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“Information” is by its nature
broadcastable.

What about when
information is quantum?

- Distributed quantum computation
- Quantum secret sharing
- Quantum game-theoretical contexts...

Broadcasting quantum
information can be done
only in a limited fashion



N inputs = M outputs
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For M>N the transformation cannot be achieved
isometrically, whence it cannot occur with unit probability.
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Cloning/Broadcasting

N inputs = M outputs
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® For pure states ideal broadcasting coincides with the
quantum cloning.

® For mixed states there are infinitely many joint states that
correspond to the same local state.



No-broadcasting

® For mixed input states the no-cloning theorem is not
logically sufficient to forbid ideal broadcasting

© The impossibility of ideal broadcasting has been proved
in the case of one input copy and two output copies for
non mutually commuting density operators [H. Barnum,
C. M. Caves, C. A. Fuchs, R. Jozsa, and B. Schumacher,
Phys. Rev. Lett. 76 2818 (1996)]
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Is this a generalization of the no-cloning theorem to mixed states?




Superbroadcasting

The answer is no!

» The no broadcasting theorem does not
generalize to multiple input copies!

For sufficiently many input copies it is even
possible to purity the state while broadcasting!

® broadcasting + purification:
“superbroadcasting”.



Universally covariant superbroadcasting
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shrinking/stretching factor p(?“ ) — Tgpt (T) / r

FIG. 2: The stretching factor p(r) versus r. On the left:
for M = N+ 1 and N = 10,20, 30,40, 50, 60, 70, 80, 90, 100
(from the bottom to the top. On the right: for N = 5 and
5 < M <9 (from the top to the bottom).



Universally covariant superbroadcasting

B Maximum M for purification
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FIG. 3: Logarithmic plot of 1 — r.(N, N 4+ 1) versus N.
r«(IN, M) denotes the maximum purity for which one can have
superbroadcasting from N to M copies.



Universally covariant superbroadcasting

® For pure states the optimal superbroadcasting map is
the same as the optimal universal cloning [R. F.

Werner, Phys. Rev. A 58 1827 (1998)].

® For M<N it corresponds to the optimal purification
map [ J. I. Cirac, A. K. Ekert, and C. Macchiavello,

Phys. Rev. Lett. 82 4344 (1999)].

® Therefore, the superbroadcasting map generalizes and
interpolates optimal purification and optimal cloning.
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Choi-Jamiolkowsk1

Choi-Jamiotkowski correspondence

Broadcasting N--->M:
Hin = H®N

M
Hout = H? Trace preserving condition:
H =C? R Trout Rz = Iin

Covariance and invariance constraints are easier to handle




Conjugation/covariance

“conjugation”: CUCT = [U*
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Completely positive trace-preserving map from states of N qubits
to states of M qubits that is invariant under permutations of input
copies and of output copies and unitarily covariant
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Schur-Weyl duality

We exploit the Schur-Weyl duality
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Input states
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[ J. I. Cirac, A. K. Ekert, and C. Macchiavello, Phys. Rev. Lett. 82 4344 (1999)]



Maps characterization

M/2 N/2
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Convex structure
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(5,1 orthogonal projector over the irreducible
PJ representation J coming from the couple j,/

S4.1,J positive coefficients

trace-preserving condition:
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broadcasting maps make a convex set, with the extreme points
classified by the functions wand ® corresponding to a given choice
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extremal broadcasting maps:
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Extremal maps

The output state can be written
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We are now interested in the single-site output

| et’s focus attention on this term



Single-site output

Change from Wedderburn to qubit representations
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Derivation

The single-site output state ~ p’ = Trpr_1[B(p®Y)]

commutes with o,
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As a figure of merit we consider

Using permutation invariance it turns out that

p(r) = - T[T ()



Derivation

For extremal maps we have
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Scaling ractor

The solution is
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corresponding to
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Violation of data-processing theorem?

® Superbroadcasting doesn’t mean more available
information about the original input state.

® This is due to detrimental correlations between
the broadcast copies, which does not allow to
exploit their statistics.

From the point of view of each single user our
broadcasting protocol is a purification in all
respects (for sufficiently mixed states). The
process transfers noise from the local states to the
correlations between them.




Violation of data-processing theorem?
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Optimal universal covariant
superbroadcasting actually preserves the
information about the original input state.

G. M. D’Ariano, Rafat Demkowicz-Dobrzanski
and P. Perinotti, in progress

Rafat
Demkowicz-Dobrzanski
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Comparison
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The purification is higher in the phase-covariant case than in the
universal case, since the set of input states is smaller
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Phase-covariant s.Db.

B Maximum M for purification
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The role of correlations

Universal broadcasting: symmetric 2-sites output states commuting with Jz(l)

1 — 3«
2

Parametrization of bipartite

. =
symmetric states: £

p® = oI 4 gJO

Separable states

B Entangled states

04 0L / 0.2 0.4

Universal broadcasting output states (4-->5)




The role of correlations

Two-sites output concurrence C versus the input Bloch vector
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The role of correlations

permutation invariant bipartite joint states
e Joint states

@ more pure
© more mixed

0.

0. e: concurrence
o r: local purity
0. it

output states of superbroadcasting



The role of correlations

Is superbroadcasting classical?

® The classical procedure (measurement + preparation) leads
only to the same scaling factor as the superbroadcasting for

M= (F. Buscemi, G. Chiribella, G. M. D’Ariano, C.
Macchiavello, and P. Perinotti, in preparation)

® The protocol for practical achievement of the
superbroadcasting map involves Werner cloning map in
some stage ----> quantum correlations



G. M. D’Ariano, P. Perinotti, and M. F. Sacchi, in preparation

CV superbroadcasting

© superbroadcasting for harmonic oscillators

® feasible for any displaced noisy state

® covariant under the Weyl Heisenberg group of
translations on the phase space

Sacchi



G. M. D’Ariano, P. Perinotti, and M. F. Sacchi, in preparation
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optimal scheme for thermal noise uses
linear/parametric optics

Gaussian variances at the
input and at the output:
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- CV superbroadcasting
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CV superbroadcasting

T Pushing noise
into correlations!

reducing thermal noise
while creating correlations

G. M. D’Ariano, P. Perinotti, and M. F. Sacchi, in preparation




Purification
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e (lassical decorrelator for p,,(X,Y), X,Y random variables with

<X> T <Y> — m, pm(Xv Y) #pm(X)pm(Y)

Y ovix,y), ¥yem PoEY)=PaE0pa()

¢ Quantum decorrelator & for R # Try|R] ® Try|R]

PUE*RUZ*T) = U,pU] @ UypU] Vg € G.



G. M. D’Ariano, Rafat Demkowicz-Dobrzanski

and P. Perinotti, in progress

Decorrelation

t is possible to decorrelate a state by reducing the

ourity at each use and/or reducing the number of uses.




Decorrelation

bipartite symmetric states
® Quantum mechanically
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Marginal estimation

® Quantum mechanically the optimal joint state for
estimation of local marginal states is a correlated
state [R. Demkowicz-Dobrzanski, Phys. Rev. A 71
062321 (2005)]

® Such joint states can be decorrelated perfectly

® |[classically, the optimal joint probability for
estimation of marginals is uncorrelated ... ]



Summary

It is possible to purify while broadcasting for sufficiently
many input copies

It is easier to superbroadcast starting from larger numbers of
input copies and from more mixed states

The minimum number of input copies depends on the set of
Input states

Optimal broadcasting is achieved by a projection followed
by a conditioned unitary and a optimal cloning

Information on the single-site input state is preserved

Superbroadcasting corresponds to pushing the noise of single
uses into their correlations

CV superbroadcasting is feasible

Decorrelation quantum mechanically is possible
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The fun with Quantum
Information is that you can study

the foundations of the enigmatic
world of Quantum Mechanics, and,
at the same time, you make
something useful for practical
applications
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