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Main problems and motivations

Main focus on QO’s instead of quantum states

QO are the most general state change in quantum mechanics

ρ→
E(ρ)

Tr[E(ρ)]

The QO E is a map on traceclass operators that is

1. linear

2. trace-decreasing

3. completely positive

The normalization Tr[E(ρ)] ≤ 1 is the probability that the
transformation occurs.

Encoding on QO’s: given a fixed input state ρ, the message m
is encoded on it via ρ→ Em(ρ). Anonymous ρ ≡ encryption.
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Anonymous state encryption

transmits |ϕA〉 ∈ H (known only to her) to

Depending on the message m that wants to send to , he

modulates |ϕA〉 with a unitary UBm and sends UBm |ϕA〉 to

From knowledge of |ϕA〉 and openly known UB
m , decrypts m.

⇒ Without knowing |ϕA〉, cannot tell m without significant
error.

⇒ The function f : m→ UBm can be regarded as a quantum
one-way function with trapdoor information given by the
knowledge of the actual input state |ϕA〉.

H. P. Yuen, quant-ph/0009113 (2000) – [4/32]
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The Quantum Bit Commitment

Anonymous states also used for the QBC.

⇒ Dispute Yuen versus Lo-Chau-Mayers on whether there are
unconditional secure QBC protocols

For non aborting protocols any multistep commitment can be
reduced to a single step:

1. prepares the Hilbert space H with the anonymous state

|ϕ〉 ∈ H. He then sends H to .

2. modulates the value b of the committed bit on a QO
acting on the anonymous state |ϕ〉 and sends the output

back to .

Mayers, PRL 78 3414 (1997); Lo and Chau, PRl 78 3410 (1997),H. P. Yuen, quant-ph/0109055 – [5/32]
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Main problems and motivations

Main focus on QO’s instead of quantum states

Estimation Theory Preparation Theory Optimization Theory

Cryptographic communications

Characterization methods

High precision measurements

Discrimination among QO’s, POVM’s for estimating QO’s, tomographic characterization
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Main problems and motivations

Main focus on QO’s instead of quantum states
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High precision measurements

Which is the optimal QO to achieve a given purpose [in terms of a cost function] 

Preparation Theory
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Main problems and motivations

Main focus on QO’s instead of quantum states

Estimation Theory Optimization Theory

Cryptographic communications

Characterization methods

High precision measurements

Preparation Theory

Quantum cryptography with anonymous states = encoding information on maps

Mayers, PRL 78 3414 (1997); Lo and Chau, PRl 78 3410 (1997),H. P. Yuen, quant-ph/0109055 – [6/32]



Main results on QO theory

G. M. D’Ariano, and P. Lo Presti, M. G. A. Paris, Phys. Rev. Lett. 87 270404 (2001)

1) Optimal discrimination between QO’s (unitary)

3) Classification of all unitary extensions of QO’s, extremal QO’s and POVM’s

2) Tomographic characterization of QO’s using entangled input

4) Classification of all QBC protocols, and bounds for the probabilities of cheating
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2) Tomographic characterization of QO’s using entangled input

G. M. D’Ariano, and P. Lo Presti, Phys. Rev. Lett. 86, 4195 (2001)
Collaboration with F. De Martini (Roma): tomography of a single qubit device
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Optimal discrimination of QO’s

Estimation Theory Optimization Theory

Cryptographic communications

Characterization methods

High precision measurements

Preparation Theory

Measurements can be always regarded as the estimation of parameters of a set of QO’s
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Optimal discrimination of QO’s

Optimization over:

1. the detection scheme

2. the input state

The use of an entangled input state R is considered, with the
unknown transformation Eθ acting locally only on one side of
the entangled state: R→ Rθ = Eθ ⊗ I(R).

Eθρ ρθ

Eθ
R Rθ

G. M. D’Ariano, P. Lo Presti, and M. G. A. Paris, Phys. Rev. Lett. 87 270404 (2001) – [9/32]
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Optimal discrimination of QO’s

Result: the entangled configuration performs better, in
increasing the precision of the measurement.

Reasons:

1. the entangled state is equivalent to many input states in
“quantum parallel”;

2. precision increases with the dimension of the input space.

Extreme examples:
Discrimination of I, σx, σy, σz ↔ Bell measurement;
Estimation of α ∈ C of D(α) ↔ breaching the 3dB noise;
Covariant discrimination: the Holevo bound is increased
exactly by the amount of entanglement of the input state.

G. M. D’Ariano, P. Lo Presti, and M. G. A. Paris, Phys. Rev. Lett. 87 270404 (2001) – [10/32]
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Optimal discrimination of QO’s

Moreover:

1. An entangled input improves the measurement in the
presence of noise [below a “quantum” threshold]

Example: heterodyne measurement of α ∈ C of D(α) in the
presence of Gaussian noise, for n < 1;

2. An entangled input improves the measurement stability.

Example: measurement of x ∈ R of D(xeiφ). Squeezed vs
twin beam inputs. Sensitivity:

dramatically decreases for mismatched squeezing;
is independent on φ for twin beams.

3. One has the phenomenon of perfect discrimination between
any two unitaries with a finite number N of copies of the QO
(compare with state discrimination).

G. M. D’Ariano, P. Lo Presti, and M. G. A. Paris, Phys. Rev. Lett. 87 270404 (2001) – [11/32]
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Discrimination between unitaries

Optimal error prob. in discrimination of U1|ψ〉 and U2|ψ〉

PE =
1

2

[

1 −

√

1 − |〈ψ|U †
2U1|ψ〉|2

]

,

Optimum input states |ψ〉 minimize the overlap |〈ψ|U †
2U1|ψ〉|.

Minimum overlap: min||ψ||=1 |〈ψ|U
†
2U1|ψ〉| = r(U †

2U1),

Perfect discrimination: the poligon encircles the origin.
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Discrimination between unitaries

Available N copies of the unitary transformation U = U1,2 and a
N -partite entangled state as follows

U

U

U

R · · · R

Angular spread ∆(W ) of the spectrum of W . One has

∆(W⊗N ) = N∆(W ) mod 2π.

Conclusion: the discrimination is always exact for sufficiently
large N ! [see also Acín, quant-ph/0102064].
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Tomography of a quantum device

G. M. D’Ariano and P. Lo Presti, Phys. Rev. Lett. 86 4195 (2001) – [14/32]



Tomography of a quantum device

1) Optimal discrimination between QO’s (unitary)

3) Classification of all unitary extensions of QO’s, extremal QO’s and POVM’s

4) Classification of all QBC protocols, and bounds for the probabilities of cheating

2) Tomographic characterization of QO’s using entangled input

G. M. D’Ariano, and P. Lo Presti, Phys. Rev. Lett. 86, 4195 (2001)
Collaboration with F. De Martini (Roma): tomography of a single qubit device

G. M. D’Ariano and P. Lo Presti, Phys. Rev. Lett. 86 4195 (2001) – [14/32]



Tomography of a quantum device

Estimation Theory Optimization Theory

Cryptographic communications

Characterization methods

High precision measurements

Preparation Theory

We need to characterize completely quantum mechanically the new devices for QIT

G. M. D’Ariano and P. Lo Presti, Phys. Rev. Lett. 86 4195 (2001) – [14/32]



Tomography of a quantum device

How to achieve a complete characterization of a quantum
device?

Answer (brute force): by scanning a basis of possible inputs,
and measuring the corresponding outputs.

Eρin ρout

In quantum mechanics the inputs and outputs are density
operators ⇒ we need to run all the following inputs

|n〉, n = 0, 1, 2, . . . ,
1√
2
(|n′〉 + κ|n′′〉), κ = ±1,±i, n, n′ = 0, 1, 2, . . .

However, the availability of a basis of states in the lab is a very
hard technological problem.

G. M. D’Ariano and P. Lo Presti, Phys. Rev. Lett. 86 4195 (2001) – [15/32]
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Tomography of a quantum device

Quantum parallelism of entanglement: a single entangled input state R

is equivalent to scanning all states in parallel.

E
R Rout

The setup is expressed as the quantum operation

Rout = E ⊗ I(R).

For fixed faithful state R the output state Rout is in one-to-one
correspondence with the QO of the device E.

But now entangled states are easily available in the lab via
parametric downconversion of vacuum!

The method is very robust to noise [a state remains faithful
under almost any kind of noise, e. g. depolarizing, etc].

G. M. D’Ariano and P. Lo Presti, unpublished – [16/32]
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Tomography of a qubit device
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F. De Martini, G. M. D’Ariano, A. Mazzei, and M. Ricci, quant-ph/ – [17/32]



Tomography of a qubit device
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Tomography of a cv device

Feasibility study for tomography of a displacer

                    NOPA
Pump

 532 nm

BPF

LPF

40 MHz

G

40 MHz

LPF Ch2

Filter

To scope

PBSKTP

Ch1

To scope

To boxcar

To boxcar

signal LO

idler LO

Identical
to Ch2

D’Ariano and Lo Presti, PRL 86 4195 (2001); Vasilyev, Choi, Kumar, and D’Ariano, PRL 84 2354 (2000) – [18/32]



Tomography of a cv device

Feasibility study for tomography of a displacer

Left: z = 1, n̄ = 5, η = 0.9, and 150 blocks of 104 data have been
used. Right: z = 1, n̄ = 3, η = 0.7, and 300 blocks of 2 · 105 data
have been used.

D’Ariano and Lo Presti, PRL 86 4195 (2001); Vasilyev, Choi, Kumar, and D’Ariano, PRL 84 2354 (2000) – [18/32]



Classification of QO extensions

G. M. D’Ariano and F. Buscemi, unpublished – [19/32]



Classification of QO extensions

1) Optimal discrimination between QO’s (unitary)

4) Classification of all QBC protocols, and bounds for the probabilities of cheating

2) Tomographic characterization of QO’s using entangled input

3) Classification of all unitary extensions of QO’s, extremal QO’s and POVM’s

G. M. D’Ariano and F. Buscemi (unpublished)
G. M. D’Ariano, P. Lo Presti, and R. Mecozzi (unpublished)

G. M. D’Ariano and F. Buscemi, unpublished – [19/32]



Classification of QO extensions

Estimation Theory Preparation Theory Optimization Theory

Cryptographic communications

Characterization methods

High precision measurements

Which apparatuses for achieving a QO −−> Classification of unitary extensions of QO’s, ...

G. M. D’Ariano and F. Buscemi, unpublished – [19/32]



Classification of QO extensions

Problem: Which unitary transformations, ancillas, etc. can be
used to achieve a given QO?

The most general unitary extensions of a QO is of the form

E(ρ) = TrF{(IK ⊗ ΣF)U [|φ〉〈φ|A ⊗ (ρH ⊕OD)]U †},

where we have all these different Hilbert spaces:

Symbol Hilbert space Symbol Hilbert space

H ⊕ D Input system space D Conservation law constraint

A Preparation ancilla F Measurement ancilla

Rng(ΣF) ⊆ F Range of ΣF K Output system space

(H ⊕ D) ⊗ A ' K ⊗ F, rank(E) +
rank(IH−Eτ (IK))

dim(K)
dim(K) ≥ dim(H)

G. M. D’Ariano and F. Buscemi, unpublished – [20/32]



Classification of QO extensions

Problem: Which unitary transformations, ancillas, etc. can be
used to achieve a given QO?

The most general unitary extensions of a QO is of the form

E(ρ) = TrF{(IK ⊗ ΣF)U [|φ〉〈φ|A ⊗ (ρH ⊕OD)]U †},

where we have all these different Hilbert spaces:

Symbol Hilbert space Symbol Hilbert space

H ⊕ D Input system space D Conservation law constraint

A Preparation ancilla F Measurement ancilla

Rng(ΣF) ⊆ F Range of ΣF K Output system space

(H ⊕ D) ⊗ A ' K ⊗ F, rank(E) +
rank(IH−Eτ (IK))

dim(K)
dim(K) ≥ dim(H)

G. M. D’Ariano and F. Buscemi, unpublished – [20/32]



Classification of QO extensions

Problem: Which unitary transformations, ancillas, etc. can be
used to achieve a given QO?

The most general unitary extensions of a QO is of the form

E(ρ) = TrF{(IK ⊗ ΣF)U [|φ〉〈φ|A ⊗ (ρH ⊕OD)]U †},

where we have all these different Hilbert spaces:

Symbol Hilbert space Symbol Hilbert space

H ⊕ D Input system space D Conservation law constraint

A Preparation ancilla F Measurement ancilla

Rng(ΣF) ⊆ F Range of ΣF K Output system space

(H ⊕ D) ⊗ A ' K ⊗ F, rank(E) +
rank(IH−Eτ (IK))

dim(K)
dim(K) ≥ dim(H)

G. M. D’Ariano and F. Buscemi, unpublished – [20/32]



Classification of QO extensions

Problem: Which unitary transformations, ancillas, etc. can be
used to achieve a given QO?

The most general unitary extensions of a QO is of the form

E(ρ) = TrF{(IK ⊗ ΣF)U [|φ〉〈φ|A ⊗ (ρH ⊕OD)]U †},

where we have all these different Hilbert spaces:

Symbol Hilbert space Symbol Hilbert space

H ⊕ D Input system space D Conservation law constraint

A Preparation ancilla F Measurement ancilla

Rng(ΣF) ⊆ F Range of ΣF K Output system space

(H ⊕ D) ⊗ A ' K ⊗ F, rank(E) +
rank(IH−Eτ (IK))

dim(K)
dim(K) ≥ dim(H)

G. M. D’Ariano and F. Buscemi, unpublished – [20/32]



Classification of QO extensions

Problem: Which unitary transformations, ancillas, etc. can be
used to achieve a given QO?
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Classification of QO extensions

All Kraus decompositions {Ei} must satisfy the majorization
relation with respect to the canonical one {Kj}

[||Ei||
2
2] ≺ [||Kj ||

2
2].

Therefore, we have a constraint which must be satisfied by the
unitary operator U in order to achieve the QO E

{(IK ⊗ 〈σi|F)U(|φ〉A ⊗ IH)} = Ei,

where ΣF =
∑

i |σi〉〈σi|F, and

dim F ≥ rank(ΣF) ≥ rank(E).
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Extremal QO’s and POVM’s

Estimation Theory Optimization Theory

Cryptographic communications

Characterization methods

High precision measurements

Which is the optimal QO to achieve a given purpose [in terms of a cost function] 

Preparation Theory
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Extremal QO’s and POVM’s

Useful in optimization problems;

Extremal QO’s [classified by Choi (1975)] K†
iKj linearly

independent.

Physical meaning: they can be achieved with an indirect
measurement scheme with faithful state reduction.

Extremal POVM’s: classification of quantum and classical
noise.

Theorem: A POVM {Pe}e∈E with spectral resolution

Pe =
∑

i |υ
(e)
i 〉〈υ

(e)
i | is extremal if and only if the operators

|υ
(e)
i 〉〈υ

(e)
j |, for all events e ∈ E, and all i, j

are linearly independent.
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The Quantum Bit Commitment

1) Optimal discrimination between QO’s (unitary)

4) Classification of all QBC protocols, and bounds for the probabilities of cheating

2) Tomographic characterization of QO’s using entangled input

3) Classification of all unitary extensions of QO’s, extremal QO’s and POVM’s

G. M. D’Ariano, QCM&C 2002, Boston (preprint available)
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The Quantum Bit Commitment

Commitment: provides with a piece of evidence that she
has chosen a bit b = 0, 1 which she commits to him.

Opening: Later will open the commitment, revealing b to ,
and proving that it is indeed the committed bit with the evidence

in Bob’s possession, i. e. will check the commited bit.

G. M. D’Ariano, QCMC Boston 2002, (preprint available) – [24/32]



The Quantum Bit Commitment

Therefore, Alice and Bob should agree on a protocol which
satisfies simultaneously the three requirements:

(1) The evidence should be concealing, namely should not be
able to retrieve b before the opening.

(2) The evidence should be binding, namely should not be able
to change b after the commitment.

(3) The evidence should be verifiable, namely must be able to
check b unambiguously against the evidence in his possession.

Both parties are supposed to possess unlimited technology,
and the protocol is said unconditionally secure if neither Alice
nor Bob can cheat with significant probability of success as a
consequence of physical laws.

G. M. D’Ariano, QCMC Boston 2002, (preprint available) – [25/32]
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The Quantum Bit Commitment

Bit modulation: QO parametrized by b = 0, 1.

To make the protocol concealing and at the same time
verifiable, the modulation is a choice between two ensembles of
QO’s {M

(b)
j } for b = 0, 1 from H to K.

− j: secret parameter known only to .
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The Quantum Bit Commitment

has always the option of choosing j by preparing a
secret-parameter space P in the state |j〉 and performing a QO
on an extended Hilbert space which includes P.

Strictly trace-decreasing maps correspond to aborting

protocols, namely when doesn’t succeed in achieving the
QO the protocol is aborted.

Since has unlimited technology, she can always achieve the
map knowingly, i. e. she has the option of achieving each QO
as a perfect pure measurement.
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The Quantum Bit Commitment

Therefore achieves the QO knowingly by:

(1) preparing ancilla and secret parameter space A ⊗ P,

(2) performing a unitary transformation U on H ⊗ A,

(3) performing a complete von Neumann measurement on F ⊗ P,
with K ⊗ F ' H ⊗ A and outcome i,

(4) sending K to .

For aborting protocols we have an additional orthogonal
projector ΣF, whose rank generally depends on j and b.

⇒ For simplicity, we focus attention on non aborting protocols.
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The Quantum Bit Commitment

Opening step: In a perfectly verifiable protocol tells b along

with the secret parameter j and the secret outcome i to ,

who verifies the pure state E(b)
ji |ϕ〉 ≡ E

(b)
J |ϕ〉.

Since the local QO’s on K and F ⊗ P commute, has the

possibility of: first sending K to and then performing the
measurement on F ⊗ P at the very last moment of the opening!

Before launches her EPR cheating attack V on F ⊗ P!

On the other side, can try to discriminate between the two
mixtures of QO’s by launching his own EPR attach at the very
beginning of the commitment, by entangling the anonymous
state with a system in his possession.

G. M. D’Ariano, QCMC Boston 2002, (preprint available) – [29/32]
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Commitment: summary

Classification of protocols ≡ classifications of QO extensions

Symbol Hilbert space Symbol Hilbert space

H Anonymous state K Output

A Preparation ancilla P Secret parameter

F Measurement ancilla R Bob cheating space

Rng(ΣF) Range of ΣF (abortion)

All alternate Kraus decompositions {E
(b)
J } correspond to

different openings.

Alice EPR-cheating transformation: unitary V on P ⊗ F:
corresponds to change the Kraus decomposition from

{E
(0)
J } → {E

(0)
J (V )}
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Bounds for cheating probabilities

PAc (V, ϕ) ≥
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with ω(ε) vanishing with ε.
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Summary

Encoding information on QO’s more general than on states:

⇒ it includes anonymous input states.

Better distinguishability for QO’s than for states.

Tomography of QO’s using entangled/faithful states:

⇒ experiments.

Classification of QO’s unitary extensions:

⇒ constraints for U corresponding to a QO;

⇒ extremal QO’s and POVM’s;

Classification of QBC protocols:

⇒ bounds for the probabilities of cheating.
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