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Superbroadcasting



• For pure states ideal broadcasting coincides with the 
quantum cloning.

• For mixed states there are infinitely many joint states 
that correspond to the same local state.

Rout = ρ ⊗ ρ ⊗ . . . ⊗ ρ ”cloning”

Tr123...M−1[Rout] =Tr23...M [Rout] = ρ ”broadcasting”

Superbroadcasting
N inputs ⇒ M outputs



• For mixed input states the no-cloning theorem is not 
logically sufficient to forbid ideal broadcasting  

• The impossibility of ideal broadcasting has been proved  
in the case of one input copy and two output copies for 
non mutually commuting density operators [H. Barnum, 
C. M. Caves, C. A. Fuchs, R. Jozsa, and B. Schumacher, 
Phys. Rev. Lett. 76 2818 (1996)]

 Is this a generalization of the no-cloning theorem to mixed states? 

Superbroadcasting



• We have shown that the no broadcasting 
theorem does not generalize to more than three 
input copies!

• For N≥4 input copies it is even possible to purify 
the state while broadcasting!

•  broadcasting + cloning  “superbraodcasting”.

Superbroadcasting
The answer is no!



Superbroadcasting

ρn = 1

2
(I + rn · σ)



Superbroadcasting
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In terms of Clebsch-Gordan coefficients, this can be
rewritten as

M(ϕ,Φ)(ρ⊗N ) = (r+r−)N/2

×
N/2∑

l=〈〈N/2〉〉

2l + 1
2Φ(l) + 1

dl

dϕ(l)

l∑
n=−l

(
r−
r+

)n

×
ϕ(l)∑

m=−ϕ(l)

〈Φ(l)m + n|ϕ(l)m, ln〉2|ϕ(l)m〉〈ϕ(l)m|⊗ Idϕ(l) .

(15)

Now, we are interested in the single output copy, which is
the broadcasted state. This is given by the partial trace
of Eq. (15) over M−1 copies. The evaluation of the par-
tial trace needs the matching between the Wedderburn
decomposition and the qubit tensor product representa-
tion. According to the Schur-Weyl duality the multi-
plicity space of the Wedderburn decomposition supports
a unitary irreducible representation of the permutation
group PM of the M qubits. Therefore, one has the iden-
tity for any operator Xj on Hj ⊗ Cdj

∑
l∈PM

πlXjπ
†
l =

M !
dj

TrCdj [Xj ]⊗ Idj (16)

where πl denotes the generic permutation. In particular,
for Xj = |jm〉〈jm|⊗ |1〉〈1|, |1〉 denoting any fixed vector
of Cdj , one has

|jm〉〈jm|⊗ Idj =
dj

M !

∑
l∈PM

πlXjπ
†
l (17)

Clearly, one can always choose the given vector of the
irreducible representation as [13]

|jm〉 ⊗ |1〉 = |jm〉 ⊗ |Ψ−〉⊗M
2 −j , (18)

where |Ψ−〉 denotes the singlet. We can then take the
partial trace of both sides of Eq. (17). For each per-
mutation, say πs, which exchanges the last qubit with
one belonging to a singlet, one has TrM−1[πsXjπ†

s] = I
2 ,

and we have (M−2j)(M−1)! permutations of this kind.
On the other hand, for each permutation, say πm, which
exchanges the last qubit with one belonging to the j-
multiplet, one has TrM−1[πmXjπ†

m] = Trj− 1
2
[|jm〉〈jm|]

and there are 2j(M − 1)! permutations of this kind. Us-
ing the explicit form of the Clebsch-Gordan coefficients
one can derive the following identity

Trj− 1
2
[|jm〉〈jm|] =

1
2
I +

m

2j
k · σ . (19)

Substituting the above formula when performing the par-
tial trace of both sides of Eq. (17), one obtains the follow-

ing expression for the single copy output density operator

ρ′(ϕ,Φ)(r) = (r+r−)N/2
N/2∑

l=〈〈N/2〉〉

2l + 1
2Φ(l) + 1

dl

ϕ(l)∑
m=−ϕ(l)

×
l∑

n=−l

(
r−
r+

)n

〈Φ(l)m + n|ϕ(l)m, ln〉2 1
2

(
I +

2m

M
k · σ

)
.

(20)

We are now in position to analyse the broadcasted state,
in particular its Bloch vector. In Eq. (20) we see that
the input and the output Bloch vectors are parallel, and
clearly [ρ′, ρ] = 0. On the other hand, the length of the
output Bloch vector is given by

r′(ϕ,Φ)(r) = (r+r−)N/2
N/2∑

l=〈〈N/2〉〉

2l + 1
2Φ(l) + 1

dl

×
ϕ(l)∑

m=−ϕ(l)

l∑
n=−l

(
r−
r+

)n

〈Φ(l)m + n|ϕ(l)m, ln〉2 2m

M

(21)

We are now interested in maximizing the length of the
output Bloch vector. Since r′ this is linear on the convex
set of broadcasting channels, we just need to consider
extremal maps, and look for the maximum r′opt(r) =
max(ϕ,Φ){r′(ϕ,Φ)(r)}. By symbolic calculus we find that
the maximal r′(ϕ,Φ)(r) is achieved for ϕ(l) = M/2 and
for Φ(l) =

∣∣l − M
2

∣∣, independently on r. For pure states
these optimal maps coincide with those of optimal uni-
versal cloning transformations[5–8].
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FIG. 2: The curves p(r) versus r for N = 5 and 5 ≤ M ≤ 9
(from the top to the bottom).

As an example, in Fig. 2 we plot the so-called shrink-
ing factor p(r) = r′opt(r)/r for the maps maximizing r′
for N = 5 and several values of M . One can see that for a
wide range of values of r p(r) is actually a stretching fac-
tor, being p(r) > 1. This corresponds to a purification
of the local states, and since one also has a number of
copies at the output M > N greater than at the input, it
is actually a broadcasting with simultaneous purification,
what we call super-broadcasting. Clearly, for M ≤ N one

shrinking/stretching factor
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Using the expression (13) for extremal broadcasting
channels and Eq. (11) for the input state we can evaluate
the output state

M(ϕ,Φ)(ρ⊗N ) = (r+r−)N/2
N/2⊕

l=〈〈N/2〉〉

2l + 1
2Φ(l) + 1

1
dϕ(l)

×
l∑

n=−l

(
r−
r+

)n

Trl[(Iϕ(l) ⊗ |ln〉〈ln|)P (ϕ(l),l)
Φ(l) ]⊗ Idϕ(l) .

(14)

In terms of Clebsch-Gordan coefficients, this can be
rewritten as

M(ϕ,Φ)(ρ⊗N ) = (r+r−)N/2

×
N/2∑

l=〈〈N/2〉〉

2l + 1
2Φ(l) + 1

dl

dϕ(l)

l∑
n=−l

(
r−
r+

)n

×
ϕ(l)∑

m=−ϕ(l)

〈Φ(l)m + n|ϕ(l)m, ln〉2|ϕ(l)m〉〈ϕ(l)m|⊗ Idϕ(l) .

(15)

Now, we are interested in the single output copy, which
is the broadcast state. This is given by the partial trace
of Eq. (15) over M−1 copies. The evaluation of the par-
tial trace needs the matching between the Wedderburn
decomposition and the qubit tensor product representa-
tion. According to the Schur-Weyl duality the multi-
plicity space of the Wedderburn decomposition supports
a unitary irreducible representation of the permutation
group PM of the M qubits. Therefore, one has the iden-
tity for any operator Xj on Hj ⊗ Cdj

∑
l∈PM

πlXjπ
†
l =

M !
dj

TrCdj [Xj ]⊗ Idj (16)
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of Cdj , one has
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∑
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2 ,
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(
r−
r+

)n
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2

(
I +

2m

M
k · σ
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(20)

We are now in position to analyse the broadcast state,
in particular its Bloch vector. In Eq. (20) we see that
the input and the output Bloch vectors are parallel, and
clearly [ρ′, ρ] = 0. On the other hand, the length of the
output Bloch vector is given by
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(
r−
r+

)n
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M

(21)

We are now interested in maximizing the length of the
output Bloch vector. Since r′ is linear on the convex
set of broadcasting channels, we just need to consider
extremal maps, and look for the maximum r′opt(r) =
max(ϕ,Φ){r′(ϕ,Φ)(r)}. By symbolic calculus we find that
the maximal r′(ϕ,Φ)(r) is achieved for ϕ(l) = M/2 and
for Φ(l) =

∣∣l − M
2

∣∣, independently on r. For pure states
these optimal maps coincide with those of optimal uni-
versal cloning transformations[5–8].
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FIG. 2: The stretching factor p(r) versus r. On the left:
for M = N + 1 and N = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
(from the bottom to the top. On the right: for N = 5 and
5 ≤ M ≤ 9 (from the top to the bottom).
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We are now in position to analyse the broadcast state,
in particular its Bloch vector. In Eq. (20) we see that
the input and the output Bloch vectors are parallel, and
clearly [ρ′, ρ] = 0. On the other hand, the length of the
output Bloch vector is given by

r′(ϕ,Φ)(r) = (r+r−)N/2
N/2∑

l=〈〈N/2〉〉

2l + 1
2Φ(l) + 1

dl

×
ϕ(l)∑

m=−ϕ(l)

l∑
n=−l

(
r−
r+

)n

〈Φ(l)m + n|ϕ(l)m, ln〉2 2m

M

(21)

We are now interested in maximizing the length of the
output Bloch vector. Since r′ is linear on the convex
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extremal maps, and look for the maximum r′opt(r) =
max(ϕ,Φ){r′(ϕ,Φ)(r)}. By symbolic calculus we find that
the maximal r′(ϕ,Φ)(r) is achieved for ϕ(l) = M/2 and
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In terms of Clebsch-Gordan coefficients, this can be
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×
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Substituting the above formula when performing the par-
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We are now in position to analyse the broadcasted state,
in particular its Bloch vector. In Eq. (20) we see that
the input and the output Bloch vectors are parallel, and
clearly [ρ′, ρ] = 0. On the other hand, the length of the
output Bloch vector is given by
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We are now interested in maximizing the length of the
output Bloch vector. Since r′ this is linear on the convex
set of broadcasting channels, we just need to consider
extremal maps, and look for the maximum r′opt(r) =
max(ϕ,Φ){r′(ϕ,Φ)(r)}. By symbolic calculus we find that
the maximal r′(ϕ,Φ)(r) is achieved for ϕ(l) = M/2 and
for Φ(l) =
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2

∣∣, independently on r. For pure states
these optimal maps coincide with those of optimal uni-
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in particular its Bloch vector. In Eq. (20) we see that
the input and the output Bloch vectors are parallel, and
clearly [ρ′, ρ] = 0. On the other hand, the length of the
output Bloch vector is given by

r′(ϕ,Φ)(r) = (r+r−)N/2
N/2∑

l=〈〈N/2〉〉

2l + 1
2Φ(l) + 1

dl

×
ϕ(l)∑

m=−ϕ(l)

l∑
n=−l

(
r−
r+

)n

〈Φ(l)m + n|ϕ(l)m, ln〉2 2m

M

(21)

We are now interested in maximizing the length of the
output Bloch vector. Since r′ this is linear on the convex
set of broadcasting channels, we just need to consider
extremal maps, and look for the maximum r′opt(r) =
max(ϕ,Φ){r′(ϕ,Φ)(r)}. By symbolic calculus we find that
the maximal r′(ϕ,Φ)(r) is achieved for ϕ(l) = M/2 and
for Φ(l) =

∣∣l − M
2

∣∣, independently on r. For pure states
these optimal maps coincide with those of optimal uni-
versal cloning transformations[5–8].
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FIG. 2: The curves p(r) versus r for N = 5 and 5 ≤ M ≤ 9
(from the top to the bottom).

As an example, in Fig. 2 we plot the so-called shrink-
ing factor p(r) = r′opt(r)/r for the maps maximizing r′
for N = 5 and several values of M . One can see that for a
wide range of values of r p(r) is actually a stretching fac-
tor, being p(r) > 1. This corresponds to a purification
of the local states, and since one also has a number of
copies at the output M > N greater than at the input, it
is actually a broadcasting with simultaneous purification,
what we call super-broadcasting. Clearly, for M ≤ N one
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tion of the local states, and since one also has a number
of copies at the output M > N greater than the number
of inputs, it is actually a broadcasting with simultane-
ous purification, what we call superbroadcasting. Clearly,
for M ≤ N one has more purification than for M > N ,
corresponding to the purification protocol [11]. The su-
perbroadcasting occurs for at least four input copies. As
a rule, one has purification below some value r∗(N,M) of
the input purity, for a bounded number M ≤ M∗(N) of
the output copies. In Fig. 3 we plot r∗(N,N + 1) versus

10 15 20 30 50 70 100
N

0.0005
0.001

0.005
0.01

0.05
0.1

1!r"!N,N#1"

FIG. 3: Logarithmic plot of 1 − r∗(N, N + 1) versus N .
r∗(N, M) denotes the maximum purity for which one can have
superbroadcasting from N to M copies.

the number of input copies. After the threshold at N = 4
corresponding to r∗(4, 5) = 0.787, one has a monotonic
increase of r∗(N, N + 1) toward asymptotic purity, with
a power law 1 − r∗(N, N + 1) ∝ 2N−2. For larger M
one has a generally higher threshold for N , and smaller
values of r∗(N,M). For N = 4 one has superbroadcast-
ing for up to M = 7, for N = 5 up to M = 21, and for
N = 6 up to M > 700, with a probable super-polynomial
increase.

In conclusion, we have derived the optimal universal
broadcasting for mixed states of qubits, optimal in the
sense that it maximizes the purity of local states. We
show that the no-broadcasting theorem[4] for noncom-
muting mixed states cannot be generalized to more than
a single input copy, and for more than three input copies
one can even purify while broadcasting, below some max-
imum value of the purity. We named such phenomenon
superbroadcasting. The possibility of superbroadcasting
does not correspond to an increase of the available in-

formation about the original input state ρ, due to detri-
mental correlations between the local broadcast copies,
which does not allow to exploit their statistics. This phe-
nomenon was already noticed in Ref. [14], in an asymp-
totic analysis of the rate of optimal purification proce-
dures. From the point of view of single users our broad-
casting protocol is actually a purification (for states suffi-
ciently mixed), and the same broadcasting process trans-
fers some noise from the local states to the correlations
between them. We think that the present result opens
new interesting perspectives in the ability of distributing
quantum information in a noisy environment.
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the number of input copies. After the threshold at N = 4
corresponding to r∗(4, 5) = 0.787, one has a monotonic
increase of r∗(N, N + 1) toward asymptotic purity, with
a power law 1 − r∗(N, N + 1) ∝ 2N−2. For larger M
one has a generally higher threshold for N , and smaller
values of r∗(N,M). For N = 4 one has superbroadcast-
ing for up to M = 7, for N = 5 up to M = 21, and for
N = 6 up to M > 700, with a probable super-polynomial
increase.

In conclusion, we have derived the optimal universal
broadcasting for mixed states of qubits, optimal in the
sense that it maximizes the purity of local states. For
pure states and M > N the map coincides with the op-
timal universal cloning transformation[5–8], whereas for
N < M it is equivalent to the optimal purification map
of Ref. [11]. Thus our optimal broadcasting map gener-
alizes/interpolates between optimal cloning and optimal
purification. We have shown that the no-broadcasting
theorem[4] for noncommuting mixed states cannot be
generalized to more than a single input copy, and for
more than three input copies one can even purify the
state while broadcasting, below some maximum value of

the purity. We named such phenomenon superbroadcast-
ing. The possibility of superbroadcasting does not corre-
spond to an increase of the available information about
the original input state ρ, due to detrimental correla-
tions between the local broadcast copies, which does not
allow to exploit their statistics. This phenomenon was
already noticed in Ref. [14], in an asymptotic analysis of
the rate of optimal purification procedures. Notice that
the correlations alone among qubits cannot be erased by
any physical process, since the de-correlating map which
sends a state to the tensor product of its partial traces
is non linear. From the point of view of single users our
broadcasting protocol is actually a purification (for states
sufficiently mixed), and the same broadcasting process
transfers some noise from the local states to the corre-
lations between them. We think that the present result
opens new interesting perspectives in the ability of dis-
tributing quantum information in a noisy environment.
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• For pure states the optimal superbroadcasting map 
is the same as the optimal universal cloning [R. F. 
Werner, Phys. Rev. A 58 1827 (1998)].

• For M<N it corresponds to the optimal purification 
map [ J. I. Cirac, A. K. Ekert, and C. Macchiavello, 
Phys. Rev. Lett. 82 4344 (1999)].

• Therefore, the superbroadcasting map generalizes 
and interpolates optimal purification and optimal 
cloning.

Superbroadcasting



• Superbroadcasting doesn’t mean more available information 
about the original input state.

• This is due to detrimental correlations between the broadcast 
copies, which does not allow to exploit their statistics [this 
phenomenon was already noticed by M. Keyl and R. F. Werner, 
Ann. H. Poincaré 2 1 (2001)].

• From the point of view of each single user our broadcasting 
protocol is a purification in all respects (for states sufficiently 
mixed). The process transfers noise from the local states to the 
correlations between them.

Superbroadcasting
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No go theorem

It is impossible to program all 
observables with a single Z and 

a finite-dimensional ancilla
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PZ

.

= MZ,A

MZ,σ

.
= Tr2[(I ⊗ σ)Z] = P

A
PZ

MZ
σ

P

PN

Programmability of POVM’s

Problem: The ”big Z”

For given d = dim(A) and N =
|Z| = |P|, find the observables
Z that are the most efficient in
programming POVM’s, namely
which minimize the largest dis-
tance of each POVM from the
programmable set:

ε(Z)
.
= max

P∈PN

min
Q∈MZ,A

δ(P,Q)

.

ε



PZ

.

= MZ,A

MZ,σ

.
= Tr2[(I ⊗ σ)Z] = P

A
PZ

MZ
σ

P

PN

Programmability of POVM’s

We found that polynomial (and
even linear!) precision is achiev-
able

In the literature it was found that

ε ∼ exp(κ dim(A ))

ε



programmability with accuracy ε−1:

ε
.
= max

P∈PN

min
Q∈PZ

δ(P,Q)

δ(P,Q) = max
ρ

∑

i

|Tr[ρ(Pi − Qi)]|

Contro
lled-U

Using a joint observable Z of the form

Zi = U†(|ψi〉〈ψi|⊗ IA)U, U =

dim(A)∑
k=1

Wk ⊗ |φk〉〈φk|

with {ψi} and {φk} orthonormal sets and Wk unitary, we can
program observables with accuracy ε−1 using an ancilla with
polynomial growth

dim(A) ! κ(N)

(
1

ε

)N(N−1)

Programmability of POVM’s



For qubits: linear growth!

ε = δ(P,Q) =
2

2j + 1
dim(A) = 2ε

−1

Program for the observable P = {U (1/2)
g | ± 1

2 〉〈±
1
2 |U

(1/2)
g

†}

σ = U (j)
g |jj〉〈jj|U (j)

g
†

in dimension dim(A) = 2j + 1, with joint observable

Z = {Π(j± 1

2
)}

gives the programmability accuracy

Programmability of POVM’s
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use quantum
spins!!

Alice, send me
your frame!

how?!

Transmission of reference frames



• Use N spins that can carry information about the rotation 
g* that connects the two frames

• Alice prepares N spins in 

• She sends the spins to Bob who receives

• Bob performs a measurement to infer g* and rotates his 

frame by the estimated rotation g

|A〉

|Ag∗〉 = U
⊗N
g∗ |A〉

Transmission of reference frames



e(g, g∗) =
∑

α=x,y,z

|gn
B
α − g∗n

B
α |2

The deviation between estimated and true axes is

〈e〉 =

∫
dg∗

∫
dg p(g|g∗) e(g, g∗)

The state and the measurement are chosen in 
order to minimize the average transmission error

The previous literature claimed that equivalent 
representations are of no use, and the optimal 
achievable asymptotic sensitivity is∝ 1/N  

Transmission of reference frames

Use entanglement with the multiplicity space!

BUT... the use of equivalent irreducible representations 
dramatically improves the sensitivity up  to ∝ 1/N2 ! 



Sensitivity N
−2 instead of N−1

H
⊗N = ⊕ν(Hν ⊗ C

mν )

x
y

z

x'

y'

z'

Transmission of reference frames



No need of shared entanglement! 

Transmission of reference frames
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Quantum Calibration

pnρn = F (Pn), Pn = F
−1(pnρn),

F (X) = Tr2[(I ⊗ X)F ]

- pn probability of the outcome n,

- ρn conditioned state, to be determined by quantum tomography,

- F associated map of the faithful state F .



Quantum calibration of a photocounter

Absolute calibration of a photodetector
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Phase estimation with mixed states
N qubits in the same mixed state

Optimal phase estimation for qubit in mixed states

Giacomo Mauro D’Ariano,∗ Chiara Macchiavello,† and Paolo Perinotti‡

QUIT Group of the INFM, unità di Pavia§ and
Dipartimento di Fisica “A. Volta”, via Bassi 6, I-27100 Pavia, Italy

(Dated: March 17, 2005)

We present the optimal phase estimation for qubits in mixed states, for an arbitrary number of
qubits prepared in the same state.

PACS numbers: 03.65.Ta, 03.67.-a

The encoding information into the relative phase of
quantum systems is exploited in quantum computation,
communication, and high precision measurements. In
fact, in quantum computing most of the existing quan-
tum algorithms can be regarded as multiparticle inter-
ferometers, with the output of the computation encoded
in the relative phase between different paths [1]. On the
other hand, in some cryptographic communication pro-
tocols (e. g. BB84[2]) information is encoded into phase
properties. And, finally, the domain of high precision
measurements is the typical scenario in which the sen-
sitivity of phase estimation is profitably used, such as
in interferometry and in frequency standards based on
atomic clocks [3].

The above numerous applications had focused a great
deal of interest on the problem of optimal phase estima-
tion, which has been widely studied in several hundreds
of papers (see for example Ref. [4]) since the beginning of
quantum theory [5, 6]. The first satisfactory partial so-
lution of the problem appeared in the late 70’s (see Refs.
[7] and [8] for reviews), and these works are generally
regarded as one of the major successes of quantum es-
timation theory and covariant measurements, allowing a
first consistent definition of phase, without the problems
suffered by the original definition proposed by Dirac [6] in
terms of an alleged observable conjugated to the number
operator of the harmonic oscillator.

In the covariant treatment of Ref. [8] the estimated
parameter is a phase shift resulting from the action of a
circle group U(1) of unitary transformations, with gener-
ator a selfadjoint operator with purely integer spectrum.
A generalization of this method to degenerate phase-shift
generator has been presented in Ref. [9]. Such general
approach can be applied to any input pure state, along
with a restricted class of mixed states, the so called phase-

pure states [9, 10].
The possibility of efficiently estimating the phase for

mixed states is of fundamental interest for practical im-
plementations, in the presence of unavoidable noise which
generally turns pure states into mixed, and for estima-
tion of local phase-shift on entangled states. As a matter
of fact, the freedom in the choice of the optimal mea-
surement which results from degenerate shift operators[9]
opens the problem of the stability of the quality of the es-
timation with increasing mixing of the shifted state. The

problem of optimal phase estimation on mixed states is
also very relevant conceptually, the phase being one of the
most elusive quantum concepts. The main reason why
the problem of optimal phase estimation on mixed states
has never been addressed systematically so far is due
to the intrinsic technical difficulties faced in any quan-
tum estimation problem with mixed states. In this paper
we derive the optimal measurement for phase estimation
on qubits in mixed states, for an arbitrary number N
of qubits prepared in the same state, using either the
Uhlman fidelity or the periodicized variance as a figure
of merit.

Let us consider a system of N identical qubits pre-
pared in the same mixed state ρ!n = 1

2 (I + "n · "σ), where
|"n|

.
= r < 1 and σi are the three Pauli matrices. The total

state of the N qubits is described by the density matrix
R!n = ρ⊗N

!n . The phase transformation Uφ belonging to
the representation of U(1) is generated by the z compo-

nent of the total angular momentum Jz = 1
2

∑N
k=1 σ(k)

z ,
namely

R!n(φ) = UφR!nU †
φ =

[
e−i φ

2
σz ρ!nei φ

2
σz

]⊗N
(1)

Due to covariance, without loss of generality we can
assume that the initial state ρ!n has no component along
σy, corresponding to real matrix ρ!n in the σz representa-
tion. The phase estimation problem then resorts to find
the best POVM P (d φ) for determining the unknown pa-
rameter φ in Eq. (1). The fact that P (d φ) is a POVM
corresponds to the constraints

P (d φ) ≥ 0 ,

∫ 2π

0
P (d φ) = I. (2)

In the quantum estimation approach the optimality is
defined by maximizing the average of a given figure of
merit C(φ, φ′), assuming a uniform prior distribution of
the parameter φ

〈C〉 =
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φP (d φ′)] , (3)

where C(φ, φ′) = C(φ−φ′). In Ref. [8] it was proved that
the solution for an estimation problem covariant under a
unitary group representation can be written as the group
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The encoding information into the relative phase of
quantum systems is exploited in quantum computation,
communication, and high precision measurements. In
fact, in quantum computing most of the existing quan-
tum algorithms can be regarded as multiparticle inter-
ferometers, with the output of the computation encoded
in the relative phase between different paths [1]. On the
other hand, in some cryptographic communication pro-
tocols (e. g. BB84[2]) information is encoded into phase
properties. And, finally, the domain of high precision
measurements is the typical scenario in which the sen-
sitivity of phase estimation is profitably used, such as
in interferometry and in frequency standards based on
atomic clocks [3].

The above numerous applications had focused a great
deal of interest on the problem of optimal phase estima-
tion, which has been widely studied in several hundreds
of papers (see for example Ref. [4]) since the beginning of
quantum theory [5, 6]. The first satisfactory partial so-
lution of the problem appeared in the late 70’s (see Refs.
[7] and [8] for reviews), and these works are generally
regarded as one of the major successes of quantum es-
timation theory and covariant measurements, allowing a
first consistent definition of phase, without the problems
suffered by the original definition proposed by Dirac [6] in
terms of an alleged observable conjugated to the number
operator of the harmonic oscillator.

In the covariant treatment of Ref. [8] the estimated
parameter is a phase shift resulting from the action of a
circle group U(1) of unitary transformations, with gener-
ator a selfadjoint operator with purely integer spectrum.
A generalization of this method to degenerate phase-shift
generator has been presented in Ref. [9]. Such general
approach can be applied to any input pure state, along
with a restricted class of mixed states, the so called phase-

pure states [9, 10].
The possibility of efficiently estimating the phase for

mixed states is of fundamental interest for practical im-
plementations, in the presence of unavoidable noise which
generally turns pure states into mixed, and for estima-
tion of local phase-shift on entangled states. As a matter
of fact, the freedom in the choice of the optimal mea-
surement which results from degenerate shift operators[9]
opens the problem of the stability of the quality of the es-
timation with increasing mixing of the shifted state. The

problem of optimal phase estimation on mixed states is
also very relevant conceptually, the phase being one of the
most elusive quantum concepts. The main reason why
the problem of optimal phase estimation on mixed states
has never been addressed systematically so far is due
to the intrinsic technical difficulties faced in any quan-
tum estimation problem with mixed states. In this paper
we derive the optimal measurement for phase estimation
on qubits in mixed states, for an arbitrary number N
of qubits prepared in the same state, using either the
Uhlman fidelity or the periodicized variance as a figure
of merit.

Let us consider a system of N identical qubits pre-
pared in the same mixed state ρ!n = 1

2 (I + "n · "σ), where
|"n|

.
= r < 1 and σi are the three Pauli matrices. The total

state of the N qubits is described by the density matrix
R!n = ρ⊗N

!n . The phase transformation Uφ belonging to
the representation of U(1) is generated by the z compo-

nent of the total angular momentum Jz = 1
2

∑N
k=1 σ(k)

z ,
namely

R!n(φ) = UφR!nU †
φ =

[
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Due to covariance, without loss of generality we can
assume that the initial state ρ!n has no component along
σy, corresponding to real matrix ρ!n in the σz representa-
tion. The phase estimation problem then resorts to find
the best POVM P (d φ) for determining the unknown pa-
rameter φ in Eq. (1). The fact that P (d φ) is a POVM
corresponds to the constraints

P (d φ) ≥ 0 ,

∫ 2π

0
P (d φ) = I. (2)

In the quantum estimation approach the optimality is
defined by maximizing the average of a given figure of
merit C(φ, φ′), assuming a uniform prior distribution of
the parameter φ

〈C〉 =
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0
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φP (d φ′)] , (3)

where C(φ, φ′) = C(φ−φ′). In Ref. [8] it was proved that
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σy, corresponding to real matrix ρ!n in the σz representa-
tion. The phase estimation problem then resorts to find
the best POVM P (d φ) for determining the unknown pa-
rameter φ in Eq. (1). The fact that P (d φ) is a POVM
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0
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Phase estimation with mixed states

Since only the elements on the first over-diagonal and under-diagonal
are involved, one can choose phases in such a way that

orbit under the same representation of a fixed positive
operator (called seed of the POVM), and for the present
case (group U(1)) one has

P (d φ′) = Uφ′ξU †
φ′

d φ′

2π
. (4)

In the following we will denote by |m, a〉 an orthonormal
basis, with m denoting the eigenvalues of 1

2Jz, which
label the equivalence classes of irreducible representa-
tions of U(1), while a is a degeneration index, corre-
sponding to the multiplicity space of the representa-
tion m. The normalization condition (2) for the POVM
P (d φ) implies that 〈m, a|ξ|m, b〉 = 0 for a #= b, whereas
〈m, a|ξ|m, a〉 = 1 for all a.

The quantity that must be maximized is

〈C〉 =

∫ 2π

0

d φ′

2π
C(φ′)Tr[R#nUφ′ξU †

φ′ ] . (5)

As a figure of merit C(φ) we will consider the following
function corresponding to the periodicized variance

v(φ) = 4 sin2 φ

2
= 2(1 − cosφ), (6)

which is equivalent to maximize the averaged function
cosφ, namely

〈c〉 =
1

2

∫ 2π

0

d φ′

2π
(eiφ′

+ e−iφ′

)Tr[R#nUφ′ξU †
φ′ ] . (7)

Notice that the Uhlman fidelity of the single qubit esti-
mated state with respect to the actual one

F (φ) =

[
Tr

√√
Uφρ#nU †

φρ#n

√
Uφρ#nU †

φ

]2

, (8)

as a figure of merit is equivalent to the cosine function,
due to the identity

F (φ) =
1

2
(2 − r2 + r2 cosφ). (9)

The evaluation of the integral in Eq. (7) leads to the
following expression

〈c〉 = Re
∑

m,a,b

〈m, a|ξ|m + 1, b〉〈m + 1, b|R#n|m, a〉 . (10)

We now decompose ρ⊗N into irreducible representations
of SU(2), as shown in Ref. [11] recasting R#n into invariant
block-diagonal form on the orthonormal basis |j, m, α〉#b =
Uj,α|j, m, 1〉#b for the minimal invariant subspaces of the

SU(2) representations, with &b = #n
r , and Uj,α denoting a

suitable set of unitary operators.

R#n
.
= ρ⊗N

#n =
J∑

j=〈〈N/2〉〉

(r+r−)J

dj∑
α=1

Uj,ατj,1U
†
j,α , (11)

τj,1 =
j∑

m=−j

(
r+

r−

)m

|j, m, 1〉#b〈j, m, 1| , (12)

|j, m, 1〉#b = |j, m〉#b ⊗ |Ψ−〉
⊗J−j , (13)

where r±
.
= 1

2 (1 ± r), 〈〈x〉〉 denotes the fractional part of
x (i. e. 〈〈N/2〉〉 = 0 for N even and 〈〈N/2〉〉 = 1/2 for
N odd), J = N/2, and dj is the multiplicity of the j-th
irreducible representation of SU(2)

dj =

(
2J

J − j

)
−

(
2J

J − j − 1

)
, (14)

whereas |Ψ−〉 denotes the singlet state. This decomposi-
tion is useful since m, j, α label also the irreducible repre-
sentations of U(1), m being the eigenvalue of Jz , and j, α
becoming both degeneration indices. The block diagonal
form of R#n shows that the only coupling produced by
the phase shift between irreducible components with m
and m + 1 can occur only between vectors in the same
invariant subspace j, α of SU(2). Upon recasting R#n in
the form of Eq. (11), the value of 〈c〉 in Eq. (10) involves
only the following terms

〈c〉 = Re
∑
m,jα

〈m, jα|ξ|m + 1, jα〉〈m + 1, jα|R#n|m, jα〉 ,

(15)
where we used the short notation |m, jα〉

.
= |j, m, α〉z ,

since the subspaces j, α are invariant under any unitary
in SU(2), and |j, m, α〉#b = T (j)(g)|j, m, α〉z for some g ∈
SU(2). Now, the following bounding hold

〈c〉 ≤

∣∣∣∣∣∣
∑
m,jα

〈m, j, α|ξ|m + 1, jα〉〈m + 1, jα|R#n|m, jα〉

∣∣∣∣∣∣
≤

∑
m,jα

|〈m, j, α|ξ|m + 1, jα〉〈m + 1, jα|R#n|m, jα〉|

≤
∑
m,jα

|〈m + 1, jα|R#n|m, jα〉| . (16)

We show now that all bounds can be achieved by a suit-
able choice of the operator ξ compatible with constraints
(2). The first two bounds can indeed be achieved by
choosing the phases of the matrix elements 〈m, j, α|ξ|m+
1, jα〉 in such a way that they compensate the corre-
sponding phases of 〈m+1, jα|R#n|m, jα〉. The last bound
is achieved by just taking the moduli of the matrix ele-
ments 〈m, jα|ξ|m + 1, jα〉 to be 1. It remains to prove
that these choices are compatible with positivity. In or-
der to show this, let us write

〈m+1, jα|R#n|m, jα〉 = |〈m+1, jα|R#n|m, jα〉|eiχ(m+1,m,jα) .
(17)

Since only the elements on the first over-diagonal and
under-diagonal are involved, one can choose phases
θ(m, jα) in such a way that

χ(m + 1, m, jα) = θ(m, jα) − θ(m + 1, jα) , (18)

as the number of independent linear equations in Eq.
(18) is 2N − 1 while the unknown phases are 2N . Then
one can take

ξ =
∑
j,α

|e(j, α)〉〈e(j, α)| , (19)
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the form of Eq. (11), the value of 〈c〉 in Eq. (10) involves
only the following terms

〈c〉 = Re
∑
m,jα

〈m, jα|ξ|m + 1, jα〉〈m + 1, jα|R#n|m, jα〉 ,

(15)
where we used the short notation |m, jα〉

.
= |j, m, α〉z ,

since the subspaces j, α are invariant under any unitary
in SU(2), and |j, m, α〉#b = T (j)(g)|j, m, α〉z for some g ∈
SU(2). Now, the following bounding hold

〈c〉 ≤

∣∣∣∣∣∣
∑
m,jα

〈m, j, α|ξ|m + 1, jα〉〈m + 1, jα|R#n|m, jα〉

∣∣∣∣∣∣
≤

∑
m,jα

|〈m, j, α|ξ|m + 1, jα〉〈m + 1, jα|R#n|m, jα〉|

≤
∑
m,jα

|〈m + 1, jα|R#n|m, jα〉| . (16)

We show now that all bounds can be achieved by a suit-
able choice of the operator ξ compatible with constraints
(2). The first two bounds can indeed be achieved by
choosing the phases of the matrix elements 〈m, j, α|ξ|m+
1, jα〉 in such a way that they compensate the corre-
sponding phases of 〈m+1, jα|R#n|m, jα〉. The last bound
is achieved by just taking the moduli of the matrix ele-
ments 〈m, jα|ξ|m + 1, jα〉 to be 1. It remains to prove
that these choices are compatible with positivity. In or-
der to show this, let us write

〈m+1, jα|R#n|m, jα〉 = |〈m+1, jα|R#n|m, jα〉|eiχ(m+1,m,jα) .
(17)

Since only the elements on the first over-diagonal and
under-diagonal are involved, one can choose phases
θ(m, jα) in such a way that

χ(m + 1, m, jα) = θ(m, jα) − θ(m + 1, jα) , (18)

as the number of independent linear equations in Eq.
(18) is 2N − 1 while the unknown phases are 2N . Then
one can take

ξ =
∑
j,α

|e(j, α)〉〈e(j, α)| , (19)
where |e(j, α)〉 is the generalized Susskind-Glogower vec-
tor

|e(j, α)〉 =
j∑

m=−j

eiθ(m,jα)|m, j, α〉 . (20)

It is immediate that Eq. (19) represents a positive opera-
tor and by construction ξ produces a normalized POVM,
while achieving the bounding in Eq. (16)

Specifically, for a collection of identically prepared
mixed initial states, we have

〈c〉 =
∑

m,j,α

|〈m + 1, jα|R#n|m, jα〉|

=
∑

m,j,α

(r+r−)J ×

∣∣∣∣∣
∑

n

(
r+

r−

)n

〈j, m + 1, α|j, n, α〉#b〈j, n, α|j, m, α〉

∣∣∣∣∣
=

J∑
j=〈〈N/2〉〉

j∑
m=−j

dj(r+r−)J ×

∣∣∣∣∣
∑

n

(
r+

r−

)n

T (j)(g#b)m+1,nT (j)(g#b)
†
n,m

∣∣∣∣∣ . (21)

Notice that since we assumed that #n has no component
along the direction y, then g#b is just the rotation around

the axis y connecting the oriented z axis with #b, namely

T (g#b) = eiθJy for some θ, with Jy = 1
2

∑N
k=1 σ(k)

y .
The expression for the Wigner matrix elements

T (j)(g#b)lk is given by [12]

T (j)(g#b)lk =
∑

t

(−1)t

√
(j + l)!(j − l)!(j + k)!(j − k)!

(j + l − t)!(j − k − t)!(t − l + k)!t!
×

cos2j+l−k θ

2
sin2t−l+k θ

2
.

(22)

The explicit expression of Eq. (21) is very lengthy, and
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FIG. 1: The plot of 〈c〉 as a function of θ and r. The plots
correspond to systems of 10 qubits and 20 qubits respectively.

has been evaluated using symbolic calculus for J up to
21/2, namely for a total number of spins equal to 21.
The plot of the averaged cosine 〈c〉 as a function of θ and

r is represented in Fig. 1 and exhibits two interesting
intuitive features. The first is that the maximum versus
θ occurs for θ = π

2 , namely for qubits lying in the equa-
torial plane. The second is the improving figure of merit
versus the purity r. Equatorial pure qubits are optimal
for phase detection, however, the figure of merit is quite
stable around its maxima, still with N = 10 copies.
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FIG. 2: The logarithmic plots represent 2(1 − 〈c〉), where 〈c〉
is the averaged cosine, as a function of the number of spins
N , for θ = π

2
and for the following values of r: ! r = .7,

" r = .8, # r = .9, $ r = 1.

Fig. 2 shows how the averaged cosine 〈c〉 versus the
number of qubits N for equatorial states. Numerically,
for N → ∞ we find the asymptotic behavior 2(1−〈c〉) ∝
N−1. More precisely, for the Uhlman fidelity F in Eq. (8)
we find an asymptotic behavior saturating the Cramer-
Rao lower bound [13]. This gives a strict lower bound
for variance ∆φ2 valid for any estimate. For independent
copies, one has [7]

∆φ2 ≥
1

N
Tr[(∂ρ/∂φ)L]−1 (23)

where for each φ the operator L is defined by the identity

∂ρ/∂φ
.
=

1

2
(ρL + Lρ) . (24)

Notice that the bound holds for any estimate, whence re-
gardless the nature of the measurement (corresponding
to either joint or separable POVM’s). Since the estima-
tion is covariant, we can just consider φ = 0. A simple
evaluation shows that L = r cos θσy , and the bound is
then given by 1

N Tr[ρ0L2]−1 = 1
Nr2 cos2 θ , namely

∆φ2 ≥
1

N

1

r2 cos2 θ
. (25)

For small ∆φ2 one has approximately ∆φ2 ) 2(1−〈c〉).
In Fig. 3 we plot 2(1−〈c〉)N of our optimal estimation for
θ = 0 versus r for N = 16, 18, 20, against the Cramer-
Rao bound 1

r2 . From the comparison we see that our
estimation approaches the Cramer-Rao bound for large

The optimal POVM is of the covariant form

P (dφ) = UφξU†
φ

dφ

2π

with the generalized Susskind-Glogower vector
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The optimal POVM achieves the Quantum Cramer Rao bound:

where |e(j, α)〉 is the generalized Susskind-Glogower vec-
tor

|e(j, α)〉 =
j∑

m=−j

eiθ(m,jα)|m, j, α〉 . (20)

It is immediate that Eq. (19) represents a positive opera-
tor and by construction ξ produces a normalized POVM,
while achieving the bounding in Eq. (16)

Specifically, for a collection of identically prepared
mixed initial states, we have

〈c〉 =
∑

m,j,α

|〈m + 1, jα|R#n|m, jα〉|

=
∑

m,j,α

(r+r−)J ×

∣∣∣∣∣
∑

n

(
r+

r−

)n

〈j, m + 1, α|j, n, α〉#b〈j, n, α|j, m, α〉

∣∣∣∣∣
=

J∑
j=〈〈N/2〉〉

j∑
m=−j

dj(r+r−)J ×

∣∣∣∣∣
∑

n

(
r+

r−

)n

T (j)(g#b)m+1,nT (j)(g#b)
†
n,m

∣∣∣∣∣ . (21)

Notice that since we assumed that #n has no component
along the direction y, then g#b is just the rotation around

the axis y connecting the oriented z axis with #b, namely

T (g#b) = eiθJy for some θ, with Jy = 1
2

∑N
k=1 σ(k)

y .
The expression for the Wigner matrix elements

T (j)(g#b)lk is given by [12]

T (j)(g#b)lk =
∑

t

(−1)t

√
(j + l)!(j − l)!(j + k)!(j − k)!

(j + l − t)!(j − k − t)!(t − l + k)!t!
×

cos2j+l−k θ

2
sin2t−l+k θ

2
.

(22)

The explicit expression of Eq. (21) is very lengthy, and
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FIG. 1: The plot of 〈c〉 as a function of θ and r. The plots
correspond to systems of 10 qubits and 20 qubits respectively.

has been evaluated using symbolic calculus for J up to
21/2, namely for a total number of spins equal to 21.
The plot of the averaged cosine 〈c〉 as a function of θ and

r is represented in Fig. 1 and exhibits two interesting
intuitive features. The first is that the maximum versus
θ occurs for θ = π

2 , namely for qubits lying in the equa-
torial plane. The second is the improving figure of merit
versus the purity r. Equatorial pure qubits are optimal
for phase detection, however, the figure of merit is quite
stable around its maxima, still with N = 10 copies.
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N , for θ = π
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and for the following values of r: ! r = .7,

" r = .8, # r = .9, $ r = 1.

Fig. 2 shows how the averaged cosine 〈c〉 versus the
number of qubits N for equatorial states. Numerically,
for N → ∞ we find the asymptotic behavior 2(1−〈c〉) ∝
N−1. More precisely, for the Uhlman fidelity F in Eq. (8)
we find an asymptotic behavior saturating the Cramer-
Rao lower bound [13]. This gives a strict lower bound
for variance ∆φ2 valid for any estimate. For independent
copies, one has [7]

∆φ2 ≥
1

N
Tr[(∂ρ/∂φ)L]−1 (23)

where for each φ the operator L is defined by the identity

∂ρ/∂φ
.
=

1

2
(ρL + Lρ) . (24)

Notice that the bound holds for any estimate, whence re-
gardless the nature of the measurement (corresponding
to either joint or separable POVM’s). Since the estima-
tion is covariant, we can just consider φ = 0. A simple
evaluation shows that L = r cos θσy , and the bound is
then given by 1

N Tr[ρ0L2]−1 = 1
Nr2 cos2 θ , namely

∆φ2 ≥
1

N

1

r2 cos2 θ
. (25)

For small ∆φ2 one has approximately ∆φ2 ) 2(1−〈c〉).
In Fig. 3 we plot 2(1−〈c〉)N of our optimal estimation for
θ = 0 versus r for N = 16, 18, 20, against the Cramer-
Rao bound 1

r2 . From the comparison we see that our
estimation approaches the Cramer-Rao bound for large
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FIG. 3: The logarithmic plot of 2N(1 − 〈c〉) vs r, for N =
16, 18, 20 and θ = 0. The line on the bottom represents the
bound given by the Cramer-Rao inequality, namely 1/r2

N . Notice that according to recent studies of theoreti-
cal statistics [14], there should exist a separable strategy
(such as an adaptive scheme) which is not necessarily co-
variant, nevertheless it would be able to achieve the same
Cramer-Rao bound asymptotically: such non covariant
schemes, e. g. homodyne-based estimation of the phase,
will be the subject of further studies.

In conclusion, we have presented the optimal measure-
ment for phase estimation on N qubits all prepared in
the same arbitrary mixed state. The Uhlman fidelity
saturates the Cramer-Rao bound for this problem, con-
firming the optimality of the measurement. The optimal
estimation is achieved for equatorial qubits and generally
the fidelity is improving with purity. The specific form of
the optimal POVM in terms of the generalized Susskind-
Glogower vector in Eqs. (20) and (13) suggests possible
physical implementations in terms of a generalized mul-
tipartite Bell measurement.
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r: purity

θ: tilt angle



• Super-broadcasting                                                    

• Efficiently universally programmable measuring 
apparatuses 

• Optimal transmission of reference frames         

• Quantum calibration of measuring apparatuses         

• Optimal phase estimation for mixed states 

Summary
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