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s paper addresses the controversy between Mayers, Lo and Chau' on one
and Yuen? on the opposite side, as to whether or not unconditionally se-
é,},gumlg exist. For such purpose, a complete classification of all possible
mmitment protocols is given, including all possible cheating attacks. For
implest class of protocols (non-aborting and with complete and perfect veri-
n), it is shown how a game-theoretical situation naturally arises. For these
cols, bounds for the cheating probabilities are derived, which turn out to be
; from those given in the impossibility proof." The whole classification and
s has been carried out using a finite open-sysiem approach. The discrep-
¢y with the impossibility proof is explained on the basis of the implicit adoption
closed-system approach—equivalent to modeling the commitment as being
formed by two fixed machines interacting unitarily in an overall closed system.
er, it is shown that the closed-system approach for the classification of com-
it protocols unavoidably leads to infinite dimensions, which then invalidates
: continuity argument at the heart of the impossibility proof.

Introduction

f practical relevance to establish if there exist secure quantum bit com-
itment protocols, since quantum bit commitment is a crucial element for
ding up more sophisticated protocols, such as remote quantum gambling,
- tossing, and unconditionally secure two-party quantum computation,

In bit commitment Alice provides Bob with a piece of evidence that she
chosen a bit b = 0,1 which she commits to him. Later, Alice will open

*ﬁ?ﬁﬁ"fequirements: (1) it must be concealing, namely Bob should not
to retrieve b before the opening; (2) it must be binding, namely Alice

._,?"E"s---ﬂf!mputa,tional power, space, time, etc., and the protocol is said to
mditionally secure if neither Alice nor Bob can cheat with significant
Uty of success as a consequence of physical laws.

40 1993, a quantum-mechanical protocol was proposed,® and the uncon-
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ditional security of this protocol was generally accepted for long time The ‘
insecurity of this protocol was shown by Mayers, Lo and Chau! ip 195;7 i

recognizing the possibility for Alice to cheat by entangling the committeq
evidence with a quantum system in her possession, and it wag argued ¢}
no unconditionally secure protocol is possible. Finally, after 2000, Yllez:'
presented some protocols which challenged the previous impossibility Proof,
mostly on the basis of the possibility of encoding the bit on an anonyme ’
state given to Alice by Bob and known only to him, and suggesting the yge 2‘:‘
decoy systems that make the protocol concealing in the limit of infinitely-may
systems, with the possibility for Bob to perform his quantum measurement l;”;_r
fore Alice opening, whence disputing the general availability of EPR cheating
for Alice.

In this paper, in order to clarify the controversy, we will present a classifi-
cation of all possible bit-commitment protocols based on a single commitment
step, analyzing the main cheating strategies for both parties (a full derivation
of the classification, the reduction of multi-step commitments to a single step,
and a more exhaustive analysis of cheating attacks can be found in Ref. 4,
of which the present paper is a much shorter version). For the simplest class
of protocols (non-aborting, with complete and perfect verification) we will
show how a game-theoretical situation naturally arises. Bounds for the cheat-
ing probabilities of these protocols are presented, which are different from
those given in the impossibility proof.! In the final discussion we will see how
the discrepancy between the two opposite analysis arises, due to the implicit
adoption in the impossibility proof of a closed-system approach, equivalent to
modeling the commitment as being performed by two fixed machines inter-
acting unitarily in an overall closed system. However, it is shown that such
modeling, along with the requirement of unlimited technology, necessarily
leads to infinite dimensions, which invalidates the continuity argument at the
heart of the impossibility proof.

2 The classification of protocols

The most general bit-commitment scheme with a single step is of the form: (1)
Bob prepares the Hilbert space H with the anonymous state |¢) € H, and sends
H to Alice; (2) Alice modulates the value b = 0, 1 of the committed bit on t.he
anonymous state |¢) and sends the output back to Bob. The bit madulatilﬂﬂ-
is a quantum operation (QO) M®) parametrized by b. Such scheme contains
all possibilities, including Yuen’s protocols,? and the protocols considered by
Mayers, Lo and Chau,' which correspond to openly known |p). 1n general,
the output Hilbert space K of the QO will be different from H, since Alice &t
send back to Bob a quantum system different from what he sent to her. '

In Ref. 4 a compleéte classification of all possible protocols is derived,
on the basis of the fact that since Alice has unlimited technology, she &t
always achieve the encoding QO’s M®) of the committed bit value b V12 &
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_port PUTE measurement. For non-aborting protocols, this corresponds to the
following QO
; M® (|9 (]) = Trrap U (1) (p] @ lw){wla ® p2)U DT, (2.1)

s the preparation ancilla/decoy Hilbert space prepared in the state
O N, Fis the measurement ancilla Hilbert space on which Alice performs a
iw>' Jete von Neumann measurement, and we have that K@ F =~ H @ A;
G"?I;ﬂpthe: space of the secret parameter, say j, which is needed in order to
;;.e the protocol concealing and at the same time verifiable (so that the
mﬁ&ulation is actually a choice between two ensembles of QO’s {Mg.b}} .for
p = 0,1). Therefore, the best option for Alice is to achieve the encoding
QO by preparing the ancilla/decoy state |w)a € A, performing the unitary
transformation U®) on H® A, making a complete von Neumann measurement
on F, with outcome say i, and finally send K to Bob. The partial trace on F@P
on the basis {|i) ® [j)}, which describes Alice's measurement, corresponds to
the Kraus decompositions M®) = ¥ ﬁijj(-?) -E}?}T, where j is the secrel
parameter and i is the secret outcome, and the probabilities p; = (j|pp|j) for
4 will depend on the preparation pp. In a protocol which is completely and
perfectly verifiable Alice tells b, j and i to Bob, who verifies the state Ej?}hp)
Since the local QO’s on K and F ® P commute, Alice has the possibility of:
(1) first sending K to Bob; (2) then performing the measurement on F ® P
at the very last moment of the opening. As we will see, this is the basis for
Alice’s EPR cheating attacks. Notice that strictly trace-decreasing QO’s, i.e.,
'-Eiharting protocols, pose limitations to Alice’s EPR cheating. In fact, Alice
cannot delay the abortion of the protocol at the opening, and must declare it
at the commitment. Since both secret parameters j and ¢ can be conveniently

measured by Alice, they can be treated on equal footings as a single parameter
J = (4,4). With the notation ES) = /57EL) € B(H, K), the maps write

MO (lo)el) = 3o MP(lo)el) = Y EP o) (el EPY. (2.2)
i J

where A1

3 Cheating

For a discussion of all possibilities for cheating see Ref. 4. Here we analyze
the only the attacks that are useful for both Alice and Bob.

Alice cheating. After the commitment and before the opening Alice can
iry to cheat by performing a unitary transformation V on F & P: this is the
so-called EPR attack. Without changing the QO’s M), the maneuver will
'ﬂhﬂE:Fe their Kraus decompositions—which are relevant at the opening—as
{E7"} = {E®) (1)), keeping the cardinality, in the following way

EOW)=Y EDVy, Vi =(JIVIL). (3.3)
L
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The probability that Alice can cheat successfully in pretending ¢
committed, say, b = 1, whereas she committed b = 0 instead, is given by e

E(DH v E(l) 2
Pf(V,gﬂ)zzl(pj s ([1]) 7 el o
7 1257l )

which depends on the anonymous state |¢) and on the cheating transformagi,
V. Without any knowledge of |¢p), the best that Alice can do is tg adomt n
conservative strategy, by maximizing her probability of cheating in the wor:::
case, corresponding to the minimaz choice of I
A : .

(P o= m‘?‘xm;npcﬁ(va ) (3,5)
It is evident that in this way a game-theoretical situation arises, in which Boh
chooses |¢) and Alice chooses V, with the probability P(V, ) playing the role

of a payoff matriz. The actual game situation is more complicated—due for
example to Bob cheating—and will be analyzed elsewhere.

Bob cheating. Bob can try to cheat by making the best discrimination

between the two maps M(®) = EJ. Dj Mgb). However, since he doesn't know the
probabilities p; actually used by Alice, his strategy will be suboptimal, and
his actual cheating probability P? will be lower than the probability (P2),.
corresponding to the optimal strategy with the right probabilities p;. Since
map-discrimination is generally more reliable with the map acting locally on
an entangled state,’ instead of preparing |¢) € H Bob prepares an entangled
state on H® R and sends only H to Alice. Therefore, for equally probable bit

values b = 0, 1, Bob’s optimal probability of cheating is bounded as follows®

(3.6)

o 7

T onal
B o (phy - _’ (1) _ p(0)
PE < (P5),.. 2+4|M M|

where [-[_, denotes the completely-bounded (CB) norm.

Bounds for cheating probabilities. If the protocol is perfectly con-
cealing the CB-norm in Eq. (3.6) is zero, and the two maps are the same,
whence the their Kraus decompositions are connected via a unitary transfor-
mation ¥ on F ® P, and Alice can cheat with probability one. Let’s consicller
now the case in which Bob’s optimal probability of cheating (P2 )opt 18 in-
finitesimally close to %, namely le — M(© |t = €. Notice that generally
is vanishing for increasing dimension of K (such as when the approximately
concealing condition is achieved for an increasingly large number of decoy
systems?), and no obvious continuity argument can be invoked to assert that
Alice’s cheating probability will approach unity for vanishing e. MOI‘? P
cisely, in the present context the continuity argument of Ref. 1 would imply
that

1—(PY), =w (”Mm — M© (3.7)

Cb) ,  limw(e) =0,

g—+0
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r :+h the function w(e) independent of the dimension of K. However, using
wit SymotS S tates such assertion may turn out to be false. In fact, it is obvious
:::t_ if there is an alternative Kraus decomposition {Ef,n} (V) } for the map M

-sﬁt:h that the two Kraus decompositions {E_{,m (V)} and {E_(rl)} are close, then

the protocol 1 approximately concealing and not binding, since®

1 2

1
_ L) _ o
(Pf)awawnm M

[P - B

J
2
> |EQw) - B[ ] : (3.9)
J
A

here for any operator A we use the customary abbreviation |4]? = ATA.
However, the impossibility proof would be true if a bound of the form (3.8)
were satisfied in the reverse direction, in which case one would have

Sl ). o

which would correspond to the following continuity argument: if two CP maps
are close in CB-norm, then for a given fixed Kraus decomposition for one of
the two maps, there is always an alternative Kraus decomposition for the
other map such that the two are close. Since, as regards the cheating prob-
abilities, we have considered only the case of non-aborting protocols with
perfect-verification, proving the continuity argument (3.10) or directly the
bound (3.7) would mean that a secure protocol could be sought outside such
class of protocols. On the other hand, finding a counterexample to Eq. (3.7)
would provide a perfectly verifiable and unconditionally secure protocol.

=
ch

| 6o

1
PAV, ) 2 [1 =g

<w (“Mm — M

1- (PcA)ptav = m&ﬂ

4 Discussion

The discrepancy between the previous analysis and the analysis beneath the
impossibility proof! is essentially due to the fact that the latier is based on
the assumption that the starting state of the commitment protocol is openly
known, in the sense that the probability distribution of the state is given, and
'f-hen the corresponding mixed state can be purified. The general underlying
idea is that the protocol should be processed by machines, and therefore all
probability distributions are defined, and purified inside the machines. How-
_Ev'.c"": such an assumption is certainly not realistic for a cryptographic proto-
¢ol, in which each party has the freedom of changing or tuning the machine,
namely choosing any desired probability distribution. One can continue to
argue on this line, asserting that changing the machine is equivalent to use of
B I?‘Iger machine, However, this will be equivalent to considering infinite ma-
fi:::ﬁ"’: corresponding to uniform probabilities on infinite sets, and this would

date an impossibility proof based on an unproven continuity argument.
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The above ill-posed mathematical framework arises from the Bayesi: I
approach to secret parameters, dictated from closed-system modeling wiati
fixed machines and purification of probabilities. As an alternative tq this
closed-system approach, we have the realistic finite open-system approach. ;
which unknown parameters are treated as such, without the need of an’ o
priori probability distribution, and in which we can address the Pr':'blemyfua
finite dimension with the parameter ¢ depending on it. Then, if one Iz-x'ts-me'r—:dr
by treating unknown parameters as such, no openly -known state can b:
assumed, and the anonymous state encoding of Yuen? leads to the Present
classification of protocols. Notice that if the initial state ) is openly known
then for that given fixed state all QO’s can be regarded as random unita;:;
transformations (since all states are connected by unitary transformationg).
and this leads to the simple form of Alice’s cheating probability in terms 0;'
fidelities,! whereas in the present context the probability of cheating has the
more involved form (3.4), due to the fact that the state |¢) is unknown, and
that there are QO’s that don’t admit random unitary Kraus decompositions,

Finally, regarding the possibility of aborting protocols, one could always
reasonably adopt equivalent protocols which don’t abort, since the repeated
commitment will eventually be successful. However, such kind of proto-
cols will necessarily be infinite convex-combinations of protocols on infinite-
dimensional anonymous spaces H, and again the closed-system approach would
necessarily lead to infinite dimensions.
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