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I. INTRODUCTION

More than 80 years after its formulation, quantum theory
is still mysterious. The theory has a solid mathematical foun-
dation, addressed by Hilbert, von Neumann, and Nordheim
in 1928 [1] and brought to completion in the monumental
work by von Neumann [2]. However, this formulation is based
on the abstract framework of Hilbert spaces and self-adjoint
operators, which, to say the least, are far from having an
intuitive physical meaning. For example, the postulate stating
that the pure states of a physical system are represented by
unit vectors in a suitable Hilbert space appears as rather
artificial: which are the physical laws that lead to this very
specific choice of mathematical representation? The problem
with the standard textbook formulations of quantum theory
is that the postulates therein impose particular mathematical
structures without providing any fundamental reason for this
choice: the mathematics of Hilbert spaces is adopted without
further questioning as a prescription that “works well” when
used as a black box to produce experimental predictions. In
a satisfactory axiomatization of quantum theory, instead, the
mathematical structures of Hilbert spaces (or C* algebras)
should emerge as consequences of physically meaningful
postulates, that is, postulates formulated exclusively in the
language of physics: this language refers to notions like
physical system, experiment, or physical process and not to
notions like Hilbert space, self-adjoint operator, or unitary
operator. Note that any serious axiomatization has to be based
on postulates that can be precisely translated in mathematical
terms. However, the point with the present status of quantum
theory is that there are postulates that have a precise mathe-
matical statement, but cannot be translated back into language
of physics. Those are the postulates that one would like to
avoid.

The need for a deeper understanding of quantum the-
ory in terms of fundamental principles was clear since
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the very beginning. Von Neumann himself expressed his
dissatisfaction with his mathematical formulation of quan-
tum theory with the surprising words “I don’t believe in
Hilbert space anymore,” reported by Birkhoff in [3]. Re-
alizing the physical relevance of the axiomatization prob-
lem, Birkhoff and von Neumann made an attempt to un-
derstand quantum theory as a new form of logic [4]:
the key idea was that propositions about the physical world
must be treated in a suitable logical framework, different from
classical logics, where the operations AND and OR are no longer
distributive. This work inaugurated the tradition of quantum
logics, which led to several attempts to axiomatize quantum
theory, notably by Mackey [5] and Jauch and Piron [6] (see
Ref. [7] for a review on the more recent progresses of quantum
logics). In general, a certain degree of technicality, mainly
related to the emphasis on infinite-dimensional systems, makes
these results far from providing a clear-cut description of
quantum theory in terms of fundamental principles. Later
Ludwig initiated an axiomatization program [8] adopting an
operational approach, where the basic notions are those of
preparation devices and measuring devices and the postulates
specify how preparations and measurements combine to give
the probabilities of experimental outcomes. However, despite
the original intent, Ludwig’s axiomatization did not succeed
in deriving Hilbert spaces from purely operational notions, as
some of the postulates still contained mathematical notions
with no operational interpretation.

More recently, the rise of quantum information science
moved the emphasis from logics to information processing.
The new field clearly showed that the mathematical principles
of quantum theory imply an enormous amount of information-
theoretic consequences, such as the no-cloning theorem [9,10],
the possibility of teleportation [11], secure key distribution
[12–14], or of factoring numbers in polynomial time [15]. The
natural question is whether the implication can be reversed: is
it possible to retrieve quantum theory from a set of purely
informational principles? Another contribution of quantum
information has been to shift the emphasis to finite dimensional
systems, which allow for a simpler treatment but still possess
all the remarkable quantum features. In a sense, the study
of finite dimensional systems allows one to decouple the
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i.e.  the  DIRAC  EQUATION (1+1 dimensions)

(spinless) Dirac equation!

No need of imposing 
relativistic invariance!

�∂t

�
φ+

φ−

�
=

�
c�∂x −iω

−iω −c�∂x

� �
φ+

φ−

�

... a kinematical 
definition of inertial 

mass ...

m =
1
c2

�ω

... an informational meaning for ℏ      

(conversion info-mass - kg-mass)
λ =

�
mc

Compton 
wavelenght

m mass in Kg

ω mass (informational) in s-1
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FREE   INFORMATION  FLOW
DIRAC  EQUATION

A A A A A A

B B B B B B

A A A A A A

B B B B B B

A A A A A A

B B B B B B

spin: circuit 
“undressing”
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FREE   INFORMATION  FLOW
DIRAC  EQUATION

A A A A A A

B B B B B B

A A A A A A

B B B B B B

A A A A A A

B B B B B B

}

} }

}

spin: circuit 
“undressing”
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THE  NETWORK  BECOMES 
QUANTUM: QCA
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MASS-DEPENDENT   
REFRACTION  INDEX  OF VACUUM

The coupling between left and right 
fields leads to a renormalization of the 
field speed due to unitariety.

c→ ζc, ζ = ζ(m)

0.2 0.4 0.6 0.8 1.0
m
M

0.2

0.4

0.6

0.8

1.0
Ζ

Information 
halt at the 
Planck mass

ζ(m) =

√

1−
(m

M

)2
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PHYSICS   EMERGING  FROM 
THE  COMPUTATION
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A A A

AAAAA

B B B B

BBBBB

B

AA

̂

φ+
n−1 φ−

n−1 φ+
n φ−

n φ+
n+1 φ−

n+1

EMERGENT  HAMILTONIAN
Dirac  in 1+1 d

Hlocφn := i∂̂tφn

Hloc =
i

kτ
(Uf − U †

b )

H = −
∑

n

φ†
nHlocφn

i∂̂tφn = [H,φn]

1

Hlocφn := i∂̂tφn

Hloc =
i

2kτ
(Uf − U †

b )

H = −
∑

n

φ†
nHlocφn

i∂̂tφn = [H,φn]

1

Hermiticity is a consequence of the universality of the physical law.

Hlocφn := i∂̂tφn

Hloc =
i

kτ
(Uf − U †

b )

H = −
∑

n

φ†
nHlocφn

i∂̂tφn = [H,φn]

1
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γn := σ
+
n

n−1∏

l=−∞

σ
z
k

FIELDS  REPLACED  BY   QUBITS
Jordan-Wigner construction

[γn, γm] = 0, [γ†
n
, γm] = δmn
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γn := σ
+
n

n−1∏

l=−∞

σ
z
k

FIELDS  REPLACED  BY   QUBITS
Jordan-Wigner construction

γ
†
n
γn−1 := σ

+
n
σ
−
n−1

[γn, γm] = 0, [γ†
n
, γm] = δmn
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γn := σ
+
n

n−1∏

l=−∞

σ
z
k

FIELDS  REPLACED  BY   QUBITS
Jordan-Wigner construction

γ
†
nγn−k−1 := σ

+
n σ

z
n−1 . . .σ

z
n−kσ

−
n−k−1

γ
†
n
γn−1 := σ

+
n
σ
−
n−1

[γn, γm] = 0, [γ†
n
, γm] = δmn
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2a

FIELDS  REPLACED  BY   QUBITS

Fields are eliminated!

τ
A

B

Gates act 
on local 
qubits 
only!

A = exp
�
−iθ

�
σ−2n−1σ

+
2n + σ+

2n−1σ
−
2n

��

B = exp
�
−iπ

2

�
σ+

2nσ−2n+1 + σ−2nσ+
2n+1

��

A = exp
�
iθ

�
φ+

n
†φ−n−1 + φ−n−1

†φ+
n

��

B = exp
�
iπ
2

�
φ+

n
†φ−n + φ−n

†φ+
n

��

φ+
n = σ−2n

n−1�

k=−∞
σz

2k+1σ
z
2k

Commuting Anticommuting

Harmonic oscillator Jordan-Wigner

[al, a
†
k] = δlk

φ+
n = a2n φ−n = a2n+1 φ−n = σ−2n+1σ

z
2n

n−1�

k=−∞
σz

k

φ+
n φ−n φ+

n+1 φ−n+1

Dirac  in 1+1 d

A

B

BB
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FIELDS  REPLACED  BY   QUBITS
Dirac  in > 1+1 d!!

Jordan-Wigner 
transformation for d+1>2
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FIELDS  REPLACED  BY   QUBITS
Dirac  in > 1+1 d!!

Jordan-Wigner 
transformation for d+1>2

Dirac field
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FIELDS  REPLACED  BY   QUBITS
Dirac  in > 1+1 d!!

Jordan-Wigner 
transformation for d+1>2

Possible solution: add a 
Majorana field!

Dirac field
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FIELDS  REPLACED  BY   QUBITS
Dirac  in > 1+1 d!!

Jordan-Wigner 
transformation for d+1>2

Possible solution: add a 
Majorana field!

Dirac field

Majorana fermions

Verstraete and Cirac,  J. Stat. Mech. 9 12 (2005)

γ
†
k,lγk,l+1 + γ

†
k,l+1

γk,l (σx
k,lσ

x
k,l+1 + σ

y
k,lσ

y
k,l+1

)(−)l+1
σ̃
x
k,lσ̃

y
k,l+1

γ
†
k,lγk+1,l + γ

†
k+1,lγk,l

(σx
k,lσ

x
k+1,l + σ

y
k,lσ

y
k+1,l)σ̃

z
k,l

fields qubits
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FIELDS  REPLACED  BY   QUBITS
Dirac  in > 1+1 d!!

Jordan-Wigner 
transformation for d+1>2

ν
Possible solution: add a 
Majorana field!

Dirac field

Majorana fermions

Verstraete and Cirac,  J. Stat. Mech. 9 12 (2005)

γ
†
k,lγk,l+1 + γ

†
k,l+1

γk,l (σx
k,lσ

x
k,l+1 + σ

y
k,lσ

y
k,l+1

)(−)l+1
σ̃
x
k,lσ̃

y
k,l+1

γ
†
k,lγk+1,l + γ

†
k+1,lγk,l

(σx
k,lσ

x
k+1,l + σ

y
k,lσ

y
k+1,l)σ̃

z
k,l

fields qubits
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HIGHER-DIMENSION  CONUNDRUM
EMERGENCE OF  SPACE-TIME  FROM  CN
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HIGHER-DIMENSION  CONUNDRUM
EMERGENCE OF  SPACE-TIME  FROM  CN
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FIELDS  REPLACED  BY   QUBITS
CLASSICALIZATION  vs   QUANTIZATION   
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FIELDS  REPLACED  BY   QUBITS
CLASSICALIZATION  vs   QUANTIZATION   

emergent Hamiltonian

classical 
fields

Jordan WIgner

locally interacting
qubits 

Locally interacting 
quantum fields 
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emergent Hamiltonian

classical 
fields

Jordan WIgner

locally interacting
qubits 

Locally interacting 
quantum fields 
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FIELDS  REPLACED  BY   QUBITS
CLASSICALIZATION  vs   QUANTIZATION   

emergent Hamiltonian

classical 
fields

Jordan WIgner

locally interacting
qubits 

Locally interacting 
quantum fields 

+ ++

a
n nn 1 n 1 n+1 n+1

t=1

t=0

t=2

B B

A

B

A
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Dirac QCA: First Quantization
Single particle state

0
50

100

0

50

100

0.00

0.02

0.04

0.06
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Dirac QCA: First Quantization
Single particle state
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Dirac QCA: First Quantization
Single particle state
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Dirac QCA: First Quantization
Single particle state
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First Quantization: two-particle states
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First Quantization: two-particle states
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First Quantization: two-particle states
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IS REALITY QUANTUM-DIGITAL?
SOME INTERESTING  POINTS  FOR  DISCUSSION

Emergent physics: 

Minkowski space-time 

Hamiltonian 

inertial mass 

Planck constant

classical mechanics

quantization/dequantization

gravitation...

Violations: 

Lorentz covariance,

dispersion relations ...
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THANK  YOU!
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