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Bell’s theorem is a fundamental result in quantum mechanics: it discriminates between quantum

mechanics and all theories where probabilities in measurement results arise from the ignorance of

pre-existing local properties. We give an extremely simple proof of Bell’s inequality; a single

figure suffices. This simplicity may be useful in the unending debate over what exactly the

Bell inequality means, because the hypotheses underlying the proof become transparent. It is

also a useful didactic tool, as the Bell inequality can be explained in a single intuitive lecture.
VC 2013 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4823600]

I. INTRODUCTION

Einstein had a dream. He believed quantum mechanics
was an incomplete description of reality1 and that its comple-
tion might explain the troublesome fundamental probabilities
of quantum mechanics as emerging from some hidden
degrees of freedom—probabilities would arise because of
our ignorance of these “hidden variables.” His dream was
that probabilities in quantum mechanics might turn out to
have the same meaning as probabilities in classical thermo-
dynamics, where they arise from our ignorance of the micro-
scopic degrees of freedom (e.g., the position and velocity of
each gas molecule). He wrote, “the statistical quantum
theory would, within the framework of future physics, take
an approximately analogous position to the statistical
mechanics within the framework of classical mechanics.”2

A decade after Einstein’s death, John Bell shattered this
dream.3–5 Any completion of quantum mechanics with hid-
den variables would be incompatible with relativistic causal-
ity! The essence of Bell’s theorem is that quantum
mechanical probabilities cannot arise from the ignorance of
local pre-existing variables. In other words, if we want to
assign pre-existing (but hidden) properties to explain proba-
bilities in quantum measurements, these properties must be
nonlocal. An agent with access to the nonlocal variables
could transmit information instantly to a distant location,
thus violating relativistic causality and awakening the nasti-
est temporal paradoxes.6

(We use “local” here in Einstein’s connotation: locality
implies that superluminal communication is impossible. In
contrast, often quantum mechanics is deemed “nonlocal” in
the sense that correlations among properties can propagate
instantly, thanks to entanglement.1 This “quantum non-
locality” cannot be used to transfer information instantly,
because mere correlations cannot be used in that way. In the
remainder of this paper, we will use the terms local and non-
local in Einstein’s sense, and not in the sense of quantum
correlations.)

Modern formulations of quantum mechanics must incor-
porate Bell’s result at their core. Either they refuse the idea
that measurements uncover pre-existing values, or they must
make use of nonlocal properties. In the latter case, they must
also introduce some censorship mechanism to prevent the
use of hidden variables to transmit information. An example
of the first formulation is the conventional Copenhagen
interpretation of quantum mechanics, which (thanks to
complementarity) states that the values of properties arise
from the interaction between the quantum system and the

measurement apparatus, and so are not pre-existing:
“unperformed experiments have no results.”7 An example of
the second formulation is the de Broglie-Bohm interpretation
of quantum mechanics, which assumes that particle trajecto-
ries are hidden variables (they exist independently of posi-
tion measurements).

Bell’s result is at the core of modern quantum mechanics,
as it elucidates the theory’s precarious co-existence with rel-
ativistic causality; it has spawned an impressive amount of
research. However, it is often ignored in basic quantum
mechanics courses because traditional proofs of Bell’s theo-
rem are rather cumbersome and often overburdened by phil-
osophical considerations. Here we give an extremely simple
graphical proof of Mermin’s version8,9 of Bell’s theorem.
The simplicity of the proof is key to clarifying all of the the-
orem’s assumptions, the identification of which has gener-
ated extensive debate in the literature (e.g., see Ref. 10).
Here, we focus on simplifying the proof. We refer the reader
who wants to gain an intuition for the quantum part to Refs.
11 and 12, and to Ref. 13 for a proof without probabilities.

II. BELL’S THEOREM AND ITS ASSUMPTIONS

Let us define a “local” theory as one that implies that the
outcomes of an experiment on a system are independent of
the actions performed on a different system that has no
causal connection with the first. (As stated previously, this
refers to locality in Einstein’s connotation of the word—the
outcomes of the experiment cannot be used to receive infor-
mation from whoever acts on the second system, if it has no
causal connection to the first.) For example, the temperature
of my room is independent of whether you choose to wear a
purple tie today. Einstein’s relativity provides a stringent
condition for causal connections: if two events are outside
each others’ light cones there cannot be any causal connec-
tion between them.

Let us define as “counterfactual-definite”14,15 a theory
whose experiments uncover properties that are pre-existing.
In other words, in a counterfactual-definite theory it is mean-
ingful to assign a property to a system (e.g., the position of
an electron) independent of whether the measurement of this
property is carried out. (Sometime counterfactual definite-
ness is also called “realism,” but this philosophically laden
term can lead to misconceptions.)

Bell’s theorem can be phrased as “quantum mechanics
cannot be both local and counterfactual-definite.” A logically
equivalent statement is “quantum mechanics is either nonlo-
cal or non-counterfactual-definite.”
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To prove this theorem, Bell derived an inequality (involv-
ing correlations of measurement results) that is satisfied by
all theories that are both local and counterfactual-definite.
He then showed that quantum mechanics violates this in-
equality, and hence cannot be local and counterfactual-
definite.

It is important to note that the Bell inequality can also be
derived using weaker hypotheses than Einstein locality and
counterfactual definiteness. Such a proof is presented in
Appendix A, where Einstein locality is relaxed to “Bell
locality” and counterfactual definiteness is relaxed to
“hidden variable models.” However, from a physical point of
view, the big impact of Bell’s theorem is to prove the incom-
patibility of quantum mechanics with local counterfactual-
definiteness, so we will stick to these hypotheses in the main
text. (See also Appendix B for a schematic formalization of
all these results.)

Two additional hypotheses that underly Bell’s theorem are
often left implicit. The first is that our choice of which
experiment to perform must be independent of the properties
of the object to be measured. This hypothesis is sometimes
called “freedom of choice” or “no super-determinism.”4 If
this hypothesis were not true, then, for example, we might
falsely conclude that all objects are red when in fact, we are
somehow being prevented from choosing to measure the
color of non-red objects. The second hypothesis is that future
outcomes of an experiment must not influence which appara-
tus settings were previously chosen.16 Although apparatus
settings will clearly influence the outcomes of experiments,
we assume that the reverse does not occur, as a matter of
simple causality. This hypothesis is sometimes called
“measurement independence.” Both of these hypotheses are
usually left implicit because science would be impossible
without them.

All experiments performed to date (e.g., see Refs. 17–19)
have shown that the Bell inequalities are violated, suggesting
that our world cannot be both local and counterfactual-
definite. However, it should be noted that no experiment up
until now has been able to test the Bell inequalities with
complete rigor, because additional assumptions are required
to take care of experimental imperfections. These assump-
tions are all quite reasonable, so that only conspiratorial
alternatives to quantum mechanics have yet to be ruled out
(where experimental imperfections are fine-tuned to the
properties of the objects,20 so they violate “freedom of
choice”). A number of experimental groups are currently
pursuing the definitive Bell inequality experiment.

III. PROOF OF BELL’S THEOREM

We consider the version of the Bell inequality proposed
by Preskill,9 following Mermin’s suggestion.8 Suppose we
have two objects that are identical: they have same proper-
ties and same values of all properties. Suppose also that the
values of these properties are predetermined (counterfactual
definiteness) and not generated by their measurement, and
that the determination of the property values of one object
will not influence any property of the other object
(locality).

We will need only three properties, A, B, and C, which
can each take the two values 0 and 1. For example, if the
objects are coins then A¼ 0 might mean that the coin is gold
and A¼ 1 that the coin is copper (property A: material); B¼ 0
means that the coin is shiny and B¼ 1 that it is dull (property

B: texture); and C¼ 0 means that the coin is large and C¼ 1
that it is small (property C: size).

Suppose that I do not know any of the property values,
because the two coins are a gift in two wrapped boxes.
However, I do know that the gift consists of two identical
coins. They could be two gold, shiny, small coins (A¼ 0,
B¼ 0, C¼ 1), or two copper, shiny, large coins (1, 0, 0), or
two copper, dull, large coins (1, 1, 0), and so on. I do know
that the property values “exist” (that is, they are
counterfactual-definite and predetermined even if I cannot
see them directly) and they are local (so acting on one box
will not change any property of the coin in the other box).
These are quite reasonable assumptions for two coins. My ig-
norance of the property values is expressed through probabil-
ities that represent either my expectation of finding a value
(Bayesian view), or the result of performing many repeated
experiments with boxes and coins and averaging over some
possibly hidden variable, typically indicated with the letter
k,4 that determines the value (frequentist view).7 For exam-
ple, I might say that the gift bearer will give me two gold
coins with a 20% probability (he is usually stingy, but not
always).

Bell’s inequality concerns the correlation among measure-
ment outcomes of the property values. Call PsameðA;BÞ the
probability that the properties A of the first object and B of
the second have the same value: A and B are both 0 (the first
coin is gold and the second is shiny) or they are both 1 (the
first is copper and the second is dull). For example,
PsameðA;BÞ ¼ 1=2 would tell me that there is a 50% chance
that A¼B (namely, they are both 0 or both 1). Since the two
coins have the same counterfactual-definite values, this also
implies that there is a 50% chance that I get two gold shiny
coins or two copper dull coins. Note that the fact that the two
coins are identical (i.e. they possess properties with the same
values) means that PsameðA;AÞ ¼ PsameðB;BÞ ¼ PsameðC;CÞ
¼ 1; if one is gold so is the other, and so on.

Bell’s inequality assumes9 that three, arbitrary two-valued
properties A, B, C satisfy counterfactual definiteness and lo-
cality, and that we have two objects such that PsameðX;XÞ ¼ 1
for X¼A, B, C (i.e., the two objects have the same prop-
erty values). Under these conditions Bell’s inequality
states that

PsameðA;BÞ þ PsameðA;CÞ þ PsameðB;CÞ � 1: (1)

The proof of this inequality is given graphically in Fig. 1 and
explained in the caption. The inequality says that the sum of
the probabilities that the two properties have the same value,
if I consider, respectively, A and B, A and C, and B and C,
must be larger than 1. This conclusion is also intuitively
clear: since the two coins have the same properties, the sum
of the probabilities that the coins are gold and shiny, copper
and dull, gold and large, copper and small, shiny and large,
and dull and small must be greater than 1 because all eight
possible three-value combinations have been counted, some
more than once. Figure 2 shows how these eight combina-
tions correspond to the different areas in the Venn diagrams
of Fig. 1.

This result is true, of course, only if the two objects have
the same counterfactual-definite properties and the measure-
ment of one does not affect the outcome of the other. If we
lack counterfactual-definite properties we cannot infer that
the first coin is shiny only because we measured the second
to be shiny, even if we know that the two coins have the
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same property values—without counterfactual definiteness
we cannot even speak of the first coin’s texture unless we
measure it. Moreover, if a measurement of the second coin’s
texture can change that of the first coin (nonlocality), we
again cannot infer the first coin’s texture from a measure-
ment of the second. Thus, even if we know that the textures
of the coins were initially the same, the measurement on the
second may change the texture of the first.

To prove Bell’s theorem, we now provide a quantum sys-
tem that violates the above inequality. Consider two two-
level systems (qubits) in the joint entangled state jUþi ¼
ðj00i þ j11iÞ=

ffiffiffi
2
p

and consider the two-valued properties A,
B, and C defined by the following three sets of eigenstates

A :
ja0i � j0i
ja1i � j1i;

B :
jb0i �

1

2
j0i þ

ffiffiffi
3
p

2
j1i

jb1i �
ffiffiffi
3
p

2
j0i � 1

2
j1i;

8>>><
>>>:

8>>><
>>>:

C :
jc0i �

1

2
j0i �

ffiffiffi
3
p

2
j1i

jc1i �
ffiffiffi
3
p

2
j0i þ 1

2
j1i:

(2)

8>>><
>>>:

It is easy to check that the states within each pair are orthog-
onal. It is also easy to check that

jUþi¼ja0a0iþja1a1iffiffiffi
2
p ¼jb0b0iþjb1b1iffiffiffi

2
p ¼jc0c0iþjc1c1iffiffiffi

2
p ;

(3)

Fig. 1. Proof of Bell inequality (1) using areas to represent probabilities. (a) The dashed area represents the probability PsameðA;BÞ that the values of property

A of the first object and B of the second are equal (both 1 or both 0). The white area represents the probability PdiffðA;BÞ that they are different; the entire large

circle has area 1 ¼ PsameðA;BÞ þ PdiffðA;BÞ. (b) The gray area represents the probability that the values of A and C are equal, and the non-gray area represents

the probability that A and C are different. If the value of A of the first object is different from both the values of B and C of the second (dotted area), then B and

C of the second object must be the same. (c) Therefore, the probability that B and C are the same must be larger than (or equal to) the dotted area. (d) The quan-

tity PsameðA;BÞ þ PsameðA;CÞ þ PsameðB;CÞ is hence larger than (or equal to) the sum of the dashed þ gray þ dotted areas, which is in turn larger than

(or equal to) the full circle of area 1. This proves the Bell inequality (1). The reasoning fails if we do not employ counterfactual-definite properties, for example

if complementarity prevents us from assigning values to both properties B and C of the second object. It also fails if we employ nonlocal properties; for exam-

ple, if a measurement of the values of B on an object changes the value of A of the other object.

Fig. 2. Explicit depiction of the property values whose probabilities are repre-

sented by the areas of the Venn diagrams in Fig. 1. Each possible set of prop-

erty values is represented by a triplet of numbers (A, B, C) that indicates the

(counterfactual-definite, local) values of the properties A, B, and C for both

objects. Note that in the dotted area A must be different from both B and C, so

that B and C must be equal there (the values of B and C are also equal in the

intersection between the two smaller circles, but that is irrelevant to the proof).
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so that the two qubits have the same values for all properties;
that is, PsameðA;AÞ ¼ PsameðB;BÞ ¼ PsameðC;CÞ ¼ 1, so that
a measurement of the same property on both qubits always
yields the same outcome, both 0 or both 1.

We are now ready to calculate the quantity on the left-
hand side of Bell’s inequality (1). To calculate any one of
the three terms, we write the state jUþi in terms of the corre-
sponding eigenstates of the two individual qubits. For exam-
ple, we can find the value of PsameðA;BÞ if we write

jUþi¼ ja0iðjb0iþ
ffiffiffi
3
p
jb1iÞþ ja1iðj

ffiffiffi
3
p
jb0i� jb1iÞ

2
ffiffiffi
2
p : (4)

The probability of obtaining 0 for both properties is then the
square modulus of the coefficient of ja0ijb0i, namely
j1=2

ffiffiffi
2
p
j2 ¼ 1=8, while the probability of obtaining 1 for

both is the square modulus of the coefficient of ja1ijb1i,
which is again 1/8. Hence, PsameðA;BÞ ¼ 1=8þ 1=8 ¼ 1=4.
Analogously, we find that PsameðA;CÞ ¼ 1=4 and PsameðB;CÞ
¼ 1=4 by expressing the state as

jUþi ¼ ja0iðjc0i þ
ffiffiffi
3
p
jc1iÞ � ja1iðj

ffiffiffi
3
p
jc0i � jc1iÞ

2
ffiffiffi
2
p (5)

and

jUþi ¼ ðjb0i þ
ffiffiffi
3
p
jb1iÞðjc0i þ

ffiffiffi
3
p
jc1iÞ � ð

ffiffiffi
3
p
jb0i � jb1iÞð

ffiffiffi
3
p
jc0i � jc1iÞ

4
ffiffiffi
2
p ; (6)

respectively. Summarizing, we have found

PsameðA;BÞ þ PsameðA;CÞ þ PsameðB;CÞ ¼
3

4
< 1; (7)

which violates Bell’s inequality (1).
This proves Bell’s theorem: all theories that are both local

and counterfactual-definite must satisfy inequality (1), which
is violated by quantum mechanics. Therefore, quantum
mechanics cannot be a local counterfactual-definite theory; it
must either be non-counterfactual-definite (as in the
Copenhagen interpretation) or nonlocal (as in the de Broglie-
Bohm interpretation).21
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APPENDIX A: HIDDEN VARIABLE MODELS

This appendix is addressed only to more advanced readers.
In the spirit of the original proof of Bell’s theorem,4,22 one
can relax both the “counterfactual definiteness” and the
“Einstein locality” hypotheses somewhat. In fact, instead of
supposing that there are some pre-existing properties of the
objects (counterfactual definiteness), we can suppose that the
properties are not completely pre-determined, but that a hid-
den variable k exists and the properties have a probability
distribution that is a function of k. The “hidden variable
model” hypothesis is weaker than counterfactual definite-
ness. If the properties are pre-existing, then their probability
distribution in k is trivial: there is a value of k that deter-
mines uniquely the property, e.g., a value k0 such that the
probability Piða ¼ 0jA; k0Þ ¼ 1 and hence Piða ¼ 1jA; k0Þ
¼ 0, so it is certain that property A for object i has value
a¼ 0 for k¼ k0.

We can also relax the “Einstein locality” hypothesis by
simply requiring that the probability distributions of mea-
surement outcomes factorize (“Bell locality”4,22,23). Call

Pðx; x0jX;X0; kÞ the probability distribution (due to the hid-
den variable model) that the measurement of the property
X on the first object gives result x and the measurement
of X0 on the second gives x0, where X;X0 ¼ A;B;C denote
the three two-valued properties A, B, and C. By defini-
tion, “Bell locality” is the property that the probability
distributions of the properties of the two objects factorize,
namely

Pðx; x0jX;X0; kÞ ¼ P1ðxjX; kÞP2ðx0jX0; kÞ: (A1)

The factorization of the probability means that the probabil-
ity of seeing some value x of the property X for object 1 is in-
dependent of which property X0 one chooses to measure and
what result x0 one obtains on object 2 (and vice-versa). The
“Bell locality” condition (A1) is implied by, and hence
weaker than, Einstein locality. In fact, Einstein locality
implies that the measurement outcomes at one system cannot
be influenced by the choice of which property is measured
on a second, distant system. So the probability of the out-
comes of the first system P1 must be independent of the
choice of the measured property of the second system X0,
namely P1ðxjX;X0; kÞ ¼ P1ðxjX; kÞ. The same reasoning
applies to the second system, which leads to condition (A1).

Following Ref. 22, we now show that a Bell-local, hidden
variable model, together with the requirement that the two
systems can have identical property values, implies counter-
factual definiteness. This means that we can replace
“counterfactual definiteness” with “hidden variable model”
in the above proof of Bell’s theorem.

If two objects have the same property values, then
PsameðX;XÞ ¼ 1 so the probability that a measurement of the
same property X on the two objects gives opposite results
(say, x¼ 1 and x0 ¼ 0) is zero. Written as a formula we have

X
k

Pðx ¼ 1; x0 ¼ 0jX;X; kÞ pðkÞ ¼ 0; (A2)

where the
P

k emphasizes that we are averaging over the
hidden variables (since they are hidden): p(k) is the probabil-
ity distribution of the hidden variable k in the initial (joint)
state of the two systems. Note that in Eq. (A2) we are
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measuring the same property X on both objects but we are
looking for the probability of obtaining opposite results
x0 6¼ x. Using the Bell locality condition (A1), the probability
factorizes so Eq. (A2) becomesX

k

P1ðx ¼ 1jX; kÞP2ðx0 ¼ 0jX; kÞ pðkÞ ¼ 0: (A3)

Since P1, P2, and p are probabilities, they must be positive or
zero. Consider the values of k for which p(k) > 0. Then the
above sum can be zero only if either P1 or P2 is zero; that is,
if P1ðx ¼ 1jX; kÞ ¼ 0 (which implies that X has the predeter-
mined value x¼ 0) or if P2ðx0 ¼ 0jX; kÞ ¼ 0 (which means
that X has predetermined value x0 ¼ 1). We remind the
reader that counterfactual definiteness means that PiðxjX; kÞ
is either 0 or 1—it is equal to 0 if the property X of the ith
object does not have the value x, and it is equal to 1 if it does
have the value x. We have, hence, shown that Eq. (A3)
implies counterfactual definiteness for property X: its value
is predetermined for one of the two objects.

Summarizing, if we assume that a Bell-local hidden vari-
able model admits two objects that have the same values of
their properties, then we can prove counterfactual definite-
ness. This means that we can relax the “counterfactual defi-
niteness” and “Einstein locality” hypotheses in the proof of
Bell’s theorem, replacing them with the “existence of a hid-
den variable model” and with “Bell locality” respectively, so
that Bell’s theorem takes the meaning that “no Bell-local
hidden variable model can describe quantum mechanics.”
The hypothesis that two objects can have the same values for
the properties is implicit in the fact that such objects exist in
quantum mechanics; see Eq. (3). Therefore, if we want to
use a hidden variable model to describe quantum mechanics
(as in the de Broglie-Bohm interpretation), this model must
violate Bell locality. Otherwise, if we want to maintain Bell
locality we cannot use a hidden variable model (as in the
Copenhagen interpretation).

APPENDIX B: SUMMARY OF THE HYPOTHESES

AND LOGIC OF BELL’S THEOREM

We have given two different proofs of the Bell inequality,
based on different hypotheses. In this appendix we summa-
rize the logic behind the Bell inequality proofs.

The hypotheses we used (rigorously defined above) were:

(A) “Counterfactual Definiteness”
(B) “Einstein locality”
(C) “No super-determinism”
(D) “Measurement independence”
(A0) “Hidden variable model,” implied by (A) and by the

fact that systems with the same property values exist
(see Appendix A)

(B0) “Bell locality,” implied by (B) (see Appendix A)

In the main text we have proven (Fig. 1) the following
theorem:

ðAÞAND ðBÞAND ðCÞAND ðDÞ ) Bellinequality

) NOTQM; (B1)

where by “NOT QM” we mean that quantum mechanics (QM)
violates the Bell inequality and is, hence, incompatible with
it. Using the fact that “X AND Y ) NOT Z” is equivalent to
“Z ) NOT X OR NOT Y” (modus tollens), we can state the
above theorem equivalently as

QM) NOT ðAÞ OR NOT ðBÞ OR NOT ðCÞ OR NOT ðDÞ:
(B2)

Since one typically assumes that both (C) and (D) are true,
they can be dropped and the theorem can be written more
compactly as

QM) NOT ðAÞORNOT ðBÞ: (B3)

That is (assuming “no super-determinism” and “measurement
independence”) quantum mechanics implies that either
“counterfactual definiteness” or “Einstein locality” must be
dropped. This is the most important legacy of Bell.

We have also seen that the hypotheses (A) and (B) can be
weakened somewhat, so that the Bell inequality can also be
derived using only (A0) and (B0). That is, we can prove (see
Appendix A) that

ðA0ÞAND ðB0ÞAND ðCÞAND ðDÞ ) Bellinequality

) NOTQM: (B4)

In other words (assuming “no super-determinism” and
“measurement independence”), quantum mechanics is in-
compatible with Bell-local hidden variable models.
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