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Definition of the problem

Commitment: provides with a piece of evidence that she
has chosen a bit b = 0, 1 which she commits to him.

Opening: Later will open the commitment, revealing b to ,
and proving that it is indeed the committed bit with the evidence

in Bob’s possession, i. e. will check the commited bit.
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Definition of the problem

Therefore, Alice and Bob should agree on a protocol which
satisfies simultaneously the three requirements:

(1) The evidence should be concealing, namely should not be
able to retrieve b before the opening.

(2) The evidence should be binding, namely should not be able
to change b after the commitment.

(3) The evidence should be verifiable, namely must be able to
check b unambiguously against the evidence in his possession.

Both parties are supposed to possess unlimited technology,
and the protocol is said unconditionally secure if neither Alice
nor Bob can cheat with significant probability of success as a
consequence of physical laws.
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Commitment step

prepares the Hilbert space H with the anonymous state

|ϕ〉 ∈ H. He then sends H to .

modulates the value b of the committed bit on the

anonymous state |ϕ〉 and sends the output back to .
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The most general bit modulation

Bit modulation: QO parametrized by b = 0, 1.

To make the protocol concealing and at the same time verifiable,

the modulation is a choice between two ensembles of QO’s {M
(b)
j }

for b = 0, 1 from S(H) to S(K).

− K ⊇ H: extending modulation, (e. g. adding decoy systems).

− K ⊆ H: restricting modulation

− j: secret parameter known only to parametrizing the choice of

different forms for the modulation.
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The space of secret parameters

has always the option of choosing j by preparing the

secret-parameter space P in the state |j〉 and performing M
(b) on

H ⊗ P:

M
(b) =

∑

j

M
(b)
j ⊗ Pj ,

where Pj represents the orthonormal projection

Pj(ρ) = |j〉〈j|ρ|j〉〈j|.

The actually performed QO depends on the state preparation ρP

that choses for the secret-parameter space P:

TrP[M(b)( |ϕ〉〈ϕ| ⊗ ρ
(b)
P

)] =
∑

j

M
(b)
j (|ϕ〉〈ϕ|) 〈j|ρ

(b)
P
|j〉

︸ ︷︷ ︸

p
(b)
j

.
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Reduction to trace-preserving

The quantum operations M
(b)
j are generally trace-decreasing, i.

e. they may be achieved with nonunit probability.

In terms of the Kraus decomposition

M
(b)
j (ρ) =

∑

i

E
(b)
ji ρE

(b)
ji

†,

this means that
∑

i

E
(b)
ji

†E
(b)
ji ≤ I.

When doesn’t succeed in achieving the map, the protocol is

aborted. Abortion must be declared by !

A trace decreasing map is equivalent to a trace preserving one
with additional “outcomes” i.
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Reduction to unitary

has unlimited technology, whence she can always achieve

E
(b)
ji knowingly, i. e. she has the option of achieving each

trace-preserving map M
(b)
j as a perfect pure measurement.

This can be done as follows

(in the following we will temporarily drop the indices b and j).
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Reduction to unitary

A trace-preserving QO can be written in the form

M(ρ) = TrF[EρE†], E =
∑

i

Ei ⊗ |i〉 ∈ B(H,K ⊗ F) isometry.

Unitary embedding of H into K ⊗ F ' H ⊗ A:

E = U(IH ⊗ |ω〉A),

we have
M(ρ) = TrF[U(ρ ⊗ |ω〉〈ω|A)U †],

namely prepares the ancilla (+decoy) in the state |ω〉 and
then performs a complete von Neumann measurement on F,
with outcome i, which she keeps secret.
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Reduction to unitary

Therefore achieves the trace-preserving QO
M(ρ) =

∑

i EiρE
†
i knowingly by:

(1) preparing an ancilla/decoy state |ω〉A ∈ A,

(2) performing a unitary transformation U on H ⊗ A,

(3) performing a complete von Neumann measurement on F, with
K ⊗ F ' H ⊗ A and outcome i,

(4) sending K to .

Notice that we can have both situations H ⊆ K and H ⊇ K,
depending on the choice of A and F.
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The BIG unitary

Now, if we consider also the preparation of the secret
parameter space P, the bit commitment step can be achieved
as follows:

∑

j

p
(b)
j M

(b)
j (|ϕ〉〈ϕ|) =

∑

j

p
(b)
j E

(b)
ji |ϕ〉〈ϕ|E

(b)
ji

†

=
∑

j

p
(b)
j TrF[U

(b)
j (|ϕ〉〈ϕ| ⊗ |ω〉〈ω|A)U

(b)
j

†] =

= TrF⊗P[U (b)(|ϕ〉〈ϕ| ⊗ |ω〉〈ω|A ⊗ ρP)U (b)†],

where |ω〉A and ρP are independent on j and b, and

U (b) =
∑

j

U
(b)
j ⊗ |j〉〈j| unitary over H ⊗ A ⊗ P ' K ⊗ F ⊗ P.
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The BIG unitary

However, for aborting protocols we have:

∑

j

p
(b)
j M

(b)
j (|ϕ〉〈ϕ|)

=
∑

j

p
(b)
j TrF[(IK ⊗ Σ

(b)
jF )U

(b)
j (|ϕ〉〈ϕ| ⊗ |ω〉〈ω|A)U

(b)
j

†],

where Σ
(b)
jF denotes an orthonogonal projector on a subspace of

F, whose rank generally depends on j and b.

From now we focus attention on the simplest case of non
aborting protocols.
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Opening step

In a perfectly verifiable protocol tells b along with the secret

parameter j and the secret outcome i to , who verifies the

pure state E
(b)
ji |ϕ〉.

However, since the local QO’s on K and F ⊗ P commute, has

the possibility of: (1) first sending K to ; (2) then performing
the measurement on F ⊗ P at the very last moment of the
opening. This is the basis of the EPR cheating attack!

However, strictly trace-decreasing QO—i. e. aborting
protocols—pose limitations to Alice’s EPR cheating, since Alice
cannot delay the abortion of the protocol up to the opening, but
she must declare it at the commitment.
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Simplifying

Since both secret parameters j and i can be conveniently

measured by , they can be treated on equal footings as a
single parameter J ≡ (j, i).

The two maps are then:

∑

j

p
(b)
j M

(b)
j (|ϕ〉〈ϕ|) =

∑

J

E
(b)
J |ϕ〉〈ϕ|E

(b)
J

†,

where E
(b)
J

.
=

√

p
(b)
j Eji ∈ B(H,K).
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The principle of delayed reading

For non aborting protocols we can reduce a multistep
commitment to a single step one, using the principle of delayed
reading.

Principle: Any conditioned QO on H can be regarded as
unconditioned on H ⊗ N followed by a measurement on N.

1) Bob is requested to make a different QO, say {N(x)}, depending
on the outcome x of previous Alice’s QO.

2) Bob instead automatizes the conditioned QO, using the
un-conditioned one on H ⊗ N:

N =
∑

x

N(x) ⊗ |x〉〈x|

3) When Bob will measure N, the actual QO N(x) will result.
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Reduction to one commitment step

If the knowledge of x is needed only at the opening (non
aborting protocols), then the measurement |x〉〈x| can be
delayed up to then.

Again, each QO can be achieved knowingly, by means of a
pure measurement.

In this way we have a sequence of interlaced unitary operators,

say . . . U ′(b)
A UBU

(b)
A .

For UB ∈ {Ul}, Bob can use instead the unitary
UB =

∑

l Ul ⊗ |l〉〈l|. This is equivalent to another
anonymous-state preparation.

In conclusion, the whole multi-step protocol is equivalent to a
single-step one, with larger spaces H, K, A, F, and P.
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Commitment: summary

Classification of protocols ≡ classifications of QO extensions

Symbol Hilbert space Symbol Hilbert space

H Anonymous state K Output

A Preparation ancilla/decoy P Secret parameter

F Measurement ancilla R Bob cheating space

Rng(Σ) Range of Σ (abortion)

The Church of Larger Hilbert
Space!
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Cheating!

Pre and post-cheating

post-cheating: can try to cheat by performing a unitary V on
F ⊗ P. This will not change the QO, however, it changes the
Kraus decomposition:

{E
(b)
J } → {E

(b)
J (V )} (same cardinality)

with
E

(b)
J (V ) =

∑

L

E
(b)
L VLJ , VLJ = 〈L|V |J〉.
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Cheating!

The probability that can cheat successfully in pretending
having committed b = 1, whereas she committed b = 0 instead,
is given by

PA
c = max

V

∫

dµ(ϕ)PA
c (V, ϕ),

where

PA
c (V, ϕ) =

∑

J

|〈ϕ|E
(0)
J (V )†E

(1)
J |ϕ〉|2

∣
∣
∣

∣
∣
∣E

(1)
J ϕ

∣
∣
∣

∣
∣
∣

2 .
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Cheating!

can try to cheat by making the best discrimination between

the two maps M(b) =
∑

j p
(b)
j M

(b)
j .

Instead of preparing |ϕ〉 ∈ H prepares an entangled state

|ϕ〉 ∈ H ⊗ R and sends only H to .

Cheating probability

PB
c −

1

2
≤ max

|ϕ〉∈H⊗R

1

4

∣
∣
∣

∣
∣
∣[M(1) − M(0)] ⊗ IR(|ϕ〉〈ϕ|)

∣
∣
∣

∣
∣
∣
1
≤

1

4

∣
∣
∣

∣
∣
∣M(1) − M(0)

∣
∣
∣

∣
∣
∣
cb
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Perfectly concealing protocols

∣
∣
∣

∣
∣
∣M(1) − M(0)

∣
∣
∣

∣
∣
∣
cb

= 0.

Then one has M(1) = M(0)! Therefore, the two Kraus are
connected via a unitary transformation V on F ⊗ P.

It follows that can cheat with probability one!

The protocol is not binding!
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Approximate concealing

∣
∣
∣

∣
∣
∣M(1) − M(0)

∣
∣
∣

∣
∣
∣
cb

= ε,

where generally ε infinitesimal with dim(K)−1.

Problem: is it true that then 1 − PA
c is infinitesimal with ε?

A affermative answer would provide the impossibility proof for
non aborting protocols.
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Bounds for cheating probabilities

PA
c (V, ϕ) ≥

√

1 −
∑

J

∣
∣
∣

∣
∣
∣E

(0)
J (V ) − E

(1)
J

∣
∣
∣

∣
∣
∣

2
,

∣
∣
∣

∣
∣
∣M(1) − M(0)

∣
∣
∣

∣
∣
∣
cb
≤

√
∑

J

∣
∣
∣

∣
∣
∣E

(0)
J (V ) − E

(1)
J

∣
∣
∣

∣
∣
∣

2
.

However, is it true that there is a V such that

∑

J

∣
∣
∣

∣
∣
∣E

(0)
J (V ) − E

(1)
J

∣
∣
∣

∣
∣
∣

2
≤ ω

(∣
∣
∣

∣
∣
∣M(1) − M(0)

∣
∣
∣

∣
∣
∣
cb

)

,

with ω(ε) vanishing with ε?
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Bounds for cheating probabilities

For M(1) random unitary, i. e. E
(1)
J =

√

p
(1)
J U

(1)
J we have

[d = dim(H)]

PA
c =

1

d + 1
+

1

d(d + 1)
max

V

∑

J

∣
∣
∣
∣
∣

∑

L

Tr
(

U
(1)
J

†E
(0)
L

)

VJL

∣
∣
∣
∣
∣

2

.

An upper bound is given by

1

d + 1
≤ PA

c ≤
1

d + 1
+

1

d(d + 1)
||Z||1 ,

Z(JL)K =Tr[U
(1)
K

†E
(0)
J ] Tr[U

(1)
K E

(0)
L

†]
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Conclusion

There is no general impossibility proof.

From the general classification we still don’t know if there are
proved secure protocols.

Bound for cheating probabilities such that:

⇒ if violated for all choices of {p(b)
j }, it will provide a secure

perfect-verification non-aborting protocol;

⇒ if proved always valid, it would provide an impossibility proof for
non-aborting perfect-verification protocols, but we still may have
unconditionally secure protocols in the complementary class, e.
g. for aborting protocols.
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Missed things in the imp. proof

(1) The bit is encoded on maps instead of states.

(2) The spaces H and K are not isomorphic.

(3) There are aborting protocols: this limits EPR cheating.

(4) probability of cheating is not a fidelity.

(5) There is no proved continuity argument between concealing
and binding.

(6) No probability can be assumed for any secret parameter.

(7) Reduction to a single step holds only for non aborting protocols.

(8) . . .
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