
A  COMPUTATIONAL  GUT 

Dipartimento di Fisica “A. Volta”, Università di Pavia

Giacomo Mauro D’Ariano

arXiv: 1001.1088



WHY 
QUANTUM?

Is there 
something more 
than Quantum?

RELATIVITY?

QFT?

Quantization rules,  ℏ?



POSSIBLE ANSWER:               
THE UNIVERSE IS

A  HUGE
QUANTUM COMPUTER



HOW RELATIVITY EMERGES 
FROM THE COMPUTATION?



Lorentz transformations from 
Galileo principle

Galileo principle includes homogeneity and isotropy of 
space and homogeneity of time.

On the assumption of isotropy and homogeneity of space 
and homogeneity of time along with symmetry between the 
two references, the most general transformations of 
reference system are the Lorentz transformations with a 
parameter Ω with the dimensions of a velocity, which is 
independent on the relative velocity of frames.

Empirically Ω=c, which is an upper bound for velocities. ■



Special Relativity  from 
computational network

Take a computational circuit which is uniform and 
isotropic.

Take the “continuum limit” → space-time.

Take only finite-system gates → bound on speeds ■.
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Relativity from QT
causal

immediateness

causal
propinquity

causal chain

causal antichain
(more generally from causality)
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WE   GOT   SR   FROM               
PURE   CAUSALITY!



The Operational Framework

be seen from the actual re-derivation of QFT. Apart from a matter of taste related to the

circuit as an ontology, the two crucial criteria will be Occam razor and mathematical

simplicity. I must however emphasize that in any case the QCFT program remains a

must, and this for at least two reasons. The first reason is that QCFT solves a number

of logical and mathematical problems that plague QFT [3, 4], besides allowing a unified

framework for different fields, giving a mechanism for relativistic invariance, and, last

but not least, providing a systematic way for consistently generalizing the whole theo-

retical framework in view of Quantum Gravity, e. g. moving to higher order input-output

computation with no pre-established causal relations by changing QM toward an oper-

ational noncausal theory with purification. All these nice features may motivate even
to adopt QCFT in place of QFT, QFT being still operationally and logically not well

founded (see e. g. the Poisson-bracket quantization rules, the Feynman path integral, the

Grassman variables, ...) We will discuss these issues more at the end of the paper. The

second reason is that QCFT represents the first test of the Lucien Hardy’s program of an

operational approach to Quantum Gravity. In fact, before building up a theory of Quan-

tum Gravity, we first should check the approach against a well assessed phenomenology,

such as that of particle physics (this would also be much easier than deriving a theory

of Quantum Gravity) QCFT would also bring the powerful point of view of Quantum

Information inside the world of particle physics.

2. THE OPERATIONAL FRAMEWORK.

The starting point of the operational framework is the notion of test. A test is made of

the following ingredients: a) a complete collection of outcomes, b) input systems, c)

output systems. It is represented in form of a box, as follows

A1

{Ai}
B1

A2 B2

A1

A

B1

A2 B2

The left wires represent the input systems, the right wires the output systems, and

{Ai} the collection of outcomes. We often represent not the complete test, but just a
single outcomeAi, or, more generally, a subsetA ⊂ {Ai} of the collection of outcomes,
i. e. an event, as in the right box in figure. The number of wires at the input and at

the output can vary, and one can even have no wire at the input and/or at the input.

Depending on the context, the test can be regarded as a man-made apparatus or as a

nature-made physical interaction. The set of events of a test is closed under union (also

called coarse-graining), intersection, and complementation, thus making a Boolean

algebra. A refinement of an event A is a set of events {Ai} occurring in some test
such that A = ∪iAi. Generally an event can have different refinements depending on

the test to which it belongs, or it may be unrefinable within some test. An event that is

unrefinable within any test is called atomic.

The natural place for a test/event is inside a network of other tests/events, and to
understand the origin of the box representation and the intimatemeaning of the test/event

you should imagine it actually connected to other tests/events in a circuit, e. g. as follows
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The different letters A,B,C, . . . labeling the wires denote different “types of system”.
We can connect only an input wire of a box with an output wire of another box, the two

wires having the same label. Loops are forbidden. Among the different kinds of systems,

we have a special one called trivial system, denoted by I, which we conveniently

represent by no wire, but instead, by drawing the corresponding side of the box convexly

rounded as follows )*+," A := I " A , and A -./0a := A a I .

The fact that there are no closed loops gives to the circuit the structure of a DAG

(directed acyclic graph), with vertices corresponding to operations, and edges to wires.

The absence of closed loops corresponds to the requirement that the test/event is one-use

only. We also must keep in mind that there are no constraints for disconnected parts of

the network, i. e. they can be arranged freely as long as they are disconnected (this would
not be true e. g. for a quaternionic quantum network). Finally, we will also consider

conditioned tests, where one can choose a different test depending on the outcome

of an input one. The construction of the network mathematically is equivalent to the

construction of a symmetric strict monoidal category (see Ref.[5]).

In order to make predictions about the occurrence probability of events based on cur-

rent knowledge, one needs a “theory”. An operational theory [2] is specified by a col-

lection of systems, closed under parallel composition, and by a collection of tests, closed

under parallel/sequential composition and under randomization. The operational theory

is probabilistic if every test from the trivial system to the trivial system is associated to a

probability distribution of outcomes.

Therefore a probabilistic theory provides us with the joint probabilities for all possible

events for any closed network (namely with no overall input and output). The probability

itself will be conveniently represented by the corresponding network of events. We must

keep in mind that the probability of an event is independent on the test to which it

belongs, and this legitimates using networks of events, without the need of specifying

the test. In the following, we will denote the set of events from system A to system B as

T(A,B), and use the abbreviation T(A) := T(A,A).
Two wires in a circuit are input-output adjacent if they are the input and the output of

the same box. By following input-output adjacent wires in a circuit following the input-

to-output direction we draw an input-output chain. Two systems (wires) that are not
in the same input-output chain are called independent. A set of pairwise independent

systems is a slice. The slice is called global if it partitions the circuit into two parts.

By construction it is clear that a global slice always partitions a closed bounded circuit

into two parts, a preparation test and an observation test. Thus, a diagram of the form#!$"Ai
A '%(&B j generally represents the event corresponding to an istance of a

concluded experiment, which starts with a preparation and ends with an observation.

The probability of such event will be denoted as
(

B j |Ai

)

, using the “Dirak-like” nota-

Probabilistic operational 
theory: every test from the 
trivial system to the trivial 
system is associated to a 
probability distribution of 
outcomes.

test event

no loops

DAG (directed acyclic graph)



Causal probabilistic theories
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transformatione. g. A ∈ T(A , B), A : |ρ)A "→ |A ρ)B. Then, every event A ∈ T(A,B) induces a
map from S(AC) to S(BC) for every system C, uniquely defined by

A : |ρ)AC ∈ S(AC) "→ (A ⊗IC) |ρ)AC ∈ S(BC). (1.30)

The map is linear from SR(AC) to SR(BC). From a probabilistic point of view, if for
every possible system C two events A and A ′ induce the same maps, then they are
indistinguishable. We are thus lead to the definition of transformation.

Transformations: Equivalence classes of indistinguishable events from A to B are
called transformations from A to B.

Again, we will assume that the equivalence classes have been already done since
the start, and, consequently, we will identify events with transformations, without in-
troducing new notation. Accordingly, a test will be a collection of transformations.

Notice that generally two transformations A ,A ′ ∈ T(A, B) can be different even
if A |ρ)A = A ′ |ρ)A for every ρ ∈ S(A). Indeed one has A %= A ′ different if that
there exists an ancillary system C and a joint state |ρ)AC such that

(A ⊗IC) |ρ)AC %= (A ′ ⊗IC) |ρ)AC. (1.31)

We will come back on this point when discussing local discriminability in Subsect. ??

Notes
The assumption of the convex closure BLA BLA. Nevertheless, we will see that for
most of our results the assumption of convexity is not essential, and we will discuss
the validity of our results in non-convex theories, like the toy-theories considered by
Spekkens in Ref. [?]. Having this in mind, whenever possible we will present our
results in a convexity-independent language.

1.1.5 The causality arrow.
Although in the networks discussed until now we had sequences of tests, such se-
quences were not necessarily temporal, or causal sequences, namely the order of tests
in a sequence was not necessarily following the causal or the time arrow.

We now introduce the causality condition, also called no signalling from the fu-
ture [D’A09] if one identifies the causal arrow with the time arrow. This allows us to
interpret the sequential composition as a causal cascade.

Causality condition 1. We say that a theory is causal, if for any two tests {Ai}i∈X

and {Bj}∈Y that are connected with at least an input of test {Bj}∈Y connected to
an output of {Ai}∈Y as follows

. . . . . . C

{Bj}
F . . .

. . . A

{Ai}
D G . . .

. . . B E . . . . . .

(1.32)

February 1, 2010
A theory is causal, if for any two tests that are connected the marginal 
probability of the input event is independent on the choice of the 
output test, whereas, viceversa the marginal probability of the output 
event generally depends on the choice of the input test.

Input → Output

DAG



Wittgenstein-ism
1 The world is all that is the case. 

1.1 The world is the totality of 
facts, not of things. 

1.11 The world is determined 
by the facts, and by their being 
all the facts. 
1.12 For the totality of facts 
determines what is the case, and 
also whatever is not the case. 
1.13 The facts in logical space 
are the world. 

1.2 The world divides into facts. 
1.21 Each item can be the case 
or not the case while everything 
else remains the same. 



My Brief History of  Space-Time

At the beginning there were only events ...

Then the Man devised causal connections 
between them

He modeled the causal connections in a 
unified framework which is space-time









 

ψ
(0)

︷
︸︸

︷
︸

︷︷
︸

ψ
(t)

U
t

︷
︸︸

︷
(1)

U
ε
=

I−
εH

(2)

TH
E

D
IR

AC
Q

UA
N

TU
M

SIM
U

LATO
R

ψ
(n)=

γ(n):=
(

l−
1

⊗j=
−

∞ σ
zj )

σ
−l

(3)

{ψ
(x),ψ

†(x)}
=

δ(x−
y),

{ψ
(x),ψ

(y)}
=

0
(4)

From
the

identity
σ

z σ
− σ

z =
−

σ
−,one

has

σ
z (n)ψ

(l)σ
z (n)=

{
−

ψ
(l),

l=
n

ψ
(l),

l"=
n

.
(5)

The
D

irac
Q

uantum
Field

Sim
ulator.In

the
second

quantization
the

D
irac

field
be-

com
es

an
operatorobeying

the
follow

ing
equal-tim

e
anticom

m
utation

relations

{ψ
α (x),ψ

†β (y)}
=

δα
β δ(x−

y),
{ψ

α (x),ψ
β (y)}

=
0.

(6)

In
the

com
putationalrepresentation,the

field
operator

can
be

w
ritten

in
term

s
of

local
single-qubitoperators

using
the

C
lifford

algebra
as

follow
s

ψ
(n)=



u
1 (n)

u
2 (n)

v1 (n)
v2 (n) 

,
ψ

α (n)=
γ4n+

α
,

γk :=
(

k−
1

∏j=
−

∞ σ
zj )

σ
−k
,

(7)

w
here

w
e

used
the

notation
σ

αn
=

...I⊗
I⊗

σ
α

︸︷︷︸
n−

th I⊗
I⊗

....W
e

w
antnow

to
reproduce

the
infinitesim

alunitary
evolution

ofthe
field

given
by

Eq.(8),nam
ely

ψ
(n,t+

τ)=
[I−

iε (
i2 σ

x (δ
+
−

δ− )
aλ I

aλ I
−

i2 σ
x (δ

+
−

δ− ) )
]ψ

(n,t).
(8)

H
l,l+

1
:=

σ
+l

σ
−l+

1 +
σ
−l

σ
+l+

1 ,
H

l,l+
k :=

σ
+l

σ
zl+

1 ...σ
zl+

k−
1 σ

−l+
k +

h.c.
(9)

N
otice

thatH
i,j =

σ
+i

σ
−j

+
σ
−i

σ
+j
≡

12 (σ
xi σ

xj +
σ

yi σ
yj ).

[H
l,l+

k ,γl ]
=

γl+
k ,

(10)
[H

l+
s,l+

s+
k ,γl ]

=
0,

s∈
(−

∞
,−

k−
1)∪

(1,...∞
)

(11)

Quantum Computational 
Field Theory (QCFT)
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QCFT
Trotter-ization of H

p nn translational-invariant “Hamiltonian”
ψ(0)︷ ︸︸ ︷

︸ ︷︷ ︸
ψ(t)

Ut︷ ︸︸ ︷
(1)

Uε = I− εH (2)

THE DIRAC QUANTUM SIMULATOR

ψ(n) = γ(n) :=

(
l−1⊗

j=−∞
σ z

j

)
σ−l (3)

{ψ(x),ψ†(x)} = δ (x− y), {ψ(x),ψ(y)} = 0 (4)

From the identity σzσ−σz =−σ−, one has

σz(n)ψ(l)σz(n) =

{
−ψ(l), l = n
ψ(l), l "= n

. (5)

The Dirac Quantum Field Simulator. In the second quantization the Dirac field be-
comes an operator obeying the following equal-time anticommutation relations

{ψα(x),ψ†
β (y)} = δαβ δ (x− y), {ψα(x),ψβ (y)} = 0. (6)

In the computational representation, the field operator can be written in terms of local
single-qubit operators using the Clifford algebra as follows
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{ψα(x),ψ†
β (y)} = δαβ δ (x− y), {ψα(x),ψβ (y)} = 0. (6)

In the computational representation, the field operator can be written in terms of local
single-qubit operators using the Clifford algebra as follows

ψ(n) =





u1(n)
u2(n)
v1(n)
v2(n)



 , ψα(n) = γ4n+α , γk :=

(
k−1

∏
j=−∞

σ z
j

)
σ−k , (7)

where we used the notation σα
n = . . . I⊗ I⊗ σα

︸︷︷︸
n−th

I⊗ I⊗ . . .. We want now to reproduce

the infinitesimal unitary evolution of the field given by Eq. (8), namely

ψ(n, t + τ) =
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I− iε
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2σx(δ+−δ−) a
λ I

a
λ I − i

2σx(δ+−δ−)
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ψ(n, t). (8)

Hl,l+1 := σ+
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l+1, Hl,l+k := σ+
l σ z

l+1 . . .σ z
l+k−1σ−l+k +h. c. (9)

Notice that Hi, j = σ+
i σ−j +σ−i σ+

j ≡
1
2(σ x

i σ x
j +σ y

i σ y
j ).

[
Hl,l+k,γl

]
= γl+k, (10)

[
Hl+s,l+s+k,γl

]
= 0, s ∈ (−∞,−k−1)∪ (1, . . .∞) (11)
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{ψ(x),ψ†(x)} = δ (x− y), {ψ(x),ψ(y)} = 0 (5)

From the identity σzσ−σz =−σ−, one has

σz(n)ψ(l)σz(n) =

{
−ψ(l), l = n
ψ(l), l "= n

. (6)

The Dirac Quantum Field Simulator. In the second quantization the Dirac field be-
comes an operator obeying the following equal-time anticommutation relations

{ψα(x),ψ†
β (y)} = δαβ δ (x− y), {ψα(x),ψβ (y)} = 0. (7)

In the computational representation, the field operator can be written in terms of local
single-qubit operators using the Clifford algebra as follows
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(
k−1

∏
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)
σ−k , (8)

where we used the notation σα
n = . . . I⊗ I⊗ σα

︸︷︷︸
n−th

I⊗ I⊗ . . .. We want now to reproduce

the infinitesimal unitary evolution of the field given by Eq. (9), namely
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λ I − i
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ψ(n) = γ(n) :=
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l−1⊗

j=−∞
σ z

j

)
σ−l (4)

{ψ(x),ψ†(x)} = δ (x− y), {ψ(x),ψ(y)} = 0 (5)

From the identity σzσ−σz =−σ−, one has

σz(n)ψ(l)σz(n) =

{
−ψ(l), l = n
ψ(l), l "= n

. (6)

The Dirac Quantum Field Simulator. In the second quantization the Dirac field be-
comes an operator obeying the following equal-time anticommutation relations

{ψα(x),ψ†
β (y)} = δαβ δ (x− y), {ψα(x),ψβ (y)} = 0. (7)

In the computational representation, the field operator can be written in terms of local
single-qubit operators using the Clifford algebra as follows

ψ(n) =





u1(n)
u2(n)
v1(n)
v2(n)



 , ψα(n) = γ4n+α , γk :=

(
k−1

∏
j=−∞

σ z
j

)
σ−k , (8)

where we used the notation σα
n = . . . I⊗ I⊗ σα

︸︷︷︸
n−th

I⊗ I⊗ . . .. We want now to reproduce

the infinitesimal unitary evolution of the field given by Eq. (9), namely

ψ(n, t + τ) =
[

I− iε
( i

2σx(δ+−δ−) a
λ I

a
λ I − i

2σx(δ+−δ−)

)]
ψ(n, t). (9)

Hl,l+1 := σ+
l σ−l+1 +σ−l σ+

l+1, Hl,l+k := σ+
l σ z

l+1 . . .σ z
l+k−1σ−l+k +h. c. (10)
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ψ(n) = γ(n) :=

(
l−1⊗

j=−∞
σ z

j

)
σ−l (4)

{ψ(x),ψ†(x)} = δ (x− y), {ψ(x),ψ(y)} = 0 (5)

From the identity σzσ−σz =−σ−, one has

σz(n)ψ(l)σz(n) =

{
−ψ(l), l = n
ψ(l), l "= n

. (6)

The Dirac Quantum Field Simulator. In the second quantization the Dirac field be-
comes an operator obeying the following equal-time anticommutation relations

{ψα(x),ψ†
β (y)} = δαβ δ (x− y), {ψα(x),ψβ (y)} = 0. (7)

In the computational representation, the field operator can be written in terms of local
single-qubit operators using the Clifford algebra as follows

ψ(n) =





u1(n)
u2(n)
v1(n)
v2(n)



 , ψα(n) = γ4n+α , γk :=

(
k−1

∏
j=−∞

σ z
j

)
σ−k , (8)

where we used the notation σα
n = . . . I⊗ I⊗ σα

︸︷︷︸
n−th

I⊗ I⊗ . . .. We want now to reproduce

the infinitesimal unitary evolution of the field given by Eq. (9), namely

ψ(n, t + τ) =
[

I− iε
( i

2σx(δ+−δ−) a
λ I

a
λ I − i

2σx(δ+−δ−)

)]
ψ(n, t). (9)

Hl,l+1 := σ+
l σ−l+1 +σ−l σ+

l+1, Hl,l+k := σ+
l σ z

l+1 . . .σ z
l+k−1σ−l+k +h. c. (10)
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ψ(n) = γ(n) :=

(
l−1⊗

j=−∞
σ z

j

)
σ−l (4)

{ψ(x),ψ†(x)} = δ (x− y), {ψ(x),ψ(y)} = 0 (5)

From the identity σzσ−σz =−σ−, one has

σz(n)ψ(l)σz(n) =

{
−ψ(l), l = n
ψ(l), l "= n

. (6)

The Dirac Quantum Field Simulator. In the second quantization the Dirac field be-
comes an operator obeying the following equal-time anticommutation relations

{ψα(x),ψ†
β (y)} = δαβ δ (x− y), {ψα(x),ψβ (y)} = 0. (7)

In the computational representation, the field operator can be written in terms of local
single-qubit operators using the Clifford algebra as follows

ψ(n) =





u1(n)
u2(n)
v1(n)
v2(n)



 , ψα(n) = γ4n+α , γk :=

(
k−1

∏
j=−∞

σ z
j

)
σ−k , (8)

where we used the notation σα
n = . . . I⊗ I⊗ σα

︸︷︷︸
n−th

I⊗ I⊗ . . .. We want now to reproduce

the infinitesimal unitary evolution of the field given by Eq. (9), namely

ψ(n, t + τ) =
[

I− iε
( i

2σx(δ+−δ−) a
λ I

a
λ I − i

2σx(δ+−δ−)

)]
ψ(n, t). (9)

Hl,l+1 := σ+
l σ−l+1 +σ−l σ+

l+1, Hl,l+k := σ+
l σ z

l+1 . . .σ z
l+k−1σ−l+k +h. c. (10)
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ψ(n) = γ(n) :=
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j=−∞
σ z

j
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σ−l (4)

{ψ(x),ψ†(x)} = δ (x− y), {ψ(x),ψ(y)} = 0 (5)

From the identity σzσ−σz =−σ−, one has

σz(n)ψ(l)σz(n) =

{
−ψ(l), l = n
ψ(l), l "= n

. (6)

The Dirac Quantum Field Simulator. In the second quantization the Dirac field be-
comes an operator obeying the following equal-time anticommutation relations

{ψα(x),ψ†
β (y)} = δαβ δ (x− y), {ψα(x),ψβ (y)} = 0. (7)

In the computational representation, the field operator can be written in terms of local
single-qubit operators using the Clifford algebra as follows

ψ(n) =





u1(n)
u2(n)
v1(n)
v2(n)



 , ψα(n) = γ4n+α , γk :=

(
k−1

∏
j=−∞

σ z
j

)
σ−k , (8)

where we used the notation σα
n = . . . I⊗ I⊗ σα

︸︷︷︸
n−th

I⊗ I⊗ . . .. We want now to reproduce

the infinitesimal unitary evolution of the field given by Eq. (9), namely

ψ(n, t + τ) =
[

I− iε
( i

2σx(δ+−δ−) a
λ I

a
λ I − i

2σx(δ+−δ−)

)]
ψ(n, t). (9)

Hl,l+1 := σ+
l σ−l+1 +σ−l σ+

l+1, Hl,l+k := σ+
l σ z

l+1 . . .σ z
l+k−1σ−l+k +h. c. (10)
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ψ(n) = γ(n) :=

(
l−1⊗

j=−∞
σ z

j

)
σ−l (4)

{ψ(x),ψ†(x)} = δ (x− y), {ψ(x),ψ(y)} = 0 (5)

From the identity σzσ−σz =−σ−, one has

σz(n)ψ(l)σz(n) =

{
−ψ(l), l = n
ψ(l), l "= n

. (6)

The Dirac Quantum Field Simulator. In the second quantization the Dirac field be-
comes an operator obeying the following equal-time anticommutation relations

{ψα(x),ψ†
β (y)} = δαβ δ (x− y), {ψα(x),ψβ (y)} = 0. (7)

In the computational representation, the field operator can be written in terms of local
single-qubit operators using the Clifford algebra as follows

ψ(n) =





u1(n)
u2(n)
v1(n)
v2(n)



 , ψα(n) = γ4n+α , γk :=

(
k−1

∏
j=−∞

σ z
j

)
σ−k , (8)

where we used the notation σα
n = . . . I⊗ I⊗ σα

︸︷︷︸
n−th

I⊗ I⊗ . . .. We want now to reproduce

the infinitesimal unitary evolution of the field given by Eq. (9), namely

ψ(n, t + τ) =
[

I− iε
( i

2σx(δ+−δ−) a
λ I

a
λ I − i

2σx(δ+−δ−)

)]
ψ(n, t). (9)

Hl,l+1 := σ+
l σ−l+1 +σ−l σ+

l+1, Hl,l+k := σ+
l σ z

l+1 . . .σ z
l+k−1σ−l+k +h. c. (10)

Local uniform causality and Trotter formula

Consider the unitary transformation from the uniform Hamiltonian with p neighbour
interacting systems

H =
p−1

∑
k=0

H(k), H(k) =
Nx

∑
i=−Nx

H(k)
i (25)

where H(k)
i is the p-system Hamiltonian describing the interaction among systems pi+

k, . . . , p(i + 1) + k− 1. We want to achieve the unitary transformation using p-system
gates. Using the Trotter’s formula

∣∣∣∣∣

∣∣∣∣∣exp

(
q

∑
i=1

Ai

)
−

[
q

∏
i=1

exp
(

Ai

n

)]n∣∣∣∣∣

∣∣∣∣∣ ! 2
n

(
q

∑
i=1

||Ai||
)2

exp

(
n+2

n

q

∑
i=1

||Ai||
)

, (26)

along with the fact that for commuting Hermitian operators A,B one has ||A + B|| =
||A||+ ||B||, whence ||H(k)|| = (2Nx +1)||H(0)

0 ||, one has
∣∣∣∣∣∣

∣∣∣∣∣∣
e−iεH −

(
p

∏
i=1

e−iε H(k)
N

)N
∣∣∣∣∣∣

∣∣∣∣∣∣
! 2[ε p(2Nx +1)||H(0)

0 ||]2

N
exp

[
N +2

N
ε p(2Nx +1)||H(0)

0 ||
]

(27)
This requires ε = cτ

2a = O(N−1
x ), namely τ = O(N−1

x ) for fixed a, N,Nx → ∞. For the
nearest-neighbor XY Heisenberg chain one has p = 2 and ||H0

0 || = 1.

Evaluation of the norm of H(0)
0 for the XY nn Heisenberg Hamiltonian

H(1)
0 := σ+

1 σ−2 +σ−1 σ+
2 = 1

2(σ x
1 σ x

2 +σ y
1σ y

2). (28)

(σ x
1 σ x

2 +σ y
1σ y

2)|σ x〉〉 = 2|σ x〉〉,
(σ x

1 σ x
2 +σ y

1σ y
2)|σ y〉〉 = −2|σ y〉〉,

(σ x
1 σ x

2 +σ y
1σ y

2)|σ z〉〉 = −2|σ z〉〉,
(σ x

1 σ x
2 +σ y

1σ y
2)|I〉〉 = 0|I〉〉,

which implies that ||H(1)
0 || = 1.
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ψ(n) = γ(n) :=

(
l−1⊗

j=−∞
σ z

j

)
σ−l (4)

{ψ(x),ψ†(x)} = δ (x− y), {ψ(x),ψ(y)} = 0 (5)

From the identity σzσ−σz =−σ−, one has

σz(n)ψ(l)σz(n) =

{
−ψ(l), l = n
ψ(l), l "= n

. (6)

The Dirac Quantum Field Simulator. In the second quantization the Dirac field be-
comes an operator obeying the following equal-time anticommutation relations

{ψα(x),ψ†
β (y)} = δαβ δ (x− y), {ψα(x),ψβ (y)} = 0. (7)

In the computational representation, the field operator can be written in terms of local
single-qubit operators using the Clifford algebra as follows

ψ(n) =





u1(n)
u2(n)
v1(n)
v2(n)



 , ψα(n) = γ4n+α , γk :=

(
k−1

∏
j=−∞

σ z
j

)
σ−k , (8)

where we used the notation σα
n = . . . I⊗ I⊗ σα

︸︷︷︸
n−th

I⊗ I⊗ . . .. We want now to reproduce

the infinitesimal unitary evolution of the field given by Eq. (9), namely

ψ(n, t + τ) =
[

I− iε
( i

2σx(δ+−δ−) a
λ I

a
λ I − i

2σx(δ+−δ−)

)]
ψ(n, t). (9)

Hl,l+1 := σ+
l σ−l+1 +σ−l σ+

l+1, Hl,l+k := σ+
l σ z

l+1 . . .σ z
l+k−1σ−l+k +h. c. (10)

Notice that Hi, j = σ+
i σ−j +σ−i σ+

j ≡
1
2(σ x

i σ x
j +σ y

i σ y
j ).



 

QCFT
Trotter-ization of H

KLEIN-GORDON EQUATION

One has

[φ (s)(x),Hs] = [a−
1
2 φ (s)

n ,Hs] =−a−
1
2 s

i
2
(φ (s)

n+1−φ (s)
n−1) =−isa∂xφ (s)(x) (27)

one obtains
∂tφ =−iω[H,φ ] = aω∂xφ (28)

which, for ωa = c becomes the Klein-Gordon equation

!φ = 0 (29)

Fundamental identity of QFT and Trotterization

[AB,C] = A[B,C]±∓ [A,C]±B (30)

we can see that this is true for both Bose and Fermi field, since

[H,φn] =∓
1
2
[−iφ †

n ,φn]±(φn+1−φn−1) =
i
2
(φn+1−φn−1) (31)

Now we decompose the Hamiltonian as follows

H = H(0) +H(1), H(k) =− i
2

Nx

∑
j=−Nx

H(k)
j (32)

where
H(k)

n =− i
2
(φ †

2n+kφ2n+k+1−φ †
2n+k+1φ2n+k). (33)

Using the Trotter’s formula
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lim
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ψ(n) = γ(n) :=

(
l−1⊗

j=−∞
σ z

j

)
σ−l (4)

{ψ(x),ψ†(x)} = δ (x− y), {ψ(x),ψ(y)} = 0 (5)

From the identity σzσ−σz =−σ−, one has

σz(n)ψ(l)σz(n) =

{
−ψ(l), l = n
ψ(l), l "= n

. (6)

The Dirac Quantum Field Simulator. In the second quantization the Dirac field be-
comes an operator obeying the following equal-time anticommutation relations

{ψα(x),ψ†
β (y)} = δαβ δ (x− y), {ψα(x),ψβ (y)} = 0. (7)

In the computational representation, the field operator can be written in terms of local
single-qubit operators using the Clifford algebra as follows
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 , ψα(n) = γ4n+α , γk :=

(
k−1

∏
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j

)
σ−k , (8)

where we used the notation σα
n = . . . I⊗ I⊗ σα

︸︷︷︸
n−th

I⊗ I⊗ . . .. We want now to reproduce

the infinitesimal unitary evolution of the field given by Eq. (9), namely

ψ(n, t + τ) =
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λ I

a
λ I − i

2σx(δ+−δ−)
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ψ(n, t). (9)
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l σ z

l+1 . . .σ z
l+k−1σ−l+k +h. c. (10)
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ψ(n) = γ(n) :=
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l−1⊗

j=−∞
σ z
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)
σ−l (4)

{ψ(x),ψ†(x)} = δ (x− y), {ψ(x),ψ(y)} = 0 (5)

From the identity σzσ−σz =−σ−, one has

σz(n)ψ(l)σz(n) =

{
−ψ(l), l = n
ψ(l), l "= n

. (6)

The Dirac Quantum Field Simulator. In the second quantization the Dirac field be-
comes an operator obeying the following equal-time anticommutation relations

{ψα(x),ψ†
β (y)} = δαβ δ (x− y), {ψα(x),ψβ (y)} = 0. (7)

In the computational representation, the field operator can be written in terms of local
single-qubit operators using the Clifford algebra as follows
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 , ψα(n) = γ4n+α , γk :=
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σ z
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)
σ−k , (8)

where we used the notation σα
n = . . . I⊗ I⊗ σα

︸︷︷︸
n−th

I⊗ I⊗ . . .. We want now to reproduce

the infinitesimal unitary evolution of the field given by Eq. (9), namely

ψ(n, t + τ) =
[

I− iε
( i

2σx(δ+−δ−) a
λ I

a
λ I − i

2σx(δ+−δ−)

)]
ψ(n, t). (9)

Hl,l+1 := σ+
l σ−l+1 +σ−l σ+

l+1, Hl,l+k := σ+
l σ z

l+1 . . .σ z
l+k−1σ−l+k +h. c. (10)

ψ(0)︷ ︸︸ ︷
︸ ︷︷ ︸

ψ(t)

Ut︷ ︸︸ ︷
(1)

Uε = I− εH (2)

H(k)
i (3)

THE DIRAC QUANTUM SIMULATOR

ψ(n) = γ(n) :=

(
l−1⊗

j=−∞
σ z

j

)
σ−l (4)

{ψ(x),ψ†(x)} = δ (x− y), {ψ(x),ψ(y)} = 0 (5)

From the identity σzσ−σz =−σ−, one has

σz(n)ψ(l)σz(n) =

{
−ψ(l), l = n
ψ(l), l "= n

. (6)

The Dirac Quantum Field Simulator. In the second quantization the Dirac field be-
comes an operator obeying the following equal-time anticommutation relations

{ψα(x),ψ†
β (y)} = δαβ δ (x− y), {ψα(x),ψβ (y)} = 0. (7)

In the computational representation, the field operator can be written in terms of local
single-qubit operators using the Clifford algebra as follows

ψ(n) =





u1(n)
u2(n)
v1(n)
v2(n)



 , ψα(n) = γ4n+α , γk :=

(
k−1

∏
j=−∞

σ z
j

)
σ−k , (8)

where we used the notation σα
n = . . . I⊗ I⊗ σα

︸︷︷︸
n−th

I⊗ I⊗ . . .. We want now to reproduce

the infinitesimal unitary evolution of the field given by Eq. (9), namely

ψ(n, t + τ) =
[

I− iε
( i

2σx(δ+−δ−) a
λ I

a
λ I − i

2σx(δ+−δ−)

)]
ψ(n, t). (9)

Hl,l+1 := σ+
l σ−l+1 +σ−l σ+

l+1, Hl,l+k := σ+
l σ z

l+1 . . .σ z
l+k−1σ−l+k +h. c. (10)

Local uniform causality and Trotter formula

Consider the unitary transformation from the uniform Hamiltonian with p neighbour
interacting systems

H =
p−1

∑
k=0

H(k), H(k) =
Nx

∑
i=−Nx

H(k)
i (25)

where H(k)
i is the p-system Hamiltonian describing the interaction among systems pi+

k, . . . , p(i + 1) + k− 1. We want to achieve the unitary transformation using p-system
gates. Using the Trotter’s formula

∣∣∣∣∣

∣∣∣∣∣exp

(
q

∑
i=1

Ai

)
−

[
q

∏
i=1

exp
(

Ai

n

)]n∣∣∣∣∣

∣∣∣∣∣ ! 2
n

(
q

∑
i=1

||Ai||
)2

exp

(
n+2

n

q

∑
i=1

||Ai||
)

, (26)

along with the fact that for commuting Hermitian operators A,B one has ||A + B|| =
||A||+ ||B||, whence ||H(k)|| = (2Nx +1)||H(0)

0 ||, one has
∣∣∣∣∣∣

∣∣∣∣∣∣
e−iεH −

(
p

∏
i=1

e−iε H(k)
N

)N
∣∣∣∣∣∣

∣∣∣∣∣∣
! 2[ε p(2Nx +1)||H(0)

0 ||]2

N
exp

[
N +2

N
ε p(2Nx +1)||H(0)

0 ||
]

(27)
This requires ε = cτ

2a = O(N−1
x ), namely τ = O(N−1

x ) for fixed a, N,Nx → ∞. For the
nearest-neighbor XY Heisenberg chain one has p = 2 and ||H0

0 || = 1.

Evaluation of the norm of H(0)
0 for the XY nn Heisenberg Hamiltonian

H(1)
0 := σ+

1 σ−2 +σ−1 σ+
2 = 1

2(σ x
1 σ x

2 +σ y
1σ y

2). (28)

(σ x
1 σ x

2 +σ y
1σ y

2)|σ x〉〉 = 2|σ x〉〉,
(σ x

1 σ x
2 +σ y

1σ y
2)|σ y〉〉 = −2|σ y〉〉,

(σ x
1 σ x

2 +σ y
1σ y

2)|σ z〉〉 = −2|σ z〉〉,
(σ x

1 σ x
2 +σ y

1σ y
2)|I〉〉 = 0|I〉〉,

which implies that ||H(1)
0 || = 1.

ψ(0)︷ ︸︸ ︷
︸ ︷︷ ︸

ψ(t)

Ut︷ ︸︸ ︷
(1)

Uε = I− εH (2)

[H(k)
i ,H(k)

j ] = 0, [H(l),H(k)] "= 0 (3)

THE DIRAC QUANTUM SIMULATOR

ψ(n) = γ(n) :=

(
l−1⊗

j=−∞
σ z

j

)
σ−l (4)

{ψ(x),ψ†(x)} = δ (x− y), {ψ(x),ψ(y)} = 0 (5)

From the identity σzσ−σz =−σ−, one has

σz(n)ψ(l)σz(n) =

{
−ψ(l), l = n
ψ(l), l "= n

. (6)

The Dirac Quantum Field Simulator. In the second quantization the Dirac field be-
comes an operator obeying the following equal-time anticommutation relations

{ψα(x),ψ†
β (y)} = δαβ δ (x− y), {ψα(x),ψβ (y)} = 0. (7)

In the computational representation, the field operator can be written in terms of local
single-qubit operators using the Clifford algebra as follows

ψ(n) =





u1(n)
u2(n)
v1(n)
v2(n)



 , ψα(n) = γ4n+α , γk :=

(
k−1

∏
j=−∞

σ z
j

)
σ−k , (8)

where we used the notation σα
n = . . . I⊗ I⊗ σα

︸︷︷︸
n−th

I⊗ I⊗ . . .. We want now to reproduce

the infinitesimal unitary evolution of the field given by Eq. (9), namely

ψ(n, t + τ) =
[

I− iε
( i

2σx(δ+−δ−) a
λ I

a
λ I − i

2σx(δ+−δ−)

)]
ψ(n, t). (9)

Hl,l+1 := σ+
l σ−l+1 +σ−l σ+

l+1, Hl,l+k := σ+
l σ z

l+1 . . .σ z
l+k−1σ−l+k +h. c. (10)

Notice that Hi, j = σ+
i σ−j +σ−i σ+

j ≡
1
2(σ x

i σ x
j +σ y

i σ y
j ).

Trotter-ization of H
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Simple scalar fields in 1 space dimension

Equal-time microcausality:
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ψ(n) = γ(n) :=

(
l−1⊗

j=−∞
σ z

j

)
σ−

l (5)

{ψ(x),ψ†(x)} = δ (x− y), {ψ(x),ψ(y)} = 0 (6)

From the identity σzσ−σz =−σ−, one has

σz(n)ψ(l)σz(n) =

{
−ψ(l), l = n
ψ(l), l "= n

. (7)

The Dirac Quantum Field Simulator. In the second quantization the Dirac field be-
comes an operator obeying the following equal-time anticommutation relations

{ψα(x),ψ†
β (y)} = δαβ δ (x− y), {ψα(x),ψβ (y)} = 0. (8)

In the computational representation, the field operator can be written in terms of local
single-qubit operators using the Clifford algebra as follows

ψ(n) =





u1(n)
u2(n)
v1(n)
v2(n)



 , ψα(n) = γ4n+α , γk :=

(
k−1

∏
j=−∞

σ z
j

)
σ−

k , (9)

where we used the notation σα
n = . . . I⊗ I⊗ σα

︸︷︷︸
n−th

I⊗ I⊗ . . .. We want now to reproduce

the infinitesimal unitary evolution of the field given by Eq. (10), namely

ψ(n, t + τ) =
[

I− iε
( i

2σx(δ+−δ−) a
λ I

a
λ I − i

2σx(δ+−δ−)

)]
ψ(n, t). (10)

  : space-granularity (minimal in principle discrimination between 
independent events);

a︷ ︸︸ ︷

τ
︷︸︸︷    time-granularity;τ
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Time evolution:

ψ(0)︷ ︸︸ ︷
︸ ︷︷ ︸

ψ(t)

Ut︷ ︸︸ ︷
(1)

Uε = I− εH (2)

[H(k)
i ,H(k)

j ] = 0, [H(l),H(k)] "= 0 (3)

H = ∑
〈i, j〉

Hi, j (4)

φ(x) φn := φ(na) a φn
ϕ ψ

{ψn,ψm} = δnm

[ϕn,ϕm] = δnm

Uε = I− iεH

H τ

φn(t + τ) = Uεφn(t)U†
ε = φn(t)− iε[H,φn(t)]

ih̄∂tφn =
ε
τ [h̄H,φn]

THE DIRAC QUANTUM SIMULATOR

ψ(n) = γ(n) :=

(
l−1⊗

j=−∞
σ z

j

)
σ−

l (5)

{ψ(x),ψ†(x)} = δ (x− y), {ψ(x),ψ(y)} = 0 (6)

From the identity σzσ−σz = −σ−, one has

σz(n)ψ(l)σz(n) =

{
−ψ(l), l = n
ψ(l), l "= n

. (7)

The Dirac Quantum Field Simulator. In the second quantization the Dirac field be-
comes an operator obeying the following equal-time anticommutation relations

{ψα(x),ψ†
β (y)} = δαβ δ (x− y), {ψα(x),ψβ (y)} = 0. (8)

: adimensional Hamiltonian

φn(t) = Utφ(0) := exp(−iωtH)φ(0) (1)

ψ(0)︷ ︸︸ ︷
︸ ︷︷ ︸

ψ(t)

Ut︷ ︸︸ ︷
(2)

Uε = I− εH (3)

[H(k)
i ,H(k)

j ] = 0, [H(l),H(k)] "= 0 (4)

H = ∑
〈i, j〉

Hi, j (5)

φ(x) φn := a
1
2 φ(na) a φn

ϕ ψ
{ψn,ψm}= δnm

[ϕn,ϕm] = δnm

φ(t) = Utφ(0)U†
t , Ut = exp

(
− i

h̄
th̄ωH

)
= exp(−2πiNT H), NT =

t
T

=
ωt
2π =

φt

2π

ih̄∂tφ = [h̄ωH,φ ], H =− i
2 ∑

n
(φ †

n φn+1−φ †
n+1φn)=

a
h̄

P P =−ih̄
∫

dxφ †(x)∂xφ(x)

One has

[H,φ(x)] = [H,a−
1
2 φn] = a−

1
2

i
2
(φn+1−φn−1) = ia∂xφ(x) (6)

one obtains
∂tφ =−iω [H,φ ] = aω∂xφ

which, for ωa = c becomes the Klein-Gordon equation

!φ = 0

Using the identity
[AB,C] = A[B,C]±∓ [A,C]±B

we cn see that this is true for both Bose and Fermi field, since

[H,φn] =∓1
2
[−iφ †

n ,φn]±(φn+1−φn−1) =
i
2
(φn+1−φn−1)

field local as long as it satisfies equal-time commutation relations of the Newton-Wigner
[13] form [ϕn,ϕ†

m] = δnm and [ϕn,ϕm] = 0. The circuit will produce the unitary evolution
of the field φ(t) = U†

t φ(0)Ut , and the unitary transformation defines the Hamiltonian H
through the identity Ut =: exp

(
− i

h̄ th̄ωH
)
, where we conveniently take the Hamiltonian

as adimensional. This is equivalent to the Heisenberg-picture evolution of the field

ih̄∂tφn = [φn, h̄ωH]. (4)

For Hamiltonian

Hs =−s
i
2 ∑

n
(φ †

n φn+1−φ †
n+1φn) = s

a
h̄

P, s = ±1, P =−ih̄
∫

dxφ †(x)∂xφ(x), (5)

P being the field momentum, using the identity [AB,C] = A[B,C]± ∓ [A,C]±B, one
obtains [φ(x),Hs] = −sa−

1
2 i

2(φn+1 − φn−1) = −sia∂xφ(x) for both the Bose and the
Fermi field, where we used the identity

∂xφ(x) =
1

2a
(φ(na+a)−φ(na−a)) =

1
2a3/2 (φn+1−φn−1). (6)

Then we can see that for ωa = c the field satisfies the massless scalar Klein-Gordon
equation !φ = 0, corresponding to the two decoupled fields ih̄∂tφ (s)(x) =−isch̄∂xφ (s) =
scpφ (s). In the Fermi case the two components for s = ± of the field can be interpreted
as particle and antiparticle, and the filling of the Dirac sea is simply the reversal of the
qubits (see also the following subsection on the vacuum).

The Hamiltonian Hs is global, involving a whole slide of the circuit. However, using
the Trotter’s formula we can see that the time evolution can be achieved with a slab of
N couples of intercalated layers of bipartite gates, as in the computational circuit in Fig.
1, upon writing

Ut = e−iωtH = lim
N→∞

U (N)
t , U (N)

t :=

[(

∏
l

e−i πωt
4N H2l−1,2l

)(

∏
l

e−i πωt
4N H2l,2l+1

)]N

, (7)

for gate Hamiltonian

Hn,n+1 =∓2i
π (φ †

n+1φn−φ †
n φn+1), (8)

where the coupling for the gate Hamiltonian has been chosen for later consistency of
time intervals with the relation ωa = c. I will give a study of convergence of the limit
in Eq. (7) elsewhere. Here I just notice that the simple Suzuki bound for the Trotter’s
formula [14] is of no use, since one would get

||Ut−U (N)
t || " ||H0,1||2π2ω2t2(2Nx+1)2

2N e
πωt

2 (2Nx+1) N+2
N ||H0,1||, (9)

upon considering a finite circuit with l running from −Nx to +Nx in Eq. (7). The
bound (7) guarantees convergence only for Nx fixed (and Fermi field, in order to have
||H0,1|| bounded), namely a fixed for fixed width L of the circuit. This, however, would
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(σ+
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† = σ−n ! σ+
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Deriving h̄

Γ = h̄ω = h̄
c
a

= h̄
1
τ , h̄ = Γτ (8)

γ =
λ
a

=
h̄

mca
=

h̄ω
mc2 , mc2 =

Γ
γ (9)

Nonrelativistic limit

(
−ih̄∂t + ich̄σx∂x mc2

mc2 −ih̄∂t− ich̄σx∂x

)
ψ = 0 (10)

[
mc2
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−I I
I −I
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(
σx px 0

0 −σx px
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−I I
I −I

)
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σx px 0

0 −σx px
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ψ = 0 (13)

CHRONON

Ut = e−iωtH = lim
N→∞

U (N)
t , U (N)

t :=
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∏
l

e−i πωt
4N H2l−1,2l

)(

∏
l

e−i πωt
4N H2l,2l+1

)]N

,

(15)

φ(t) = U†
t φ(0)Ut , Ut = exp

(
− i

h̄
th̄ωH

)
= exp(−2πiNT H), NT =

t
T

=
ωt
2π =

φt

2π
(16)
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ψ(0)︷ ︸︸ ︷
︸ ︷︷ ︸

ψ(t)

Ut︷ ︸︸ ︷
(1)

Uε = I− εH (2)

[H(k)
i ,H(k)

j ] = 0, [H(l),H(k)] "= 0 (3)

H = ∑
〈i, j〉

Hi, j (4)

φ(x) φn := a
1
2 φ(na) a φn

ϕ ψ
{ψn,ψm}= δnm

[ϕn,ϕm] = δnm

Uε = I− iεH
H τ

φn(t + τ) = Uεφn(t)U†
ε = φn(t)− iε[H,φn(t)]

ih̄∂tφn =
ε
τ [h̄H,φn]

H =−i∑
n

(φ †
n φn+1−φ †

n+1φn)

one obtains
ih̄∂tφn =− ich̄

2a (φn+1−φn−1)
for ε = cτ

2a

1
2a3/2 (φn+1−φn−1) = ∂xφ(x)

we can see that the massless scalar Klein-Gordon field theory is obtained, namely

ih̄∂tφ =−ich̄∂xφ = cpφ

!φ = 0

P =−ih̄
∫

dxφ †(x)∂xφ(x) =− ih̄
2a ∑

n
(φ †

n φn+1−φ †
n+1φn) =

h̄
2a

H

[AB,C] = A[B,C]±∓ [A,C]±B

[H,φn] =∓[−iφ †
n ,φn]±(φn+1−φn−1) =−i(φn+1−φn−1)

ψ(0)︷ ︸︸ ︷
︸ ︷︷ ︸

ψ(t)

Ut︷ ︸︸ ︷
(1)

Uε = I− εH (2)

[H(k)
i ,H(k)

j ] = 0, [H(l),H(k)] "= 0 (3)

H = ∑
〈i, j〉

Hi, j (4)

φ(x) φn := φ(na) a φn
ϕ ψ

{ψn,ψm} = δnm

[ϕn,ϕm] = δnm

Uε = I− iεH

H τ

φn(t + τ) = Uεφn(t)U†
ε = φn(t)− iε[H,φn(t)]

ih̄∂tφn =
ε
τ [h̄H,φn]

H = i∑
n

(φ †
n φn+1 −φ †

n+1φn)

one obtains
ih̄∂tφn = − ich̄

2a (φn+1 −φn−1)

for ε = cτ
2a

1
2a

(φn+1 −φn−1) = ∂xφ

we can see that the massless scalar Klein-Gordon field theory is obtained, namely

ih̄∂tφn = −ich̄∂xφ = cpφ

p be momentum operator), namely

!φ = 0

ψ(0)︷ ︸︸ ︷
︸ ︷︷ ︸

ψ(t)

Ut︷ ︸︸ ︷
(1)

Uε = I− εH (2)

[H(k)
i ,H(k)

j ] = 0, [H(l),H(k)] "= 0 (3)

H = ∑
〈i, j〉

Hi, j (4)

φ(x) φn := a
1
2 φ(na) a φn

ϕ ψ
{ψn,ψm}= δnm

[ϕn,ϕm] = δnm

φ(t) = Utφ(0)U†
t , Ut = exp

(
− i

h̄
th̄ωH

)
= exp(−iNtH), Nt = ωt

ih̄∂tφ = [h̄ωH,φ ], H =− i
2 ∑

n
(φ †

n φn+1−φ †
n+1φn)=

a
h̄

P P =−ih̄
∫

dxφ †(x)∂xφ(x)

One has

[H,φ(x)] = [H,a−
1
2 φn] = a−

1
2

i
2
(φn+1−φn−1) = ia∂xφ(x) (5)

one obtains
∂tφ =−iω[H,φ ] = aω∂xφ

which, for ωa = c becomes the Klein-Gordon equation

!φ = 0

Using the identity
[AB,C] = A[B,C]±∓ [A,C]±B

we cn see that this is true for both Bose and Fermi field, since

[H,φn] =∓1
2
[−iφ †

n ,φn]±(φn+1−φn−1) =
i
2
(φn+1−φn−1)

Now we decompose the Hamiltonian as follows

H = H(0) +H(1), H(k) =− i
2

Nx

∑
j=−Nx

H(k)
j (6)

ψ(0)︷ ︸︸ ︷
︸ ︷︷ ︸

ψ(t)

Ut︷ ︸︸ ︷
(1)

Uε = I− εH (2)

[H(k)
i ,H(k)

j ] = 0, [H(l),H(k)] "= 0 (3)

H = ∑
〈i, j〉

Hi, j (4)

φ(x) φn := a
1
2 φ(na) a φn

ϕ ψ
{ψn,ψm}= δnm

[ϕn,ϕm] = δnm

φ(t) = Utφ(0)U†
t , Ut = exp

(
− i

h̄
th̄ωH

)
= exp(−iNtH), Nt = ωt

ih̄∂tφ = [h̄ωH,φ ], H =− i
2 ∑

n
(φ †

n φn+1−φ †
n+1φn)=

a
h̄

P P =−ih̄
∫

dxφ †(x)∂xφ(x)

One has

[H,φ(x)] = [H,a−
1
2 φn] = a−

1
2

i
2
(φn+1−φn−1) = ia∂xφ(x) (5)

one obtains
∂tφ =−iω[H,φ ] = aω∂xφ

which, for ωa = c becomes the Klein-Gordon equation

!φ = 0

Using the identity
[AB,C] = A[B,C]±∓ [A,C]±B

we cn see that this is true for both Bose and Fermi field, since

[H,φn] =∓1
2
[−iφ †

n ,φn]±(φn+1−φn−1) =
i
2
(φn+1−φn−1)

Now we decompose the Hamiltonian as follows

H = H(0) +H(1), H(k) =− i
2

Nx

∑
j=−Nx

H(k)
j (6)

Both for Bose and Fermi fields (using:                                                    )

ψ(0)︷ ︸︸ ︷
︸ ︷︷ ︸

ψ(t)

Ut︷ ︸︸ ︷
(1)

Uε = I− εH (2)

[H(k)
i ,H(k)

j ] = 0, [H(l),H(k)] "= 0 (3)

H = ∑
〈i, j〉

Hi, j (4)

φ(x) φn := a
1
2 φ(na) a φn

ϕ ψ
{ψn,ψm}= δnm

[ϕn,ϕm] = δnm

Uε = I− iεH
H τ

φn(t + τ) = Uεφn(t)U†
ε = φn(t)− iε[H,φn(t)]

ih̄∂tφn =
ε
τ [h̄H,φn]

H =−i∑
n

(φ †
n φn+1−φ †

n+1φn)

one obtains
ih̄∂tφn =− ich̄

2a (φn+1−φn−1)
for ε = cτ

2a

1
2a3/2 (φn+1−φn−1) = ∂xφ

we can see that the massless scalar Klein-Gordon field theory is obtained, namely

ih̄∂tφ =−ich̄∂xφ = cpφ

!φ = 0

P =−ih̄
∫

dxφ †(x)∂xφ(x) =− ih̄
2a ∑

n
(φ †

n φn+1−φ †
n+1φn) =

h̄
2a

H

[AB,C] = A[B,C]±∓ [A,C]±B

[H,φn] =∓[−iφ †
n ,φn]±(φn+1−φn−1) =−i(φn+1−φn−1)

Ut = e−iωtH = lim
N→∞

U (N)
t , U (N)

t :=

[(

∏
l

e−i πωt
4N H2l−1,2l

)(

∏
l

e−i πωt
4N H2l,2l+1

)]N

, (1)

φ(t) = Utφ(0) := exp(−iωtH)φ(0) (2)

ψ(0)︷ ︸︸ ︷
︸ ︷︷ ︸

ψ(t)

Ut︷ ︸︸ ︷
(3)

Uε = I− εH (4)

[H(k)
i ,H(k)

j ] = 0, [H(l),H(k)] #= 0 (5)

H = ∑
〈i, j〉

Hi, j (6)

φ(x) φn := a
1
2 φ(na) a φn

ϕ ψ
{ψn,ψm}= δnm

[ϕn,ϕm] = δnm

φ(t) = Utφ(0)U†
t , Ut = exp

(
− i

h̄
th̄ωH

)
= exp(−2πiNT H), NT =

t
T

=
ωt
2π =

φt

2π

ih̄∂tφ = [h̄ωH,φ ], H =− i
2 ∑

n
(φ †

n φn+1−φ †
n+1φn)=

a
h̄

P P =−ih̄
∫

dxφ †(x)∂xφ(x)

One has

[φ (s)(x),Hs] = [a−
1
2 φ (s)

n ,Hs] =−a−
1
2 s

i
2
(φ (s)

n+1−φ (s)
n−1) =−isa∂xφ (s)(x) (7)

one obtains
∂tφ =−iω [H,φ ] = aω∂xφ

which, for ωa = c becomes the Klein-Gordon equation

!φ = 0

Using the identity
[AB,C] = A[B,C]±∓ [A,C]±B

Ut = e−iωtH = lim
N→∞

U (N)
t , U (N)

t :=

[(

∏
l

e−i πωt
4N H2l−1,2l

)(

∏
l

e−i πωt
4N H2l,2l+1

)]N

, (1)

φ(t) = Utφ(0) := exp(−iωtH)φ(0) (2)

ψ(0)︷ ︸︸ ︷
︸ ︷︷ ︸

ψ(t)

Ut︷ ︸︸ ︷
(3)

Uε = I− εH (4)

[H(k)
i ,H(k)

j ] = 0, [H(l),H(k)] #= 0 (5)

H = ∑
〈i, j〉

Hi, j (6)

φ(x) φn := a
1
2 φ(na) a φn

ϕ ψ
{ψn,ψm}= δnm

[ϕn,ϕm] = δnm

φ(t) = Utφ(0)U†
t , Ut = exp

(
− i

h̄
th̄ωH

)
= exp(−2πiNT H), NT =

t
T

=
ωt
2π =

φt

2π

ih̄∂tφ = [h̄ωH,φ ], Hs =−s
i
2 ∑

n
(φ (s)

n
†φ (s)

n+1−φ (s)
n+1

†φ (s)
n )= s

a
h̄

P, s =±1 P =−ih̄
∫

dxφ †(x)∂xφ(x)

One has

[φ (s)(x),Hs] = [a−
1
2 φ (s)

n ,Hs] =−a−
1
2 s

i
2
(φ (s)

n+1−φ (s)
n−1) =−isa∂xφ (s)(x) (7)

one obtains
∂tφ =−iω [H,φ ] = aω∂xφ

which, for ωa = c becomes the Klein-Gordon equation

!φ = 0

Using the identity
[AB,C] = A[B,C]±∓ [A,C]±B

s = ±1
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Trotter-ization

correspond to maximal causal velocity υcaus → ∞, since τ = t/(2N). In order to keep
υcaus = a

τ = c for a fixed, we need to increase the width of the circuit, so that L
t =

2Nxa
2Nτ = c, namely Nx = N, but this will blow up the bound for N → ∞. Also we see that
the Hamiltonian will achieve the swap for phase π/2 (modulo local unitaries), and this
corresponds to imposing πωt

4N = π
2 , namely the time t = N T

π is discrete, with T = 2π
ω the

oscillation period. But now, since ωa = c, one has that both grains of space and time are
dictated by ω , and one has

a =
cT
2π , τ =

T
2π , t = 2Nτ. (10)

We remember that the angular frequency ω is only a fictitious quantity designed to
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gate

Since for commuting Hermitian operators A,B one has ||A+B|| = ||A||+ ||B||, whence
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c =
x
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a2Nx

τ2N
=⇒ Nx = N (36)

c = ωa =
a
τ =⇒ ω =

1
τ ? (37)

2πNT /N = π (the phase of a single gate is π) =⇒ NT

N
=

1
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(38)
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x
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2Na
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a
τ =

x/2Nx

t/2N
, lim

N→∞

a
τ = ∞ (40)

t = N
2a
c

(41)

CLASSICAL COMPUTATION

ρ!φ =⊗n|φn〉〈φn| (42)

|φ〉〈φ | with 〈φ |φ ′〉= δφφ ′ φ ∈ C
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SIMULATING   QFT
Dirac in 1 space dimension

correspond to maximal causal velocity υcaus → ∞, since τ = t/(2N). In order to keep
υcaus = a

τ = c for a fixed, we need to increase the width of the circuit, so that L
t =
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2Nτ = c, namely Nx = N, but this will blow up the bound for N → ∞. Also we see that
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t =
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FIGURE 2. Circuit for the Hamiltonian (18) for the Dirac field.

K being a linear operator over the operator vector {ψα
n }, we get the Hamiltonian

H =
( i

2σx(δ+−δ−) a
λ I

a
λ I − i

2σx(δ+−δ−)

)
, (16)

for ωa = c, and using the identities (valid at O(a2))

1
2a

(δ+−δ−) = ∂x,
1
2
(δ+ +δ−) = 1. (17)

where λ := h̄
mc = 3.86159 ∗ 10−13 is the reduced Compton wavelength (roughly the

uncertainty in position corresponding to sufficient energy to create another particle).
The unitary transformation can be achieved by a computational network as in Fig. 1,
where each wire is actually a quadruple wire as in Fig. 2. Here the two different types of
bipartite gates of the intercalated layers in Fig. 1 are represented in detail. The bonds
linking the open circles represent the i

2σx matrix blocks, whereas those linking full
circles represent the a

λ I blocks.

The vacuum. In our qubit description of the Dirac field the vacuum will be given by the
state |0〉 = . . . | ↓〉| ↓〉| ↓〉 . . . and the Clifford realization of the field in Eq. (13) will give
ψn|0〉 = 0. The state |ψn〉 := ψ†

n |0〉 will describe a single-particle excitation, ψ†
n ψ†

m|0〉
a two-particle excitation, etc. Notice that we could have defined the Clifford realization
of the field with a σ+ at position n for the antiparticle, and correspondingly used the
state | ↑〉 in the vacuum, defining |0〉 as the filled Dirac sea. An analogous representation
can be used for Bosons, where we can now have any number of particles at location n.
It will also be handy to rewrite the (anti)commutation relations as [φn,φ †

m]± = 〈φn|φm〉I.
Finally, it is worth noticing that if one rewrites everything in terms of the qubit local
operators there will be no role left for the field operator (and, consequently, for the
(anti)commutation relation), however, the physics will be left untouched.
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FIGURE 3. Circuit for the Hamiltonian (8) for the Dirac field.
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(8)

where λ := h̄
mc = 3.86159 ∗ 10−13 is the reduced Compton wavelength (roughly the

uncertainty in position corresponding to sufficient energy to create another particle).
The unitary transformation can be achieved by a computational network as in Fig. 1,
where each wire is actually a quadruple wire as in Fig. 3. Here the two different types of
bipartite gates of the intercalated layers in Fig. 1 are represented in detail. The bonds
linking the full circles represent the i

2σx matrix blocks, whereas those linking open
circles represent the a

λ I blocks.
It is interesting to notice how a motion of the particle will manifest as a zigzag motion

within gates on the circuit, as in Fig. 1. This may account for the mysterious Zitterbewe-
gung motion (German for "trembling motion") of the Dirac particle, a fluctuation at the
speed of light and with an amplitude λ of the position of the particle around the median,
with a circular frequency of 2mc2/h̄# 1.6∗1021 Hz, and resulting from the interference
between positive and negative energy solutions.6

For a full QCFT2 of the Dirac 2nd-quantized field the calculations turn out to be
much more complicated due to non-locality of Fermi anticommutation, and they will be

6 Such motion is usually explained as an interaction of the classical particle with the zero-point field.
Schrődinger proposed the electron spin to be a consequence of the Zitterbewegung.
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K being a linear operator over the operator vector {ψα
n }, we get the Hamiltonian

H =
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, (16)

for ωa = c, and using the identities (valid at O(a2))

1
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(δ+−δ−) = ∂x,
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2
(δ+ +δ−) = 1. (17)

where λ := h̄
mc = 3.86159 ∗ 10−13 is the reduced Compton wavelength (roughly the

uncertainty in position corresponding to sufficient energy to create another particle).
The unitary transformation can be achieved by a computational network as in Fig. 1,
where each wire is actually a quadruple wire as in Fig. 2. Here the two different types of
bipartite gates of the intercalated layers in Fig. 1 are represented in detail. The bonds
linking the open circles represent the i

2σx matrix blocks, whereas those linking full
circles represent the a

λ I blocks.

The vacuum. In our qubit description of the Dirac field the vacuum will be given by the
state |0〉 = . . . | ↓〉| ↓〉| ↓〉 . . . and the Clifford realization of the field in Eq. (13) will give
ψn|0〉 = 0. The state |ψn〉 := ψ†

n |0〉 will describe a single-particle excitation, ψ†
n ψ†

m|0〉
a two-particle excitation, etc. Notice that we could have defined the Clifford realization
of the field with a σ+ at position n for the antiparticle, and correspondingly used the
state | ↑〉 in the vacuum, defining |0〉 as the filled Dirac sea. An analogous representation
can be used for Bosons, where we can now have any number of particles at location n.
It will also be handy to rewrite the (anti)commutation relations as [φn,φ †

m]± = 〈φn|φm〉I.
Finally, it is worth noticing that if one rewrites everything in terms of the qubit local
operators there will be no role left for the field operator (and, consequently, for the
(anti)commutation relation), however, the physics will be left untouched.
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ψ(t)

Ut︷ ︸︸ ︷
(3)

Uε = I− εH (4)

[H(k)
i ,H(k)

j ] = 0, [H(l),H(k)] #= 0 (5)

H = ∑
〈i, j〉

Hi, j (6)

φ(x) φn := a
1
2 φ(na) a φn

ϕ ψ
{ψn,ψm} = δnm

[ϕn,ϕm] = δnm

φ(t) = Utφ(0)U†
t , Ut = exp

(
− i

h̄
th̄ωH

)
= exp(−2πiNT H), NT =

t
T

=
ωt
2π =

φt

2π

ih̄∂tφ = [h̄ωH,φ ], Hs =−s
i
2 ∑

n
(φ (s)

n
†φ (s)

n+1−φ (s)
n+1

†φ (s)
n )= s

a
h̄

P, s =±1 P =−ih̄
∫

dxφ †(x)∂xφ(x)

ih̄∂tψn = [ψn, h̄ωH]

|ψ1
n 〉 := ψ1

n
†|0〉 ψ1

n
† = ∏4n

j=−∞ σ+
4n+1

H = ∑
nα

ψ†
nα

( i
2σx(δ+−δ−) a

λ I
a
λ I − i

2σx(δ+−δ−)

)
ψnα , (7)

One has

[φ (s)(x),Hs] = [a−
1
2 φ (s)

n ,Hs] =−a−
1
2 s

i
2
(φ (s)

n+1−φ (s)
n−1) =−isa∂xφ (s)(x) (8)

one obtains
∂tφ =−iω[H,φ ] = aω∂xφ

along with the fact that for commuting Hermitian operators A,B one has ||A + B|| =
||A||+ ||B||, whence ||H(k)|| = (2Nx +1)||H(0)

0 ||, one has
∣∣∣∣∣∣

∣∣∣∣∣∣
e−iεH −

(
2

∏
i=1

e−iε H(k)
N

)N
∣∣∣∣∣∣

∣∣∣∣∣∣
! 2[ε2(2Nx +1)||H(0)

0 ||]2

N
exp

[
N +2

N
ε2(2Nx +1)||H(0)

0 ||
]

(24)
a ∝ N−1 ω = h̄

2ma2 ∝ N2

ih̄∂tψ =
(

ich̄σx∂x mc2

mc2 −ich̄σx∂x

)
ψ (25)

which will be achieved by a QCFT1 as

ih̄[ψn(t + τ)−ψn(t)] =
c
υ h̄Hψn (26)

or
ψn(t + τ) = ψn(t)− iεHψn(t), ε =

c
υ , υ =

a
τ (27)

where

ψ :=





. . .
ψn

ψn+1
. . .



 , ψn =
(

un
vn

)
=





u1
n

u2
n

v1
n

v2
n



 (28)

with Hamiltonian

H =





. . . . . . . . . . . . . . . . . . . . . . . .

. . . 0 0 − i
2 σx 0 0 0 . . .

. . . 0 0 a
λ I i

2 σx 0 0 . . .
. . . i

2 σx
a
λ I 0 0 − i

2 σx 0 . . .
. . . 0 − i

2 σx 0 0 a
λ I i

2 σx . . .
. . . 0 0 i

2 σx
a
λ I 0 0 . . .

. . . 0 0 0 − i
2 σx

a
λ I 0 . . .

. . . . . . . . . . . . . . . . . . . . . . . .





(29)

where λ := h̄
mc = 3.86159∗10−13 is the reduced Compton wavelength.

Gauge invariance

U(x) eiφ(x)

x x′

ψ︷ ︸︸ ︷
(30)
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or
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H =
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. . . 0 0 − i
2 σx 0 0 0 . . .
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λ I i

2 σx 0 0 . . .
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. . . 0 0 0 − i
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where λ := h̄
mc = 3.86159∗10−13 is the reduced Compton wavelength.

Gauge invariance
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Ut = e−iωtH = lim
N→∞

U (N)
t , U (N)

t :=

[(

∏
l

e−i πωt
4N H2l−1,2l

)(

∏
l

e−i πωt
4N H2l,2l+1

)]N

, (1)

φ(t) = Utφ(0) := exp(−iωtH)φ(0) (2)
ψ(0)︷ ︸︸ ︷

︸ ︷︷ ︸
ψ(t)

Ut︷ ︸︸ ︷
(3)

Uε = I− εH (4)

[H(k)
i ,H(k)

j ] = 0, [H(l),H(k)] #= 0 (5)

H = ∑
〈i, j〉

Hi, j (6)

φ(x) φn := a
1
2 φ(na) a φn

ϕ ψ
{ψn,ψm}= δnm

[ϕn,ϕm] = δnm

φ(t) = Utφ(0)U†
t , Ut = exp

(
− i

h̄
th̄ωH

)
= exp(−2πiNT H), NT =

t
T

=
ωt
2π =

φt

2π

ih̄∂tφ = [h̄ωH,φ ], Hs =−s
i
2 ∑

n
(φ (s)

n
†φ (s)

n+1−φ (s)
n+1

†φ (s)
n )= s

a
h̄

P, s =±1 P =−ih̄
∫

dxφ †(x)∂xφ(x)

ih̄∂tψn = [ψn, h̄ωH]

One has

[φ (s)(x),Hs] = [a−
1
2 φ (s)

n ,Hs] =−a−
1
2 s

i
2
(φ (s)

n+1−φ (s)
n−1) =−isa∂xφ (s)(x) (7)

one obtains
∂tφ =−iω[H,φ ] = aω∂xφ

which, for ωa = c becomes the Klein-Gordon equation

!φ = 0

Using the identity
[AB,C] = A[B,C]±∓ [A,C]±B

Dirac filled sea

⇊⇈ ⇊⇈ { {
particle spin-up and spin down

{
antiparticle
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particle spin-up and spin down

{
antiparticle⇅

“particle” creation

Ut = e−iωtH = lim
N→∞

U (N)
t , U (N)

t :=
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∏
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e−i πωt
4N H2l−1,2l

)(

∏
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e−i πωt
4N H2l,2l+1

)]N

, (1)

φ(t) = Utφ(0) := exp(−iωtH)φ(0) (2)
ψ(0)︷ ︸︸ ︷

︸ ︷︷ ︸
ψ(t)

Ut︷ ︸︸ ︷
(3)

Uε = I− εH (4)

[H(k)
i ,H(k)

j ] = 0, [H(l),H(k)] #= 0 (5)

H = ∑
〈i, j〉

Hi, j (6)

φ(x) φn := a
1
2 φ(na) a φn

ϕ ψ
{ψn,ψm} = δnm

[ϕn,ϕm] = δnm

φ(t) = Utφ(0)U†
t , Ut = exp

(
− i

h̄
th̄ωH

)
= exp(−2πiNT H), NT =

t
T

=
ωt
2π =

φt

2π

ih̄∂tφ = [h̄ωH,φ ], Hs =−s
i
2 ∑

n
(φ (s)

n
†φ (s)

n+1−φ (s)
n+1

†φ (s)
n )= s

a
h̄

P, s =±1 P =−ih̄
∫

dxφ †(x)∂xφ(x)

ih̄∂tψn = [ψn, h̄ωH]

|ψ1
n 〉 := ψ1

n
†|0〉

One has

[φ (s)(x),Hs] = [a−
1
2 φ (s)

n ,Hs] =−a−
1
2 s

i
2
(φ (s)

n+1−φ (s)
n−1) =−isa∂xφ (s)(x) (7)

one obtains
∂tφ =−iω [H,φ ] = aω∂xφ

which, for ωa = c becomes the Klein-Gordon equation

!φ = 0
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ψ1
n

† =
(

∏4n
j=−∞ σ z

j )σ
+
4n+1

THE ANTICOMMUTATION TROUBLE WITH DIMENSION >1

ψn = γnxγnyγnz (1)

ψnψm = γnxγnyγnzγmxγmyγmz =−γmxγnxγnyγnzγmyγmz =−γmxγmyγmzγnxγnyγnz (2)





σ z σ z σ z σ z I I I
σ z σ z σ z σ z I I I
σ z σ z σ z σ z I I I
σ z σ z σ z σ+ I I I
I I I I I I I
I I I I I I I
I I I I I I I









σ z σ z σ z σ z σ z σ z I
σ z σ z σ z σ z σ z σ z I
σ z σ z σ z σ z σ z σ z I
σ z σ z σ z σ z σ z σ z I
σ z σ z σ z σ z σ z σ z I
σ z σ z σ z σ z σ z σ− I
I I I I I I I





=





I I I I σ z σ z I
I I I I σ z σ z I
I I I I σ z σ z I
I I I σ+ σ z σ z I

σ z σ z σ z σ z σ z σ z I
σ z σ z σ z σ z σ z σ− I
I I I I I I I





(3)

ψ†
n =

(
nx

∏
ix=−∞

ny

∏
iy=−∞

nz

∏
iy=−∞

σ z
i

)
σ+

n (4)
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SIMULATING   QFT
Dirac in 1 space dimension

Ut = e−iωtH = lim
N→∞

U (N)
t , U (N)

t :=

[(

∏
l

e−i πωt
4N H2l−1,2l

)(

∏
l

e−i πωt
4N H2l,2l+1

)]N

, (1)

φ(t) = Utφ(0) := exp(−iωtH)φ(0) (2)

ψ(0)︷ ︸︸ ︷
︸ ︷︷ ︸

ψ(t)

Ut︷ ︸︸ ︷
(3)

Uε = I− εH (4)

[H(k)
i ,H(k)

j ] = 0, [H(l),H(k)] #= 0 (5)

H = ∑
〈i, j〉

Hi, j (6)

φ(x) φn := a
1
2 φ(na) a φn

ϕ ψ
{ψn,ψm} = δnm

[ϕn,ϕm] = δnm

φ(t) = Utφ(0)U†
t , Ut = exp

(
− i

h̄
th̄ωH

)
= exp(−2πiNT H), NT =

t
T

=
ωt
2π =

φt

2π

ih̄∂tφ = [h̄ωH,φ ], Hs =−s
i
2 ∑

n
(φ (s)

n
†φ (s)

n+1−φ (s)
n+1

†φ (s)
n )= s

a
h̄

P, s =±1 P =−ih̄
∫

dxφ †(x)∂xφ(x)

ih̄∂tψn = [ψn, h̄ωH]

|ψ1
n 〉 := ψ1

n
†|0〉 ψ1

n
† = ∏4n

j=−∞ σ+
4n+1

H = ∑
nα

ψ†
nα

( i
2σx(δ+−δ−) a

λ I
a
λ I − i

2σx(δ+−δ−)

)
ψnα , (7)

One has

[φ (s)(x),Hs] = [a−
1
2 φ (s)

n ,Hs] =−a−
1
2 s

i
2
(φ (s)

n+1−φ (s)
n−1) =−isa∂xφ (s)(x) (8)

one obtains
∂tφ =−iω[H,φ ] = aω∂xφ

correspond to maximal causal velocity υcaus → ∞, since τ = t/(2N). In order to keep
υcaus = a

τ = c for a fixed, we need to increase the width of the circuit, so that L
t =

2Nxa
2Nτ = c, namely Nx = N, but this will blow up the bound for N → ∞. Also we see that
the Hamiltonian will achieve the swap for phase π/2 (modulo local unitaries), and this
corresponds to imposing πωt

4N = π
2 , namely the time t = N T

π is discrete, with T = 2π
ω the

oscillation period. But now, since ωa = c, one has that both grains of space and time are
dictated by ω , and one has

a =
cT
2π , τ =

T
2π , t = 2Nτ. (10)

We remember that the angular frequency ω is only a fictitious quantity designed to
simulate the field theory, whence, it is up to us to rescale it in order to make a and τ
as small as we want. Notice that ω rescales as ω ∝ a−1, corresponding to a resulting
extensivity of H versus the number of gates.

It is obvious that we can obtain different field theories by using different realizations
of the field operator in terms of local operators, and by making different choices of the
local gates. When the Hamiltonian involves a number 2 ! k ! ∞ of contiguous systems,
the evolution can be achieved with a repeated slab of k intercalated layers of k-partite
gates via the Trotter formula, corresponding to an homogeneous and isotropic circuit
satisfying local causality, and thus leading to relativistic invariance.
Simulating QFT2 by QCFT2: the Dirac equation. We want now to make a quantum
computer simulation of the Dirac equation, which is given by

ih̄∂tψ =
(

ich̄σx∂x mc2

mc2 −ich̄σx∂x

)
ψ, ψ(x) =





ψ1(x)
ψ2(x)
ψ3(x)
ψ4(x)



 :=
(

u(x)
v(x)

)
, (11)

where
{ψα(x),ψ†β (y)} = δαβ δ (x− y), {ψα(x),ψβ (y)} = 0. (12)

In the computational representation, the field operators can be written in terms of local
single-qubit operators using the Clifford algebra as follows

ψα
n = Γ4n+α , Γk :=

(
k−1

∏
j=−∞

σ z
j

)
σ−k , {Γk,Γh} = δkh, (13)

where we discretize as usual as ψα
n = a

1
2 ψα(na). Eq. (11) can be derived in the Heisen-

berg picture (4) from the Hamiltonian

h̄ωH =
∫

dx ψ†(x)
(

ich̄σx∂x mc2

mc2 −ich̄σx∂x

)
ψ(x) (14)

Using the identity
[
∑
nα

ψα
n

†Kψα
n ,ψβ

l

]
=−∑

nα
{ψα

n
†,ψβ

l }Kψα
n =−Kψβ

l , (15)

Ut = e−iωtH = lim
N→∞

U (N)
t , U (N)

t :=

[(

∏
l

e−i πωt
4N H2l−1,2l

)(

∏
l

e−i πωt
4N H2l,2l+1

)]N

, (1)

φ(t) = Utφ(0) := exp(−iωtH)φ(0) (2)
ψ(0)︷ ︸︸ ︷

︸ ︷︷ ︸
ψ(t)

Ut︷ ︸︸ ︷
(3)

Uε = I− εH (4)

[H(k)
i ,H(k)

j ] = 0, [H(l),H(k)] #= 0 (5)

H = ∑
〈i, j〉

Hi, j (6)

φ(x) φn := a
1
2 φ(na) a φn

ϕ ψ
{ψn,ψm} = δnm

[ϕn,ϕm] = δnm

φ(t) = Utφ(0)U†
t , Ut = exp

(
− i

h̄
th̄ωH

)
= exp(−2πiNT H), NT =

t
T

=
ωt
2π =

φt

2π

ih̄∂tφ = [h̄ωH,φ ], Hs =−s
i
2 ∑

n
(φ (s)

n
†φ (s)

n+1−φ (s)
n+1

†φ (s)
n )= s

a
h̄

P, s =±1 P =−ih̄
∫

dxφ †(x)∂xφ(x)

ih̄∂tψn = [ψn, h̄ωH]

|ψ1
n 〉 := ψ1

n
†|0〉

One has

[φ (s)(x),Hs] = [a−
1
2 φ (s)

n ,Hs] =−a−
1
2 s

i
2
(φ (s)

n+1−φ (s)
n−1) =−isa∂xφ (s)(x) (7)

one obtains
∂tφ =−iω [H,φ ] = aω∂xφ

which, for ωa = c becomes the Klein-Gordon equation

!φ = 0
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QCFT  OF  DIRAC
1 space dimension

ih̄∂tφ = [φ , h̄ωH], Hs =−s
i
2 ∑

n
(φ (s)

n
†φ (s)

n+1−φ (s)
n+1

†φ (s)
n ) = s

a
h̄

P, s =±1 (17)

P =−ih̄
∫

dxφ †(x)∂xφ(x) (18)

H = ∑
nα

ψ†
nα

( i
2σx(δ+−δ−) a

λ I
a
λ I − i

2σx(δ+−δ−)

)
ψnα , (19)

ζ 1 = σ−,ζ 2 = σ1σ−2 ,ζ 3 = σ z
1σ z

2σ−3 ,ζ 4 = σ z
1σ z

2σ z
3σ−4 ,ζ 5 = σ z

1σ z
2σ z

3σ z
4 (20)

(
ζ 5

)2
= I, {ζ i,ζ j}= 0, {ζ i,ζ j†}= δi j, i, j = 1, . . . ,4 (21)

ψα
n =

(
n−1

∏
j=−∞

ζ 5
j

)
ζ α

n (22)

Hn,n+1 =
4
π





ζ 1
n

ζ 2
n

ζ 3
n

ζ 4
n





†




0 iΓ
←→
∆ γ 0

iΓ
←→
∆ 0 0 γ

γ 0 0 −iΓ
←→
∆

0 γ −iΓ
←→
∆ 0









ζ 1
n

ζ 2
n

ζ 3
n

ζ 4
n



 (23)

where ←→
∆ := 1

2(
−→
δ +−

←−
δ +) (24)

KLEIN-GORDON EQUATION

One has

[φ (s)(x),Hs] = [a−
1
2 φ (s)

n ,Hs] =−a−
1
2 s

i
2
(φ (s)

n+1−φ (s)
n−1) =−isa∂xφ (s)(x) (25)

one obtains
∂tφ =−iω[H,φ ] = aω∂xφ (26)

which, for ωa = c becomes the Klein-Gordon equation

!φ = 0 (27)

Fundamental identity of QFT and Trotterization

[AB,C] = A[B,C]±∓ [A,C]±B (28)

ih̄∂tφ = [φ , h̄ωH], Hs =−s
i
2 ∑

n
(φ (s)

n
†φ (s)

n+1−φ (s)
n+1

†φ (s)
n ) = s

a
h̄

P, s = ±1 (17)

P =−ih̄
∫

dxφ †(x)∂xφ(x) (18)

H = ∑
nα

ψ†
nα

( i
2σx(δ+−δ−) a

λ I
a
λ I − i

2σx(δ+−δ−)

)
ψnα , (19)
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1σ z
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1σ z
2σ z

3σ z
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ζ 5

)2
= I, {ζ i,ζ j} = 0, {ζ i,ζ j†} = δi j, i, j = 1, . . . ,4 (21)
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∏
j=−∞

ζ 5
j
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ζ α
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4
π
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ζ 4
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where ←→
∆ := 1

2(
−→
δ +−

←−
δ +) (24)

|0〉 :=
∣∣∣ . . .↓↓↑↑︸︷︷︸

n−1

↓↓↑↑︸︷︷︸
n
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n+1

. . .
〉
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i
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n−1) =−isa∂xφ (s)(x) (26)

one obtains
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which, for ωa = c becomes the Klein-Gordon equation

!φ = 0 (28)
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QCFT  OF  DIRAC
Recovering QFT from QCFT

Recovering QFT for           andt! τ
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FIGURE 2. Circuit for the Hamiltonian (18) for the Dirac field.

K being a linear operator over the operator vector {ψα
n }, we get the Hamiltonian

H =
( i

2σx(δ+−δ−) a
λ I

a
λ I − i

2σx(δ+−δ−)

)
, (16)

for ωa = c, and using the identities (valid at O(a2))

1
2a

(δ+−δ−) = ∂x,
1
2
(δ+ +δ−) = 1. (17)

where λ := h̄
mc = 3.86159 ∗ 10−13 is the reduced Compton wavelength (roughly the

uncertainty in position corresponding to sufficient energy to create another particle).
The unitary transformation can be achieved by a computational network as in Fig. 1,
where each wire is actually a quadruple wire as in Fig. 2. Here the two different types of
bipartite gates of the intercalated layers in Fig. 1 are represented in detail. The bonds
linking the open circles represent the i

2σx matrix blocks, whereas those linking full
circles represent the a

λ I blocks.

The vacuum. In our qubit description of the Dirac field the vacuum will be given by the
state |0〉 = . . . | ↓〉| ↓〉| ↓〉 . . . and the Clifford realization of the field in Eq. (13) will give
ψn|0〉 = 0. The state |ψn〉 := ψ†

n |0〉 will describe a single-particle excitation, ψ†
n ψ†

m|0〉
a two-particle excitation, etc. Notice that we could have defined the Clifford realization
of the field with a σ+ at position n for the antiparticle, and correspondingly used the
state | ↑〉 in the vacuum, defining |0〉 as the filled Dirac sea. An analogous representation
can be used for Bosons, where we can now have any number of particles at location n.
It will also be handy to rewrite the (anti)commutation relations as [φn,φ †

m]± = 〈φn|φm〉I.
Finally, it is worth noticing that if one rewrites everything in terms of the qubit local
operators there will be no role left for the field operator (and, consequently, for the
(anti)commutation relation), however, the physics will be left untouched.
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where λ := h̄
mc = 3.86159 ∗ 10−13 is the reduced Compton wavelength (roughly the

uncertainty in position corresponding to sufficient energy to create another particle).
The unitary transformation can be achieved by a computational network as in Fig. 1,
where each wire is actually a quadruple wire as in Fig. 2. Here the two different types of
bipartite gates of the intercalated layers in Fig. 1 are represented in detail. The bonds
linking the open circles represent the i

2σx matrix blocks, whereas those linking full
circles represent the a

λ I blocks.

The vacuum. In our qubit description of the Dirac field the vacuum will be given by the
state |0〉 = . . . | ↓〉| ↓〉| ↓〉 . . . and the Clifford realization of the field in Eq. (13) will give
ψn|0〉 = 0. The state |ψn〉 := ψ†

n |0〉 will describe a single-particle excitation, ψ†
n ψ†

m|0〉
a two-particle excitation, etc. Notice that we could have defined the Clifford realization
of the field with a σ+ at position n for the antiparticle, and correspondingly used the
state | ↑〉 in the vacuum, defining |0〉 as the filled Dirac sea. An analogous representation
can be used for Bosons, where we can now have any number of particles at location n.
It will also be handy to rewrite the (anti)commutation relations as [φn,φ †

m]± = 〈φn|φm〉I.
Finally, it is worth noticing that if one rewrites everything in terms of the qubit local
operators there will be no role left for the field operator (and, consequently, for the
(anti)commutation relation), however, the physics will be left untouched.
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one obtains
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which, for ωa = c becomes the Klein-Gordon equation
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The Zitterbewegung provides the 
new intuitive picture.
The new “particles” move at the 
speed of light: the mass is the 
coupling with the antiparticle, 
and the interaction produces the 
“slow-down”.
The field description gives a 
“classical” description in terms of  
harmonic oscillation with bilinear 
Hamiltonian
quantization rules “emergent” 
no causality leakage nor 
localization problems                    

QCFT  OF  DIRAC



SIMULATING   QFT
Dirac in 3 space dimensions?



1ST  QUANTIZATION    BY   QCFT1

SIMULATING   QFT1

Alternative checks:
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2 ∑
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2 ∑
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2 ∑
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FIRST QUANTIZATION

|φ(x)〉 := φ †(x)|0〉 (88)

|φn〉 := φ †
n |0〉 (89)

ih̄∂t |φn〉= [φ †
n , h̄ωH]|0〉=−h̄ωH|φn〉 (90)

ih̄∂t〈φn|Φ〉= h̄ω〈φn|H|Φ〉= h̄ω(HΦ)n, (91)

Φ =





. . .
Φn

Φn+1
. . .



 , Φn = 〈φn|Φ〉, H =





. . . . . . . . . . . .

. . . 〈φn|H|φm〉 〈φn|H|φm+1〉 . . .

. . . 〈φn+1|H|φm〉 〈φn+1|H|φm+1〉 . . .

. . . . . . . . . . . .





(92)
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n φm|φ j〉= 〈0|φiφ †
n φmφ †

j |0〉= δin〈0|φmφ †
j |0〉= δinδ jm := (enm)i j (93)
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FIGURE 3. Circuit for the Hamiltonian (8) for the Dirac field.
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(8)

where λ := h̄
mc = 3.86159 ∗ 10−13 is the reduced Compton wavelength (roughly the

uncertainty in position corresponding to sufficient energy to create another particle).
The unitary transformation can be achieved by a computational network as in Fig. 1,
where each wire is actually a quadruple wire as in Fig. 3. Here the two different types of
bipartite gates of the intercalated layers in Fig. 1 are represented in detail. The bonds
linking the full circles represent the i

2σx matrix blocks, whereas those linking open
circles represent the a

λ I blocks.
It is interesting to notice how a motion of the particle will manifest as a zigzag motion

within gates on the circuit, as in Fig. 1. This may account for the mysterious Zitterbewe-
gung motion (German for "trembling motion") of the Dirac particle, a fluctuation at the
speed of light and with an amplitude λ of the position of the particle around the median,
with a circular frequency of 2mc2/h̄# 1.6∗1021 Hz, and resulting from the interference
between positive and negative energy solutions.6

For a full QCFT2 of the Dirac 2nd-quantized field the calculations turn out to be
much more complicated due to non-locality of Fermi anticommutation, and they will be

6 Such motion is usually explained as an interaction of the classical particle with the zero-point field.
Schrődinger proposed the electron spin to be a consequence of the Zitterbewegung.
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{
−ψ(l), l = n
ψ(l), l #= n

. (14)

The Dirac Quantum Field Simulator. In the second quantization the Dirac field be-
comes an operator obeying the following equal-time anticommutation relations

{ψα(x),ψ†
β (y)} = δαβ δ (x− y), {ψα(x),ψβ (y)} = 0. (15)

In the computational representation, the field operator can be written in terms of local
single-qubit operators using the Clifford algebra as follows

ψ(n) =





u1(n)
u2(n)
v1(n)
v2(n)



 , ψα(n) = γ4n+α , γk :=

(
k−1

∏
j=−∞

σ z
j

)
σ−

k , (16)
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 , ψα(n) = γ4n+α , γk :=

(
k−1

∏
j=−∞
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. . . . . . . . . 1 2 . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 2 1
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j
H2 j,2 j+1, H(1) = ∑
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H = ∑
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . −2 1 . . .
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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H = H(0) +H(1), H(0) = ∑
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H2 j,2 j+1, H(1) = ∑
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H2 j+1,2 j+2 (7)

τ = O(N−1
x )

∂tφ = i
h̄

2m
∂ 2

x φ , ω =
h̄

2ma2 (13)

∂tφ(na) = i
h̄

2ma2 [φ(na+a)−2φ(na)+φ(na−a)] =− i
h̄
H φ(na) (14)

∂tφn = i
h̄
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H = ∑
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Hj, j+1, (17)

H = H(0) +H(1), H(0) = ∑
j
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along with the fact that for commuting Hermitian operators A,B one has ||A + B|| =
||A||+ ||B||, whence ||H(k)|| = (2Nx +1)||H(0)

0 ||, one has
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(20)
This requires ε = 1

2
h̄τ

ma2 = O(N−1
x ), namely τ = O(N−1

x ) for fixed a, N,Nx → ∞. For
the nearest-neighbor XY Heisenberg chain one has p = 2 and ||H0

0 || = 1.

ih̄∂tψ =
(

ich̄σx∂x mc2

mc2 −ich̄σx∂x

)
ψ (21)
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“Trotterize” the Hamiltonian

By taking the maximal causal speed equal to     
namely                one obtains:

where
H(k)

n =− i
2
(φ †

2n+kφ2n+k+1−φ †
2n+k+1φ2n+k). (7)

Using the Trotter’s formula
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Since for commuting Hermitian operators A,B one has ||A + B|| = ||A|| + ||B||, whence
||H(k)|| = (2Nx +1)||H(0)

0 ||, one has
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c =
x
t

=
x/N
t/N

=
a
τ (9)

c = ωa =
a
τ =⇒ ω =

N
t

(10)

a
τ =

x/Nx

t/N
, lim

N→∞

a
τ = ∞ (11)

ρ!φ =⊗n|φn〉〈φn|
|φ〉〈φ | with 〈φ |φ ′〉= δφφ ′ φ ∈ C
C (ρ!φ ) = ∑!φ ′ p(!φ ′|!φ)ρ!φ ′

p(!φ ′|!φ) = δ (!φ ′ − f (!φ)) C (ρ!φ ) = ρ f (!φ)
φi(t + τ) = ∑ j Ui jφ j(t)

φ =





. . .
φn−1
φn

φn+1
. . .




(12)

⊗=⇒⊕

∂tφ = i
h̄

2m
∂ 2

x φ , ω =
h̄

2ma2 (13)

∂tφ(na) = i
h̄

2ma2 [φ(na+a)−2φ(na)+φ(na−a)] =− i
h̄
H φ(na) (14)

∂tφn = i
h̄

2ma2 (φn+1−2φn +φn−1) =−iωHφn (15)

H = ∑
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. . . . . . . . . . . . . . . . . . . . . . . . . . .
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along with the fact that for commuting Hermitian operators A,B one has ||A + B|| =
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which will be achieved by a QCFT1 as
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∂tφ(na) = i
h̄

2ma2 [φ(na+a)−2φ(na)+φ(na−a)] =− i
h̄
H φ(na) (14)

∂tφn = i
h̄

2ma2 (φn+1−2φn +φn−1) =−iωHφn (15)

H = ∑
j
−e j+1, j +2e j, j− e j, j+1, (16)

H = ∑
j
−e j+1, j +2e j, j− e j, j+1 =
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. . . −1 2 . . . . . . . . . . . . . . . . . . . . .
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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. . . 0 0 0 0 0 0 −1 2 . . .
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H = ∑
j

e j, j− e j+1, j + e j+1, j+1− e j, j+1 = ∑
j

Hj, j+1, (17)

H = H(0) +H(1), H(0) = ∑
j

H2 j,2 j+1, H(1) = ∑
j

H2 j+1,2 j+2 (18)
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along with the fact that for commuting Hermitian operators A,B one has ||A + B|| =
||A||+ ||B||, whence ||H(k)|| = (2Nx +1)||H(0)
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0 ||
]

(20)
a ∝ N−1 ω = h̄

2ma2 ∝ N2

ih̄∂tψ =
(

ich̄σx∂x mc2

mc2 −ich̄σx∂x

)
ψ (21)

which will be achieved by a QCFT1 as

ih̄[ψn(t + τ)−ψn(t)] =
c
υ h̄Hψn (22)

The Schrödinger equation is not Lorentz invariant!



  QCFT
GAUGE    INVARIANCE

or
ψn(t + τ) = ψn(t)− iεHψn(t), ε =

c
υ , υ =

a
τ (23)

where

ψ :=
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ψn

ψn+1
. . .



 , ψn =
(

un
vn
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u1
n
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n

v1
n

v2
n
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with Hamiltonian

H =
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. . . 0 0 − i
2 σx 0 0 0 . . .

. . . 0 0 a
λ I i

2 σx 0 0 . . .
. . . i

2 σx
a
λ I 0 0 − i

2 σx 0 . . .
. . . 0 − i

2 σx 0 0 a
λ I i

2 σx . . .
. . . 0 0 i

2 σx
a
λ I 0 0 . . .

. . . 0 0 0 − i
2 σx

a
λ I 0 . . .

. . . . . . . . . . . . . . . . . . . . . . . .





(25)

where λ := h̄
mc = 3.86159∗10−13 is the reduced Compton wavelength.

Gauge invariance

U(x) eiφ(x)

x x′

ψ︷ ︸︸ ︷
(26)

THE DIRAC QUANTUM SIMULATOR

ψ(n) = γ(n) :=

(
l−1⊗

j=−∞
σ z

j

)
σ−

l (27)

{ψ(x),ψ†(x)} = δ (x− y), {ψ(x),ψ(y)} = 0 (28)

From the identity σzσ−σz = −σ−, one has

σz(n)ψ(l)σz(n) =

{
−ψ(l), l = n
ψ(l), l $= n

. (29)

The Dirac Quantum Field Simulator. In the second quantization the Dirac field be-
comes an operator obeying the following equal-time anticommutation relations

{ψα(x),ψ†
β (y)} = δαβ δ (x− y), {ψα(x),ψβ (y)} = 0. (30)
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NONABELIAN ABELIAN



SIMULATING   QFT
GAUGE    INVARIANCE
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where λ := h̄
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l (27)
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NONABELIAN

Natively nonabelian Gauge theory! 
and on ... foliation !!!

Good for 
Gravity!

Gauge fi
eld



 PLAY   GOD  WITH  QCFT
or else: Einstein demystified 



 

GR from QT?
positive 

and 
negative 
masses



 

GR from QT?

a worm 
hole!



 

GR from QT? a black 
hole!



 

GR from QT?

a time 
tunnel! 



 

patterns?

GR from QT?



QFT 

PROBLEMS

Problems from 
continuum

infinities
(renormalization of  

uv divergencies)

Advantages of QCFT versus QFT

Logical
problems

Action 
at distance

or
at contact

Operationally 
meaningless

PB 
quantization

and ℏ 

Grassman 
variables

Other 
mathematical 

problems

Feynman's 
path integral 

QCFT 

SOLUTIONS

nonstandard representation 
of  Feynman path integral 

(Nakamura)

lattice 

theory
Operationally 

defined

causal 

network

Causality 
leakage

Local 
observables

Problems with 
localization



Moreover,  you  can  change  the computational  engine  
from  QT  to super-QT,  or  even  non-causal  OpT,  

without changing the theoretical framework



THE PRINCIPLE OF THE QUANTUMNESS

Convex theories 

Theories with 
purification*

QT

Theories with 
local 

discriminability

O
p

e
ra

ti
o

n
al

 t
h

e
o

ri
e

s

Causal 
theories

PR-boxes

re-bit1

CM 

re-bit2

combs

noncausal 
theories



“Emergent” Physics

Relativity

Gravity

Field Theory

Quantization rules and ħ

...



TODO list
Improve Ichonise and Tamura 
bound
Derive Lorentz covariance of 
field
Dirac and e.m. field in 3d 
Connect Lagrangian density with 
a circuit tile

Derive a 1dim toy (non)abelian 
gauge theory
Re-examine microcausality: 

Fermi, Bose, para-statistics?

Rederive quantization rules
Re-derive Feynman path integral 
via Trotter
Explore connections with lattice 
theories
Rederive GR Einstein’s equation
Explore Penrose spin-networks, 
Regge calculus, etc.

Rederive gauge theories
Write a Theory of ...           
Quantum Gravity!



Concluding remarks

QCFT seems to have many advantages versus QFT

It puts the nose on the foundational problems in QFT

It is QG-ready

It’s fun! (a good excuse to study more physics)

It brings Quantum Information to particle physics, GR, 
and cosmology!


