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. astruct the pratocols t0 achieve probabilistic and deterministic entanglement
w:ﬁ?}ﬁrﬁatiuns for bipartite pure states by means of local operations and classical
Lo unication. A new condition on pure contraction transformations is provided.
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The transformation of entangled states by means of local operations
and classical communication (LOCC) is a key issue in quantum information
,Prdces'smg, In fact, increasing entanglement by means of LOCC with some
p;_obabi]itjr is crucial in practice, since losses and decoherence have detrimental
effects in the establishment of entanglement at distance.

" In this paper we give a short and simple proof of Lo-Popescu theorem.
Then, we provide a new necessary condition for pure-contraction transforma-
tions. Finally, we construct explicitly the LOCC protocols to achieve deter-
ministic and probabilistic transformations for bipartite pure states.

We first introduce the main notation. Given a linear operator O we denote
by O, 0*, O7, and O! the hermitian conjugate, the complex conjugate, the
transpose, and the Moore-Penrose inverse of O, respectively. Recall that Ot is
the unique matrix that satisfies 000 = 0, 0100t = 0%, 00* and 0O her-
mitian. N_otice also that 00! = Py is the orthogonal projector over Rng(0),
whereas 0*0 = P, is the orthogonal projector over Rng(O') = Supp(0).
We write the singular value decomposition (SVD) of O as O = Xo2ZoYo,
where ¥ denotes the diagonal matrix whose entries are the singular values
7i(0) of O taken in decreasing order, and Xp, Yp are unitary. We write

A} = Zaml ® |7)2, (1)

1

fm:'th?* bipartite pure states on the Hilbert space H; ® H2, where {|i);} and

ig;il}o IE:IZ two orthonormal bases for H1 and Hs. One can easily check the

Brmitian.® B|C)) = |ACB™Y). Finally, we use the notation ,,A ~< B for

cigv(B) azge??ators A and B to denote the majorization relation® eigv(A4) <

. hil th'e sarne fashion we will write 4 <* B and A <, B for

P‘Eva and sub-majorization.2

'Then:éivelnoiﬁ simple proof of Lo-Popescu theorem.*

ot L'F)CC on a pure bipartite entangled state |¥)) can be
5 a contraction by Alice and a unitary transformation by Bob. This
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is due to the equivalence of any Bob contraction M with the Alice contraction
N assisted by Bob's unitary transformation I/ as follows

I®M[¥)=NQU|L), (2)
where
N =Kyy-MKy, U=Kl K}, (3)
and K¢ is the unitary operator achieving the transposition of the operator
O, namely O" = KgOKG,.
Proof. To prove that every LOCC can be reduced to an Alice contraction
and a Bob unitary transformation it is sufficient to prove Eq. (2), since: @) alj
possible elementary LOCC in a sequence will be reduced to an Alice contrac-
tion and a Bob unitary; &) the product of two contractiouns is a contraction;

c) unitary transformations are particular cases of contraction.
Given the SVD of any linear operator O one has

O™ = Y30 X5 = (Y3X{)0(Yo™ X)) = KoOKY (4)
with Ko = Y5 X). Hence
UM™ = (MY")" = Kypor(MYT)Kjrgr = Knpor MKg UK, Kyg- . (5)
Then one gets Eq. (2) with N and U given as in Eq. (3).

The main theorem on entanglement transformations is the following.
Theorem 2. The state transformation |A)) — |B)) is possible by LOCC iff

AAY <v pBBT (6)

where p < 1 is the probability of achieving the transformation. A necessary
condition to be satisfied is rnk(A) > rok(B). In particular, the transformation
is deterministic (p = 1) iff AA! < BB,
Theorem 2 unifies the results of Nielsen® and Vidal.?

In the following we provide a new necessary condition for the case of
pure-contraction transformation, namely we prove:

Theorem 3. If there is a pure LOCC that achieves the state transformation
|A)) — |B)) with probability p, we must have

pBBt <, AAT. (7)

Proof. According to theorem 1, the pure LOCC transformation |4)) — |B))
occurring with probability p is given by

M & Ul4) = VEIB) , (8)
and we need to have MAU™ = ,/pB. Using the SVD of A and B one has

M3Z4U = \/p%p, with M = XM X 4 and U = Y4U7Y]. Then M2 Mt =
pZ%, namely

> Suoi(A) = pai(B), (9)
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’whﬂe S = (2 | M [k}|2 is a sub-stochastic matrix, since
S Su= (ATt < M < 1,

k
Y Su= (kIMTMIE) < ||M|]* <1. (10)
l

This proves that Ed (7) is a necessary condition for transformation (8).

. '_'[i construct the explicit protocols that realize entanglement transforma-
tions we will use the following lemma:

Lemma 1. z <"y forsomev z <vandv>y,

along with Uhlmann theoren: .
Theorem 4. For Hermitian operators C and D one has C' < D if and only

if there is a probability distribution p) and unitaries W, such that
¢ = X paWADW} (1)
A

For Lemma 1 a probabilistic transformation can always be performed through
two steps: a deterministic transformation |A)) — |@)), followed by a pure-
contraction |Q)) — |B)) that occurs with probability p.

For the deterministic transformation |A)) — |@Q)), one needs to find the
contractions M) and the unitaries U, versus the operators W) of Eq. (11),
where €' = AA! and D = QQ1, such that

My @ U,|4) = /3:|Q) - (12)
The general solution of Eq. (12) is given by
M) = QU5 A + Ny (1 — AAY) . (13)
To guarantee that M), is a contraction we can always take
Uy =YIXLWaXaYa, DNr=0. (14)

In fact from Egs. (13) and (14) and using Eq. (11) one has
3005 = 3 an (4 ¥ XLV KoY QU XA K AT
A A

=Y (@)Y X wlQQt Wi X v, At
A

= (AHtvixt a4t x, v, At
= (ANTATAAY = (ANt Aat = aat =P, . (15)
Ehﬂ completeness of the measurement can be guaranteed by the further con-
raction M, = V(I — AAY), where V is an arbitrary unitary operator.
Hence, given explicitly Eq. (11) one can perform the contractions M) and

z];*; lIﬂ.i-taIies Uy to achieve the entanglement transformation. The problem
ooking for a POVM with minimum number of outcomes (thus minimizing
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the amount of classical information sent to Bob's side) is reduced to finding
the transformation (11) with minimum number of unitaries. One can Tesort
to a constructive algorithm to find a bistochastic matrix DD which relates the
vectors &5 and 5"2@ of the singular values of 4 and @, namely 6% = D&2
Then Birkhoff theorem allows one to write D as a convex combination of
permutation matrices D = ) A @IIy. In terms of ¥4 and 2o one has

Th=) qIizim, (16)
A
where IIy = > [[)(II\(?)|. In this way one obtains Eq. (11), with W, =
XQH;‘XL. Using Egs. (13) and (14) for M, and U, one recovers the result of
Ref. 5. Notice that Caratheodory’s theorem always allows one to reduce the
number of permutations in Eq. (16) to (d — 1)? + 1, for d-dimensional Alice’s
Hilbert space.
The second part of the protocol, namely the contraction which provides
the state |B)) from |Q)), is present only for probabilistic transformations. It
is a pure contraction given by

N@V|Q) =|NQVT) = /p|B) , (17)
where N = \/pXpE555 X}, and V™ = Y)Yz, In fact
NQV™ = \/pXpZpEiTqYe = /pXpEsYs = /5B , (18)

where we used the fact that EBEE.EQ = Yg, since for lemma 1 one has
Ef;, >phl.
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