β = 1):
this fact is related to the sparsness issue raised in Ref.
[12] for Lorentz-transformed regular lattices of points.

For a given foliation L(Oa) we can now define a pair of
coordinates z(b) for any event b ∈ L(Oa) via the map

KOa : N → Z2, b #→ KOa(b) := z(b) =

[
z1(b)
z2(b)

]
,

z1(b) := inf
b∗∈J+b

|Oa(a, b∗)|±, z2(b) := inf
a∗∈J+a

|Ob(b, a
∗)|±.

(5)

Thus, to each observer Oa it corresponds a coordinate

z =4 z =221

a

b

a*b*

FIG. 3: Illustration of the coordinate map in Eq. (5) (the
observer has α = 3 and β = 2).

map, and this is what is commonly called a reference
frame—shortly frame. The coordinates z1 and z2 do not
have an immediate meaning, but get an simple interpre-
tation thanks to the following Lemma.

Lemma 1 An event b ∈ L(Oa) belongs to the t-th leaf
Lt(Oa) for t = (z1 − z2)/2, and the number of events on
such leaf between b and Oa is given by s = (z1 + z2)/2.

Proof. There exists t ∈ Z such that ot is simultaneous
to b. By definition one has b ∈ Lt(Oa), and

inf
b∗∈J+b

|Oot(ot, b
∗)|± = inf

ot
∗∈{jfot

|Ob(b, ot
∗)|±. (6)

One has

z1(b) = t + inf
b∗∈J+b

|Oot(ot, b
∗)|±, (7)

whereas

z2(b) = inf
o∗

t∈J+ot

inf
a∗∈J+a

(
|Ob(b, o

∗
t )|± + |Ob(o

∗
t , a

∗)|±
)
. (8)

Topological homogeneity implies that

z2(b) = inf
ot

∗∈J+ot

|Ob(b, o
∗
t )|± − t. (9)

Using the simultaneity condition in Eq. (6) we can com-
bine Eqs. (7) and (9) to get t = 1

2 (z1 − z2). !
According to the last Lemma the coordinates

[
t(b)
s(b)

]
:= 2

1
2 U(π/4)

[
z(b)
z(b)

]
, (10)

where U(θ) is the matrix performing a θ-rotation, can be
interpreted as the space-time coordinates of the event b
in the frame L(Oa).

Frames in standard configuration (boosted). Consider
now two observers O1

a = {o1
i } and O2

a = {o2
j} sharing

the same origin (homogeneity guarantees the existence
of observers sharing the origin). We will shortly denote
the two frames as R1 and R2, and the corresponding co-
ordinate maps as K1 and K2. We will say that the two
frames R1 and R2 are in standard configuration if there
exist positive α12, β12, such that ∀i ∈ Z

K1(o2
i ) = D12K2(o2

i ), D12 := diag(α12, β12). (11)

It turns out that having chosen only simply periodic ob-
servers, one has αij = αj/αi ∈ Z+, βij = βj/βi ∈ Z+.

Examples of observers corresponding to frames in stan-
dard configuration are shown in Fig. 4. Clearly different
frames correspond to generally different sets of events,
and what follows applies to the events in their intersec-
tion: thus, again, the transformation includes an implicit
event coarse-graining. We now see how it is possible to
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FIG. 4: Example of three observers related as in Eq. (11) and
then generating reference frames in standard configuration.

define a relative velocity between two frames in standard
configuration. It is readily seen that K2(o2

n) = (n,−n),
whence K1(o2

l ) = (lα12,−lβ12). We can now define the
relative velocity between R1 and R2 as the quotient be-
tween the space and time coordinates of the observer O2

with respect to observer O1, namely, by Lemma 1

v12 =
nα12 − nβ12

nα12 + nβ12
=

α12 − β12

α12 + β12
. (12)

Of course one has K2(o2
i ) = D21K1(o2

i ) ∀i ∈ Z, with

D21 = D12−1
= diag(1/α12, 1/β12), whence upon rewrit-

ing Eq. (12) for v21 one obtains v21 = −v12.

v12 =
α12 − β12

α12 + β12
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Lorentz transformations  from causality 
and topological homogeneity

C
oo

rd
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v13 =
α12α23 − β12β23

α12α23 + β12β23
=

v12 + v23

1 + v12v23

t1 = χ12
t2 + v12s2

�
1− (v12)2

, s1 = χ12
s2 + v12t2�
1− (v12)2

,

χ12 :=
�

α12β12

4

Velocity-composition rule. Consider three frames R1,
R2, R3 in pairwise standard relation, associated to ob-
servers O1, O2, O3 sharing the origin a, corresponding
to the coordinate maps K1, K2, K3 (see for example the
situation illustrated in Fig. 4). Let D12 = diag(α12, β12)
and D23 = diag(α23, β23) be the matrixes relating re-
spectively the coordinates of the second observer with
respect to the first one and the coordinates of the third
observer with respect to the second one, according to

K1(o1
i ) = D12K2(o2

i ), K2(o3
j ) = D23K3(o3

j). (13)

We are interested in the relation between the coordinates
of frame R3 with respect to frame R1. This is given by

K1(o3
j ) = D13K3(o3

j ), (14)

with matrix D13 = D12D23 = diag(α12α23, β12β23).
From Eq. (12) it immediately follows that

v13 =
α12α23 − β12β23

α12α23 + β12β23
, (15)

which by simple algebraic manipulations gives

v13 =

(
α12−β12

α12+β12

)
+

(
α23−β23

α23+β23

)

1 +
(

α12−β12

α12+β12

)(
α23−β23

α23+β23

) =
v12 + v23

1 + v12v23
, (16)

namely the velocity composition rule of special relativity.

Lorentz transformations. Again using Lemma 1 we
can derive the space-time coordinate transformations be-
tween the two frames R1 and R2 in standard relation. Us-
ing the topological homogeneity of N it follows that Eq.
(11) holds for any event b ∈ R1∩R2. One has z1

1 = α12z2
1

and z1
2 = β12z2

2 , and after easy manipulations we get

z1
1 ± z1

2

2
=

α12 + β12

2

[
z2
1 ± z2

2

2
+

(
α12 − β12

α12 + β12

)
z2
1 ∓ z2

2

2

]
,

(17)

where we can easily identify the space-time coordinates
of the event in the two frames and their relative velocity,
in terms of which Eqs. (17) become

t1 = 1
2 (α12 + β12)

(
t2 + v12s2

)
,

s1 = 1
2 (α12 + β12)

(
s2 + v12t2

)
.

(18)

Using the simple relation

1
2 (α12 + β12) =

χ12√
1 − (v12)2

, χ12 :=
√

α12β12, (19)

we obtain the identities

t1 = χ12
t2 + v12s2

√
1 − (v12)2

, s1 = χ12
s2 + v12t2√
1 − (v12)2

, (20)

which differ from the Lorentz transformations only by the
multiplicative factor χ12. The factor χ12 can be removed
by rescaling the coordinate map in Eq. (10) using the
factor (2αβ)

1
2 in place of 2

1
2 , with the constants α and β

of the observer. The relative velocity between two frames
R1 and R2 does not change in this representation because
the common factor simplifies in Eq. (12). Consequently
also the velocity-composition rule is left unchanged. A

multiplicative factor
√

α1β1

α2β2 = χ−1
12 now shows up after

the factor 1/2 in both transformations (18), and, using
relation (19) we get the usual Lorentz transformations.

We emphasize that the whole procedure for defin-
ing the space-time coordinates is made only with event-
counting on the CN. For each transformation a corre-
sponding coarse-graining (of the starting or the ending
foliation) seems essential (corresponding to the usual
rescaling in the Minkowski space, due to reciprocity be-
tween the observers). Finally, it is clear that our deriva-
tion could be extended to d > 1 space dimensions, for
CN that are embeddable in d+1 dimensions, with leaves
that can be embedded in d dimensions, e. g. for a d + 1-
dimensional diamond lattice.
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Conventionality of 
simultaneity, homogeneity, ...

The causal network manifests the 
conventionality of simultaneity.

To determine simultaneity of distant 
events we need to know a speed, to 
measure a speed we need to know 
simultaneity of different events ...

We can only determine the two-way 
average speed of light ...
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WHAT IS THE INFORMATIONAL MEANING 
OF INERTIAL MASS AND ℏ

AND HOW THE QUANTUM FIELD EMERGES
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            : (right/left propagating) field modes, operator 
function of space (evolving in time); we will describe 
it by the set of operators 

QC   SIMULATION   OF  QFT
SIMPLE  SCALAR  FIELD IN 1 SPACE  DIM.

 Microcausality (equal time)

generally nonlocal operators. In QFT they satisfy (anti)commutation relations

ψ(0)� �� �
� �� �

ψ(t)

Ut� �� �
(1)

Uε = I− εH (2)

[H(k)
i

,H(k)
j

] = 0, [H(l),H(k)] �= 0 (3)

H = ∑
�i, j�

Hi, j (4)

φ(x) φn := φ(na) a

THE DIRAC QUANTUM SIMULATOR

ψ(n) = γ(n) :=

�
l−1�

j=−∞
σ z

j

�
σ−

l
(5)

{ψ(x),ψ†(x)} = δ (x− y), {ψ(x),ψ(y)} = 0 (6)

From the identity σzσ−σz =−σ−, one has

σz(n)ψ(l)σz(n) =

�
−ψ(l), l = n

ψ(l), l �= n
. (7)

The Dirac Quantum Field Simulator. In the second quantization the Dirac field be-
comes an operator obeying the following equal-time anticommutation relations

{ψα(x),ψ†
β (y)} = δαβ δ (x− y), {ψα(x),ψβ (y)} = 0. (8)

In the computational representation, the field operator can be written in terms of local
single-qubit operators using the Clifford algebra as follows

ψ(n) =





u1(n)
u2(n)
v1(n)
v2(n)



 , ψα(n) = γ4n+α , γk :=

�
k−1

∏
j=−∞

σ z

j

�
σ−

k
, (9)

where we used the notation σα
n

= . . . I⊗ I⊗ σα
����
n−th

I⊗ I⊗ . . .. We want now to reproduce

the infinitesimal unitary evolution of the field given by Eq. (10), namely

ψ(n, t + τ) =
�

I− iε
�

i

2σx(δ+−δ−) a

λ I

a

λ I − i

2σx(δ+−δ−)

��
ψ(n, t). (10)

τ

+ : Fermi, - : Bose (Newton-Wigner)
vc :=

a

τ

CAUSAL SPEED

φ±(x)

φ±n = a
1
2 φ±(na)

φ±n

2a

τ

φ+
n φ−n φ+

n+1 φ−n+1

[φα
n, φβ

m
†]± = δαβδnm

  : topon: space-granularity (minimal in principle 
discrimination between independent events);

   : chronon: time-granularity;

mercoledì 20 ottobre 2010



QC   SIMULATION   OF  QFT
VIOLATION    OF    EINSTEIN’S  CAUSALITY

Simulation of QFT with a quantum computer, with gates 
performing infinitesimal transformations:

the simulation gives back exactly QFT in the limit               
and for infinite circuit, but ...

τ, a→ 0

Einstein causality only in average!

Lorentz-covariance cannot be derived 
from QT causality!

vc =∞!
Galileo!
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QC   SIMULATION   OF  QFT

Finite gate-transformations (not infinitesimal!)
The causal speed     is finite!vc

Lorentz’s transformations 
emerge from the causal 
network

Different QFT

observational consequences!
φ+

n−1 φ−n−1 φ+
n φ−n φ+

n+1 φ−n+1

τ

t=0

2a

SWAP

SWAP

SWAPSWAPSWAP

SWAP SWAP

SWAP SWAP

SWAP

SIMPLE  SCALAR  FIELD IN 1 SPACE  DIM.
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QC   SIMULATION   OF  QFT

Evolution from bipartite gates:
�
z1

z2

�

t=1

= U

�
z1

z2

�
U† = U

�
z1

z2

�

UznU† =
�

k

Unkzk

U = �Uij�

Each gate evolves the field linearly:

unitary matrix

t=0 zz

z z

21

1 2t=1

U

[zi, z
†
j ]± = δij

SIMPLE  SCALAR  FIELD IN 1 SPACE  DIM.
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QC   SIMULATION   OF  QFT

According to Jordan-Schwinger:

SIMPLE  SCALAR  FIELD IN 1 SPACE  DIM.

τ

2a
φ+

n φ−n φ+
n+1 φ−n+1

A

B

A = A(�σ2n+1,�σ2n+2)
B = B(�σ2n,�σ2n+1)

φ+
n = σ−2n

n−1�

k=−∞
σz

2k+1σ
z
2k

φ−n = σ−2n+1σ
z
2n

n−1�

k=−∞
σz

2k+1σ
z
2k

Commuting Anticommuting

Field is a local operator Clifford algebraic construction

gates act on local algebras

i.e.  gates act on local algebras 
also for anticommuting fields
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THE NEW QCFT

�∂tz = 1
2kτ [z(kτ)− z(−kτ)]

Coarse-grained discrete derivatives:

aa aa

t=0

z
a

f

bU

U
H

(2n)
gatez =

i

2nτ
[z(nτ)− z(−nτ)] = i�∂tz

H
(2)
gatez =

i
2τ (UfzU†

f − U†
b zUb)

“HAMILTONIAN”

SIMPLE  SCALAR  FIELD IN 1 SPACE  DIM.

�∂x = 1
4ka (δk

+ − δk
−)
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THE NEW QCFT

φ+
n (±2τ) = φ+

n±1(0), φ−n (±2τ) = φ−n∓1(0)

H
(4)
gateφn = iσzvc

�∂xφn

�� = �∂2
x −

1
v2

c

�∂2
t

��φn = 0

NEW QFT: finite gate-transformations (not infinitesimal!)

H
(4)
gateφ

α
n = iαvc

�∂xφα
n, α = ±

φ+
n−1 φ−n−1 φ+

n φ−n φ+
n+1 φ−n+1

τ

t=0

2a

SWAP

SWAP

SWAPSWAPSWAP

SWAP SWAP

SWAP SWAP

SWAP

MASSLESS    FIELD
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OBSERVATIONAL CONSEQUENCES: 
MASS-DEPENDENT REFRACTION INDEX 

OF VACUUM
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THE NEW QCFT
WHAT  IS  INERTIAL  MASS?

Zitterbewegung
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THE NEW QCFT
WHAT  IS  ℏ?

maτν
λ =

�
mc

mass in grams

topon

chronon

coupling between ± modes

Compton wavelenght

m =
τ2

a2
�ν

i�∂t

�
φ+

φ−

�
=

�
iv�∂x ν

ν −iv�∂x

� �
φ+

φ−

�
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THE NEW QCFT
MASS-DEPENDENT   VACUUM  REFRACTION   INDEX

Overall we must have: Ufφ+
n Uf − U†

b φ+
n Ub = ζ(φ+

n+1 − φ+
n−1)− 4i

a

λ
φ−n

For local gates involving only n.n. wires, the overall forward and backward 
unitary interactions involving a minimal number of field operators have the form

Ufφ+
n U†

f = ηφ+
n + ζφ+

n+1 + γφ−n U†
b φ+

n Ub = ηφ+
n + ζφ+

n−1 + γ�φ−n

ζ > 0with              and γ − γ� = −4i a
λ

But normalization of the row of the unitary matrix corresponds to:

|γ|, |γ�| �
�

1− ζ2 =⇒ 2a
λ �

�
1− ζ2

ζ−1 �
�
1−

�
2a
λ

�2
�− 1

2

which is the bound for the vacuum refraction index:

Effect visible at large mass λ ∼ 2a
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THE NEW QCFT
FEYNMAN  PATH-SUM

We need to develop a path-sum calculus over the circuit:

zl(t) =
�

ikl

U (1)
i1i2

U (2)
i2i3

. . . U (n)
inin+1

zk(0)

1. Number all the input wires at each gate, 
from the leftmost to the rightmost one, and 
do the same for the output wires

2. We say that a wire l is in the past-cone of 
the wire k if there is a path from l to k 
passing through gates.

3. For any output wire k and any input wire 
l in its causal past cone, consider all paths 
connecting k with l

4. The following linear expansion holds

ikl = (i1i2 . . . inin+1) with i1 = k, in+1 = l,

22

U

(1)

21

U
(4)

21

U

(3)

12

U
(2)

2z z z z z0123 1z
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THE NEW QCFT
 KLEIN GORDON WITH MASS

“Hamiltonian”

H
(4)
gate =

i
4τ

�
A21B21δ− −B†

12A
†
12δ+ + A22B11 −B†

11A
†
22 (A21B22 −B†

11A
†
21)δ− + A22B12 −B†

12A
†
11

(A12B11 −B†
22A

†
12)δ+ + A11B21 −B†

21A
†
22 A12B12δ+ −B†

21A
†
21δ− + A11B22 −B†

22A
†
11

�

+
+1+10011

+ +

a

t=1

t=0

t=2

B B

A

B

A

of the field, one has
[

φ+

φ−

]

t=2
=

[
A21B21δ− +A22B11 A21B22δ− +A22B12
A11B21 +A12B11δ+ A11B22 +A12B12δ+

][
φ+

φ−

]
, (13)

[
φ+

φ−

]

t=−2
=

[
B†

12A†
12δ+ +B†

11A†
22 B†

11A†
21δ− +B†

12A†
11

B†
21A†

22 +B†
22A†

12δ+ B†
22A†

11 +B†
21A†

21δ−

][
φ+

φ−

]
(14)

τ

+
+1+100−1−1

+ − +

a

−

t=1

t=0

t=2

−φ

B

φφ φ φ

B

A

φ

B

A

FIGURE 5. Quantum circuit for a Klein-Gordon field

where δ± denotes the field shift operators δ±φ n := φ n±1. According to our definition of
Hamiltonian in Eq. (5), we have

H(4)
gate = i

4τ

[
A21B21δ−−B†

12A†
12δ+ + A22B11 −B†

11A†
22 (A21B22 −B†

11A†
21)δ− + A22B12 −B†

12A†
11

(A12B11 −B†
22A†

12)δ+ + A11B21 −B†
21A†

22 A12B12δ+−B†
21A†

21δ− + A11B22 −B†
22A†

11

]
.

(15)
One can check that the Hamiltonian is Hermitian, since the following implications are

always satisfied

〈φ±
n |H(4)

gate|φ±
n 〉 = 〈φ±

n |H(4)
gate|φ±

n 〉∗ =⇒ i(AaaBbb −A†
aaB†

bb) ∈ R,

〈φ±
n |H(4)

gate|φ∓
n 〉 = 〈φ∓

n |H(4)
gate|φ±

n 〉∗ =⇒ (A22B12 −A†
11B†

12) = −(A11B21 −A†
22B†

21)
∗,

〈φ±
n+1|H

(4)
gate|φ±

n 〉 = 〈φ±
n |H(4)

gate|φ±
n+1〉

∗ =⇒ A†
abB†

ab = A∗
baB∗

ba,

〈φ+
n |H(4)

gate|φ−
n−1〉 = 〈φ−

n |H(4)
gate|φ+

n+1〉
∗ =⇒ A21B22 −A†

21B†
11 = −(A12B11 −A†

12B†
22)

∗.
(16)

Using the field smoothness condition 1
2(δ+ +δ−) & 1, along with the the identity

δ± = 1±2a∂̂x, (17)

which follows from the definition of the coarse-grained discrete space-derivative ∂̂x =
1
4a(δ+−δ−) (a distance between centers of n.n. gates: see Fig. 5), the Hamiltonian H(4)

gate
can be rewritten in the Dirac fashion

H(4)
gate = vc(H+K∂̂x), H :=

[
H11 H12
H∗

12 H22

]
, K :=

[
K11 K12
−K∗

12 K22

]
, (18)

Hermiticity is satisfied:
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THE NEW QCFT
 KLEIN GORDON WITH MASS

1
2 (δ+ + δ−) � 1Using the smoothness constraint                                  corresponding to 

δ± = 1± 2a�∂x one writes the Hamiltonian in the Dirac fashion:

H
(4)
gate = vc(H + K�∂x), H :=

�
H11 H12

H
∗
12 H22

�
, K :=

�
K11 K12

−K
∗
12 K22

�
,

After some manipulations one gets the mass-dependent vacuum 
refraction index:

ζ−1 =
2

1 +
�

1−
�

2a
λ

�2 Easy to generalize to particles with spin

Restrict to KG with propagation speed      , namelyζc

(H
(4)
gate)

2
= −c2

(ζ2�∂2
x − λ−2

) λ :=
�

mc
= 3.86159 ∗ 10−13m

Compton wavelength
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THE NEW QCFT
GAUGE    INVARIANCE

or

ψn(t + τ) = ψn(t)− iεHψn(t), ε =
c

υ , υ =
a

τ (23)

where

ψ :=





. . .
ψn

ψn+1

. . .



 , ψn =
�

un

vn

�
=





u
1
n

u
2
n

v
1
n

v
2
n



 (24)

with Hamiltonian

H =





. . . . . . . . . . . . . . . . . . . . . . . .

. . . 0 0 − i

2
σx 0 0 0 . . .

. . . 0 0
a

λ I
i

2
σx 0 0 . . .

. . . i

2
σx

a

λ I 0 0 − i

2
σx 0 . . .

. . . 0 − i

2
σx 0 0

a

λ I
i

2
σx . . .

. . . 0 0
i

2
σx

a

λ I 0 0 . . .
. . . 0 0 0 − i

2
σx

a

λ I 0 . . .
. . . . . . . . . . . . . . . . . . . . . . . .





(25)

where λ := h̄

mc
= 3.86159∗10

−13
is the reduced Compton wavelength.

Gauge invariance

U(x) e
iφ(x)

x x
�

ψ� �� �
(26)

THE DIRAC QUANTUM SIMULATOR

ψ(n) = γ(n) :=

�
l−1�

j=−∞
σ z

j

�
σ−

l
(27)

{ψ(x),ψ†(x)} = δ (x− y), {ψ(x),ψ(y)} = 0 (28)

From the identity σzσ−σz = −σ−
, one has

σz(n)ψ(l)σz(n) =

�
−ψ(l), l = n

ψ(l), l �= n
. (29)

The Dirac Quantum Field Simulator. In the second quantization the Dirac field be-

comes an operator obeying the following equal-time anticommutation relations

{ψα(x),ψ†

β (y)} = δαβ δ (x− y), {ψα(x),ψβ (y)} = 0. (30)

Natively nonabelian Gauge theory! 
and on ... foliation !!!

Good for 
QGravity?

Gauge fi
eld
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QCFT FOR MORE THAN 1 SPACE  DIM?
THE NEW QCFT

Anticommuting fields in terms of local algebras?

Do we really need anticommuting fields?

Grassman variables?

Microcausality and parastatistics

Need six space field operators
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THE NEW QCFT
COMPARED TO THE USUAL QFT

The idea is to regard the QCFT as the “true theory”, and 
the usual QFT as an approximation for “mesoscopic” scale

Feynman’s path integral
u.v. renormalization
no need of quantization rules (must be emergent)
problems related to the continuous
...

QCFT solve many problems that plague QFT:
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CONCLUSIONS
PHYSICS  IS  INFORMATION

Quantum Theory is an information theory

Space-time and relativistic covariance emerge from the 
information processing

The whole Physics is emergent (inertial mass, Planck 
constant, quantization rules, ...)

The new causal QCFT: 

has no space-background (QG-ready)
doesn’t need quantization
cures many problems that plague QFT
opens a new route to foundations of QFT
has empirical consequences ...
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TODO   SOON
PHYSICS  IS  INFORMATION

Quantization rules as emergent

General correspondence: Lagrangian-gates

Anticommuting fields and (parastatistics)

Emergent unitary representation of the Lorentz group

Violations of Lorentz-covariance

Informational meaning of energy, gravitational mass,...

Build up a complete QCFT for Dirac in 3 space dimensions

Experimental consequences ...
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THANK  YOU
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