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Program

Deriving the whole Physics axiomatically

from “principles” stated in form of purely mathematical axioms
without physical primitives,

but having a thorough physical interpretation.




Program

Deriving the whole Physics axiomatically

from “principles” stated in form of purely mathematical axioms
without physical primitives,

but having a thorough physical interpretation.

Examples of physical primitives:
mass, force, clocks, rods, ...

Physical interpretation from where?
from experience and from un-axiomatized physics ...
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We derive quantum theory from purely informational principles. Five elementary axioms—causality, perfect
distinguishability, ideal compression, local distinguishability, and pure conditioning—define a broad class of
theories of information processing that can be regarded as standard. One postulate—purification—singles out
quantum theory within this class.
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Quantum walk on Cayley graph

w.l.g. Hilbert space H. = @ggg(CSg

Evolution
wg (t+1)

Z Agg by (1

g’'€sy

ZAQQ g''g’ — ZAT Ag”g’ — 599”]

g’

1) Locality: S, uniformly bounded

2) Reciprocity: A,y #0 = Ayy #0
3) Homogeneity: all g € G are equivalent

Gl <

N, s, € N

= Quantum Walk on Cayley graph



D'Ariano, Perinotti,
PRA 90 062106 (2014)

Quantum walk on Cayley graph

w.l.g. Hilbert space H = @QEGCSQ G| <N, sq € N

, The following operator over the Hilbert space
Evolution /*(G) ® C? is unitary
et +1) = ZAggwg A:ZTh®Ah
9'€5g hes
A ,, o= AT R N where 1" is the right regular representation of G
Z 9’ gz ve on /(@) acting as

Tg’9/> 9'g _1>
1) Locality: S, uniformly bounded
2) Reciprocity: Ayyr #0 = Agyg #0
3) Homogeneity: all g € G are equivalent
4) [sotropy:

There exist:
e agroup L of permutations of S, transitive over _ _ T
S. that leaves the Cayley graph invariant A Z Th ® Ap Z Tin @ LiApLy
e a unitary s-dimensional (projective) representation hesS hesS
{L;} of L such that:




equivalence B needs A
@ el = A > 5

ohadhis

=l

Quantum Walk on
Cayley graph of G

Quantum
Theory

Quantum Cellular
Automata on a Cayley
graph of G

Linearity

G virtually Quantum Walk
Cayley graph b eliaft on Cayley graph
quasi-isometrically of Abelian G
embeddable

in Euclidean space




D'Ariano, Perinotti,
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The Weyl QW

== Minimal dimension for nontrivial unitary A: s=2

Two QWs
connected
by P




D'Ariano, Perinotti,
PRA 90 062106 (2014)

Physical interpretation: the Weyl Fermions

i0p(t) = 5[t +1) — vt — 1)) = 5(A4 - AN)p(t)

AL — AT =+ 04(speyes £ epsys,)  “Hamiltonian”
+ 0y (CuSyCs F SzCySz)

+ 0,(CpCyS, £ 5454C)

k<1 > 1041) = %Ui kv = Weyl equation! | o™ = (0,, +0,,0.)

—_—

Two QCAs
connected
by P




D'Ariano, Perinotti, PRA 90 062106 (2014) Bisio, D'Ariano, Perinotti, Ann. Phys. 368 177 (2016)

Dirac QW D Maxwell QW &)

Local coupling: Axcoupled with its inverse
with off-diagonal identity block matrix

Maxwell in relativistic limit k£ < 1

+ Boson: emergent from convolution of fermions
B CPT-connected! (De Broglie neutrino-theory of photon)
k

w¥ (k) = cos Hn(cpeyc. F 5455, )]

Dirac in relativistic limit &£ << m <K 1

mM: mass, m4<1
n-1: refraction index

+ 1

O
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- For k~1:

Bisio, D'Ariano, Perinotti,
unpublished

Case of study 1: Special Relativity recovered

» Mathematical statement:
iInvariance of eigenvalue equation under change of representation.

» Physical interpretation:
iInvariance of the physical law under change of inertial reference frame.

FIG. 2: The distortion effects of the Lorentz group for the discrete Planck-scale theory represented by the quantum walk in
Eq. (6). Left figure: the orbit of the wavevectors k = (kz,0,0), with k, € {.05,.2,.5,1,1.7}
axis. Right figure: the orbit of wavevectors with |k| = 0.01 for various directions in the (ks, k
parallel to k and |3| € [0, tanh 4].

under the rotation around the z
») plane under the boosts with 3

m=0

Deformed Poincaré group
- Lorentz transformations are perfectly recovered for k« 7.

- Double Special Relativity (Camelia-Smolin).
- Relative locality (in addition to relativity of simultaneity) FIG. 3 Tho groen surface represont theorbit ofthe wavevee-

tor k = (0.3,0,0) under the full rotation group SO(3).



Bisio, D'Ariano, Perinotti,
unpublished

Case of study 2: particle notion

» Mathematical statement:
irreducible representation of deformed Poincaré group.

» Physical interpretation: particle!

w |

kyo k i
k i — y
y() | i 0
—T
o T i —T
e s
\‘ ky
7 2 ; A
0 0 ‘
k:z: - Y ko | 0 L
Vs

Ky y Kz

s

- The Brillouin zone separates into four Poincaré-invariant regions diffeomorphic
to balls, corresponding to four different particles.

- m=0 De Sitter SO(7,4)



Case of study 3: proper time

o Mathematical statement:
topology of the particle mass domain

e Physical interpretation: proper time is discrete!

Bisio, D'Ariano, Perinotti,
unpublished

H(Q@apaaTam):ZPQQa+C2m7L_L | ———
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A priori principles?

Hans Reichenbach

Conventionalism:
- Homogeneity
- |sotropy

Theory
simplicity

Homogeneity = clocks, roads ...
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Adolf Griinbaum



This Is more or less what | wanted to say

Thank you for your attention



