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Problem: to dertve QM as

a probabilistic theory from

some operational principle:
the principle ot Quantumness
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TESTS

Test: A = {Qf } set of possible events JZ/

ﬂ1 eQVz ﬂN

* The same event can

occur in different C
tests \V

* Deterministic test = ()
singleton O °
L. _,,

Coarse-graining of events: .of U A
A = {9, 9,93} Coarse-graining A" = {A, o6 U o3}

Refinement
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STATES

State(W: probability rule w (JZ% ) for any possible event &7

in any test
Normalization: E W (*Q/j)
éij cA

Convex cone of
unnormalized states: 6 4
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CASCADES OF TESTS

Time-cascade:

iR — {%j O 4277,} cascade of tests A = {eQ%L}a > = {Q%J}

collection of joined events with the following rule for marginals:

Y w(Bijod)=fB,)=w(a), VB, &, w
Xh; B
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CASCADES OF TES

S

Time-cascade:

Bo A = {AB; o A} cascade of tests A = {7 },

3 = {B,}]

»‘ composition of events‘ LB oA + ‘notion of conditional state‘

»‘ events = transformations‘ + ‘Iinearity of evolution ‘

variable

AW = w&oxzf)
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Equivalence classes for transtormations

Two transformations .7 and B are
conditioning equivalent 1t

Weoy — W Ywed

Conditioning-equivalence class

Two transformations & and 44 are
probabilistically equivalent 1f

w( ) = w(AB) Yweb

Probabilistic-equivalence class

A transtormation 1s completely specified by the two classes:

A w = w( L )Wy
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EFFECTS

Eftect a: equivalence class of transformations occurring with
the same probability as .27 for all states.

VweG: w()=w(a)
g Duality: eftects are positive linear

functionals <1 over states.

Transformations act linearly on
_effects (Heisenberg Picture)

Convex set of effects QE

Convex cone QE_|_

™

= S . |
€ deterministic effect 1.e.

wel=1Yweb N

J




Preparation-test and observation-tests

Preparation-test {wi }, Z Wi (6) =1
()

Observation-test {OJ/L'}, E A, — €

()




Preparation-test and observation-tests

Preparation-test {wi }, Z Wi (6) =1
()

Observation-test {CLZ'}, E A, — €

7
Dirac notation

(a|w):=w(a) (a|HB|w):=w(aoB)

W) —> A — 5 (1
state effect




Addition of transtformations

Transformations .27, %8 (generally belonging to different tests)

Test-compatible 1f: w(d) + w(%’) < 1, Vw € 6

For test-compatible transformations 277 , 25 define the
transformation‘&fl + sz‘ as the coarse-graining 27 U 275 as if
they belong to the same test

(A + do)w = Frw + Fow
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Rescaling of transtormations
The rescaled transformationof af , A € |0, 1] is the

transtormation giving the same conditioning but occurring with

probability rescaled by A for all states.

|Atomic:|a transformation that
cannot be refined 1n any test,
1.e. 1t cannot be written as

o =) o with o ¢ A Vi

Atomic transformations lie

Convex set of transformations ‘z
on extremal rays of (z 1

Convex cone of transformations S_|_

» The identity transformation .# is not necessarily atomic!
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S TANDARD REFERENCE-TEST

.

S={s}, Si=P)Wl

{)\Z } minimal effect-separating set of states

{lz } minimal state-separating set of effects (info-complete)

J

It is convenient to:

* use biorthogonal real bases embedding states and
eftects in the same Euclidean space

(Li| Aj) = 0ij

e take the last element [y = € and correspondingly A
giving the direction of the cone axis of G




Matrix representation of the
algebra of transtormations

(a] A1) o = ZAz'j i) (1]
(al Az2) 0 i

(alx)

: : y 4 4 rz

Aw = A + &,

(a|w)=a'd + a,




INDEPENDENT SYSTEMS

'Two systems are independent 1f on each system it 1s possible to
perform all their tests as local tests, 1.e. such that on every joint
state one has the commutativity of the transtormations from
ditferent systems

o —
- W

7 o B2 _ 252 o 0




MULTIPARTITTE SYSTEMS

We compose the two systems A and B ]‘
into the bipartite system AB considered ]_

as a new system containing all local tests
A x B plus other tests, and closing w.r.t.

coarse graining, convex combination
and cascading:

AB O A XxB

Nonlocal tests: AB\ A x B




MARGINAL STATE

For a multipartite system we define the marginal state §) ‘ ~of
the n-th system the state that gives the probability of any local
transformation .7 on the n-th system with all other systems
untouched, namely

() = UI, ... I o I, ...
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MARGINAL STATE

For a multipartite system we define the marginal state §) ‘ ~of
the n-th system the state that gives the probability of any local
transformation .7 on the n-th system with all other systems
untouched, namely

() = UI, ... I o I, ...

"~

— =
Ql,(a) = Qe, ...
nth

NS: (no-signaling) any local test on a system 1s equivalent to no-
test on another independent system.
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Bipartite states effects

No restriction on factorized states /eﬂ‘eCt}S ‘05 = ‘ “

s S s o)

) = NO local discriminability:

there are local effects are not separated by local

Effects/states that are locally indistinguishable |

states an

DECOMCES

distinguishable using joint tests. Recipe: add local “ghost”

states/effects to the reference-test to represent
within the tensor product.

everything




Bipartite states effects

No restriction on factorized states/effects - g T —

B oot @
) = NO local discriminability: i

there are local effects are not separated by local states an

Effects/states that are locally indistinguishable becomes
distinguishable using joint tests. Recipe: add local “ghost”
states/effects to the reference-test to represent everything
within the tensor product.

= —> Local discriminability Q ‘

+ local observability: global
info-complete observables made
of local info-complete




Matrix representation of
bipartite states/ettects

With respect to the standard test we can represent
bipartite states and effects as follows

=2 T h)e ), (Bl=3 By e ],
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the output state .27} ‘CP) 12 from a local transformation .27 on
one system 1s in 1-to-1 correspondence with the transformation .o/
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FAITHFUL STATES

A state @ of a bipartite system is dynamically faithful when
the output state .27} ‘CI)) 12 from a local transformation .27 on
one system 1s in 1-to-1 correspondence with the transformation .o/

P @ %1>‘ (I)) 12 calibrability of tests

local state-preparability

A state P of a bipartite system 1s

preparationally faithful if every joint @
state \I/can be achieved by a suitable w

local transtormation f\l, on one system D
occurring with nonzero probability
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FAITHFUL STATES

» A symmetric preparationaly faithful state 1s also dynamically

faithful.

» It 1s always possible to build up a symmetric preparationally
faithtul state over two 1dentical systems.

» Faithful states are pure iff .# is atomic
(Joint property from local geometry!)
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upead it and grow wise:

Test Theories
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DUMMIES

r how to
’ »Tes’r Theorles _

A Reference v g
oSt of B Lesson learnt:

Rest of Us! .
KCO) all test-theories have

a4 nice matrix
representation

. A f A ,: -
SR Y, =, R

G.M. D’Ariano




EXPLORING POSSIBLE

PRINCIPLES OF THE
QUANTUMNESS




Postulate

PFAI'TH

PFAI'TH: For any couple o

-~ 1dentical systems, there exist

a symmetric pure state P t

nat 1s preparationally faithtul.




Properties of purifiable local

marginal state states observability

Impossibility of H@
bit commitment PFAITH

scalar product

calibrability
& preparability transposition

y

weak a{omicity of
self-duality identity




Properties of

marginal state

purifiable

Impossibility of
bit commitment

states
S —

PFAITH

local
observability

2

A

scalar product

CLASSICAL TEST-THEORIES
ARE EXCLUDED

PR-BOXES ARE INCLUDED

SEIT-

uality

_transiormation

laentity
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Postulate FAITHE: | (faithful effect)
F ::a(CI)_1| c &(SS), 0<a<1

proportional to a joint etfect.

» leleportation:




Postulate: FAI'THE

Postulate FAITHE: | (faithful effect)

BOTH CLASSICAL TEST-
THEORIES AND P-BOXES ARE
EXCLUDED




Postulate: Purification

Postulate PURIFY:

1dentical systems.

Every state has a purification on two




Postulate: Purification

Postulate PURIFY:|LEvery state has a purification on two

1dentical systems.

» A symmetric preparationally faithful state 1s necessarily
pure and ¥ is atomic.

» T'he sets of (bipartite) states/eftects are strongly convex

» Each state can be obtained by applying an atomic
transformation to the marginal state X = ®(e, )

» Each elffect contains an atomic transtormation.




DO WE GET QUANTUM THEORY
FROM OUR POSTULATES?




DO WE GET QUANTUM THEORY
FROM OUR POSTULATES?

HOW TO PROVE THAT WE HAVE
QUANTUM MECHANICS?
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