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Introduction

It has been shown by M. Jimbo and T. Miwa [1] in a section of
this book that the Bicklund groups (i.e. the groups of transformations
of solutions) for soliton equations are infinite dimensional Lie groups
whose Lie algebras of infinitesimal generators are Kac-Moody algebras
of infinite-order differential operators, called vertex operators. They
have also shown that if one realizes Lhe space ol the complex polyno-
mial algebra in terms of a Fock space of charged Permions, writing the
differential operators 1n terms of Fermi operators, Lthe soliton equations
become nothing but the defining differential equations of the group orbil
of the highest weight vector in an infinite dimensional Fock space.

We will show that this algebraic treatment of soliton equations has
a4 nice gquantum mechanical interpretation: the solutions of the soliton
equations can be viewed ns quantum coherent states of an harmonic
Formi gas and the soliton dynamical evolution is thus mapped into a
quantum hamiltonian ovolution. The latter, which is coherence presery-
ing, can be mapped back once more info a classical hamiltonian flow
which corresponds to a succession of infinitesimal Biacklund transforma-

Lions.
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Coherent states

One can define abstractly quantum eoherent states associated to a
Lie group § as follows [3, 4].

Let U a unitary irreducible representation of the Lie group G acting
on the Hilbert space § of the states of the dynamical system. For every
fixed ”origin vector” | w >€ § the manifold M, of the coherent states
is identified with the G-orbit of the vector |w > in §:

By definition one has:

-Mw S gi!Kw [2}

1.e. the coherent states | w >, are labelled by peints of the left coset
space w € G/K,, where K, is the stability subgroup of the vector | w >,
In general it is convenient to enlarge the unitary representation
to a holomorphic representation T of the complexified group G°.
If M, is compact one has:

G°1KG ~ G/Ky (3)
where K7 is the stability subgroup of | w > in G°. There follows that:

Mo=T(§) w>CS$§ (4)

f5q. (4) can also be interpreted as the definition of the coherent statle
manifold for the complex Lie group G°.

For a semisimple Lie group §¢ the characterization of the stability
subgroup is very simple if one chooses as origin vector the highest weight
vector | X >. In this case one has [5, 8]:

Ki — fg'k"‘ [5"1)
bx=h@g" P oy (55)
05 =span{z_q € g_a | @ € AT, (2, )) = 0} 52)

where exp is the exponential map, h is the Cartan subalgebra of g ==
Lie(G°), 97 = @uaen+a is the positive root-space subalgebra and o~
is the subalgebra of negative root-spaces whose roots are orthogonal to
the highest weight A (A™ is the positive roots sublattice). The stability
subgroup K is thus isomorphically identified with a parabolic subgroup
of §° as it contains the Borel subgroup B = exp(h @ g*) and coincides
with the latter only when ) belongs to the interior of the dominant Weyl
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chamber (i.e. (A, a;) > 0 VYa; € Il = simple roots set). The above
construction gives a local chart in € ¥ for M, :

|¢ >a=exp( Y ¢z o) |2 > (6a)
I'IEE.J“L},

To € fo; Ax ={a € AT | (a,)) > 0} (6b)

c={"rec? N=A (B¢)

(In the following we shall drop the index X of the ket | ¢ >y whenever

not necessary).
Thus My is an almost complex manifold: indeed it is a Kaehler

manifold with metric given by:

de® =2 g zds* dg” (7a)
o,p
02 F
lsg = (78)
d¢de?
Fl¢,f) =ln<¢|¢> (7c)

(The function F' is positive definite as a consequence of Schwartz’s in-
equalily

Sl > RSP X [hs=1)

The physical content of the above algebraic definition of coherent states
lies mainly in their dynamical behaviour.

The quantum propagator between two (normalized) coherent states
can be written as a path integral of the form [7]:

< WM S = |exp[—i}?(t” - t']/ﬁ} | ¢f >=

=fD[g(t]} exp {%S}

where the action functional is given by:

(8)

Sle@®)] = /t Ldt = /t < ¢(t) | D, — H | ¢(t) > dt (9)

F

with the Lagrangian:
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-m Z {$%0e=F(5,5) — ™0 (5, )} — H(c,3) (10)

G'C;\h

H(¢,¢) denotes the diagonal element < ¢ | i1 | ¢ > of the system
Hamiltonian H. Finally the measure in (8) is:

plet)]l = JI duel(®) (11)

L 2t

dpls) = exdet(g ) Aaen, ds™ A d5”
(12)
o
M,

where ¢y is a normalization constant.

The stationary phase approximation (65 = 0) of eq. (8) leads to
the Kuler-Lagrange equations for the trajectory ¢(t) which ean be put in
the Hamilton’s form:

dH
; E P b oo
‘lﬁ gaﬂ' ¢ a—srr.'(

=As
ol Ly 8H (13)
el

Thus My is interpreted as a curved canonical phase space for the system
with metric given by (7 b). Also eq. (9) shows that the coherence
preserving Schrédinger evolution of the quantum state coincides with
the classical lagrangian flow on the phase space. Infact, if one computes
the variation of the action one gets, after an integration by parts:

i

55 = L : {[a < o(t) |]{iﬁr?t-—ff] le(t) > + < ¢(8) | [—m‘a~ﬁ)[§ () >}}dt

(14)
where:
dim T
§<gt) = D 6Sulc(t) <k | file) =< ¢ik > (15)

| k > being a complete orthonormal set of vectors in §.
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It is clear from eq. (14) that if the time dependent coherent state | ¢(£)->
satisfies the Schrodinger equation, the first variation of the action is zero.
In other words, if the Schrodinger evolution, starting on the manifold
My, remains on the manifold for every time f, the trajectory of the
representative point on M, coincides with the classical ILuler-Lagrange
trajectory. Furthermore it is possible to characierize in algebraic terms
the coherence preserving hamiltonian [5, 6]: it should be an element of
the algebra g =Lie(§), if the latler is semisimple, whereas it can belong
to a Levi extension (by a semisimple algebra) of ¢ if this is solvable.

In summary, the given definition of coherent states permits to
interpret also in the generalized case the coherent stale manifold as
the canomical phase space and moreover it implies that the quantum
coherence-preserving time evolution coincides with the classical lagran-
gian one.

Summary of main results of v-function theory

TFor the sake of simplicity we refer to the KP (Kadomtsev-Petviashyili)
8, 9] hierarchy, which is also the most basic.
The KP equation reads:

3ty — (41 — Buu, — Uzrz)zy =0 (16)

The whole hierarchy involves of course an infinity of variables thal we
denote z = {z;} (with 21 =, 20 = ¥, 23 = t). Hirota’s bilinearization
technique [10] — upon setting v = 2(In 7)., — allows writing (16) in the
form:

(D +3D2% — 4D, D)7 -7 =10 (17)

where Hirota’s bilinear differential operators are defined, for any poly-
nomial P by:

P[Dx;Dy:Dt)f vl = P[aziayr{?t) :

[flz+2 y+v t+ ez —a y—y, t -t
gl ==yl e =)
(18)
The Lie algebra of the infinitesimal Bicklund transformation generators
for eq. (7)is given by [1]:

A = span{Z;;(#,0)} P C (19)
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where the generating function of the differential operators Z;;(z, 8) writes:

Z[p, q) :P E q{exp [ E {p“ o qﬂjznj[ exp [ Z %{p—ﬂ e q—n)_é_g:]}

n=1
Z(p,q) = Y Zijlz,dp'q?
niel
(20)

where d = {8/Jd2,}. For example the transformation:

r(2) ~+ €29 (2) aeC (21)

15 a Backlund transformation for the bilinear KP hierarchy which maps
a solution of eq. (17) to another solution.

The Lie algebra A is isomorphic to §£(c0), i.e. the Lie algebra of
the infinite dimensional sector diagonal matrices (that is, there exists an
integer N such that the matrix elements a;; = 0 for |[i — 7] > N).

The above deseription of the KP r-function can be cast into an
algebraic language. Consider the "vertex operators” [11] out of which
(20) is constructed:

X [k)= exp(z zﬂk“)exp (— Z i—%k_”) (22)
! "

n=1 =

and its formal adjoint:

= o — n |, — 1 4 —r
X (k) = exp (—-—ﬂgl 2, k"™ |exp ’2 ;Ek (23)
The above operators realize a correspondence between the space of the
polynomial algebra C [z] and the Fock space 7 of charged Fermions
{#s,4:}, © € Z, by the Clifford algebra module isomorphism generated
by the identification:

vi=Xi; Pi=X; (24)

where the X;’s and f,-’s are defined in the following way. Upon setting:
X(k) =) Xz )k

et (25)

X(k) =Y, Xz
el
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consider copies {Vi} of € [z] Then for fi(z) € Vi,

X Voeas s Viers o filgctacig Xala, 0) file)

oty . (26)
X Vie—s Vi i ——s X wilz o)z
The Lie algebra (19) is now realized as follows:
A = span{spiP 2} P C (27)

where ¢ ¢ denotes the usual normal ordered product defined aceording
to Wick’s theorem, the linear span is done in terms of §L(co) matrices
and C is the center, spanned by the identity I and the non-trivial element

Ho = ) e (28)
el
It follows that the representation of A on the Fock space is reducible

and the Fock space is decomposed into eigenspaces of Hy, the ”charged
subspaces” :

F =@t (29)

Egs. (26) define then an isomorphism between V;, and 7.,. Furthermore
A has an Heisemberg subalgebra &:

& =span{H,, ILnecZ—{0}} (30)
Ho= ) Wit ; n £ 0 (31)
icZ

with commutation relations:

[Hao | = 1805, L (32)

The existence of suech a subalgebra enables to construct an explicit
realization of the isomorphism between the vector spaces ¥, and 7, and
between the algebras of operators acting on them. The isomorphism is
realized by the following map:

}F — @n}’n—-———r} V e @rtp'rt
e|0> 5 @n<n g |0 >

o0

Hz) = Y zH, (34)

ri—1

(33)
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where a is an arbitrary operator of the Clifford algebra, | 0 > is the
vacuum vector, [n >€ 7 (| n >=tu1. . [0 >, 0> 0; |n >=
Yoo P | 0 >, n < 0)is the vector of charge n selected as highest
weight vectors for the irreducible components of the representation of
A on 7. We can now use the above isomorphism to write the space of
r-functions for the KP hierarchy. As the Bicklund group is transitive
on the space of solutions and r = 1 is a solution, the rfunctions
manifold can be identified with the Bicklund group orbit on the constant
function r = 1. The orbit can be written in algebraic terms using the
isomorphism (33) for a fixed copy V,, of the polynomial algebra as follows:

m(zy) =< n|e"Py|n > 7 € exp(4) (35)

T-function theory in the coherent states language

Comparing eq. (35) with the definition (4), it appears clearly that
the r-lfunctions are nothing but coherent states representatives associated
to the Lie group § = exp (4):

TalZ ) = Wall2) = 5 Wi e 5y ¢ceC ™
w W= | o2 (36)
| ¢ >n: coherent state for G = exp (4)

The characterization of the stability subgroup of | n > is very similar to
that for a semisimple Lie group. The subalgebras h, ¢* of 4 — GL(o0)
are given, in the charged Fermion representation, by [1]:

g—f- = gen{ﬁ.- == ﬁbt'—lﬁi}
¢~ =gen{fi = ;% } (37)
h = span{h; = Pi_ 1P, — ¥:0;} teZ

where gen{ } denotes the algebra generated via commutations by the
operators in the curly brackets. The vector | n > is an highest weight
vector for the irreducible component of the representation of A on the
imvariant subspace 7,:

&v | m>=0, ki | n =4 In > ViEeZ (38)

The root system and the root spaces of 4, are given by [12]:
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AT = {ai+ @ty 1 X je L} fo; = span{ei}  (39)

and the stability subalgebra of | n > is given by (compare (bb), (5¢)):

=KD @0 (40)
0p = span{f—o € g—o |@ € AT — Ay (41)
Ao = {oi 4o+ -+eni € 7eZii < n< g}k (42)

The most general coherence preserving Hamiltonian can be written as
an hermitian element of 4 as follows:

H= Y hjpibs hig = hy; €C (43)
iyl
which is the hamiltonian of an harmonic Fermi gas. The time evolution
of the quantum dynamical system can be viewed as an infinite sequence of
loeal infinitesimal contact Backlund transformations, in that the element
v = () € § = exp(A) representing the time evolution operator can be
written

Lupska . R ey (44)

(The Z; are locally nilpotent, i.e. for any | v >€ ¥, one can find a
sufficiently large integer M such that ZM | v >= ().

This procedure maps the original non-linear elassical system into an
equivalent quantum system.

On the other hand, under the action of the same Hamiltonian
the representative point ¢(f) of the coherent state over the phase space
M, evolves in time according to the lagrangian dynamics of a system
of (infinitely many) canonical degrees of freedom, thus defining an
hamiltonian flow — once more classical - on M, ilself.

In conclusion, the identification of the 7-function manifold with that
of quantum eoherent states, permits the mapping of the non linear soliton
evolution into a quantum Schrodinger evolultion and simultaneously into
a classical hamiltonian flow on the coherent states manifold interpreled
as a canonical phase space.
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