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A prototype mechanism for producing amplitude-squeezed states, based on the so-called “photon
fractioning” procedure, is investigated. The coherent state is connected with a quasinumber eigen-
state through an intermediate density matrix involving multiphoton processes. The enhancement in
the phase fluctuations and the simultaneous reduction of the noise in the photon number result from
two competing limits; the “bright limit,” which is semiclassical and requires highly excited states,
and the photon fractioning limit, which is pure quantum. Asymptotical evaluations of the number
probability distribution and of the Q function show that the mixed states are very close to the exact

number-phase minimum-uncertainty states.

I. INTRODUCTION

Quantum squeezed and number-phase minimum uncer-
tainty states of light are presently of great interest in
quantum optics. Their interest is related to the role of
these states in fundamental physics as well as in the possi-
bility of overcoming the limit due to quantum fluctua-
tions on the accuracy of measurements and/or transmis-
sions of information.

Squeezed states! > are a special kind of coherent
states, in which the ratio of variances of the electric and
magnetic fields can be altered, reducing one variance to
the detriment of the other. They can lead to substantial
improvements of the sensitivity in high-precision inter-
ferometric measurements.

In number-phase minimum uncertainty states*’
(NUS)—or amplitude-squeezed states®*—the quantum
noise is shared between the photon number operator #
and the sine operator S: this latter, for high mean photon
numbers (bright limit), can be interpreted as the quantum
analogs of the classical oscillator phase. (As an example
of NUS one can consider the number eigenstates, which
are nothing but the degenerate case of NUS having zero
number fluctuations and completely random phase.)
NUS are interesting for communication systems in which
information is coded through photon number and detec-
tion is obtained by photon counting.” In fact, they
reduce the number fluctuations without affecting the
mean photon number. Therefore NUS states lead to a
quantum signal-to-noise ratio which can be made in prin-
ciple arbitrarily high, whereas, in the squeezed states, the
maximum ratio is restricted by the average photon num-
ber.?

Although the mathematical construction of NUS be-
gan long ago,’ only in recent years was attention on the
production of such states stimulated by the aforemen-
tioned motivations. Since a mathematically defined NUS
cannot be obtained from a coherent state through a uni-
tary evolution, no practical physical scheme has been
proposed to prepare these states. However, methods
have been suggested to generate NUS-like states which
exhibit enhanced phase fluctuations and low number
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noise. Such methods are based on a nonlinear Mach-
Zehnder interferometer having Kerr media placed in one
(or both) of the arms.®”° '3 The nonlinear interaction in
the Kerr medium produces four-photon processes, which
generate self-phase modulation of light via a feedback in-
terferometric mechanism.

The aim of this paper is to give insights into the inter-
play of multiphoton processes and enhanced fluctuations
leading to NUS. I show that the introduction of k-
photon observables enhances phase fluctuations and
reduces the number noise, by multiplying the phases by a
factor k and dividing the numbers correspondingly. The
k-photon observables do not correspond to the physical
measured ones and one has to construct quantum states
having probability distributions for the usual (one-
photon) observables reproducing the multiphoton distri-
butions of a given quantum state. This last step has been
achieved by D’Ariano and Sterpi!* and leads to states
built up in terms of density matrices (the so-called
fractional-photon states). They are characterized in
terms of the “fractional-photon index” ¢t ~!=h /k (Ref.
15) (the matrix elements of h-photon operators between
k-photon states depend only on t =k /h ) which turns out
to be proportional to the ratio between the variances of
the number and the phase. This result is in agreement
with the interpretation of ¢ as a measure of the sub-
Poisson character of the number distribution.'* However,
the physical interpretation of ¢ as a measure of An /A® is
more appropriate since it comes directly from the
definition of ¢ in the operator formalism.

The fractional-photon states are briefly presented in
Sec. II, where a short recall of the essential ingredients is
also given. The mechanism of amplitude squeezing is il-
lustrated in Sec. III, after some remarks about the
definition of the phase operator and the related commuta-
tions. Particular attention is devoted to the 1/7-coherent
states, i.e., those statistical states which exhibit the r-
observables probability distributions of the coherent
states. A direct calculation of the number and the phase
uncertainties An and A® leads to the announced results
AnA®~1and An/Ad xt,

The probability distributions are analyzed in Sec. IV.
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Numerical results show that the quasiprobability distri-
bution (Q-function) is typically expanded in the tangential
direction, as can be expected of an amplitude-squeezed
state.!! For large mean photon numbers and small
t=1/r the tangential shape is asymptotically Gaussian,
with variance increasing as t~!. On the other hand, the
number distribution becomes more and more sharply
peaked on decreasing t. These results indicate that the
mixed 1/r-coherent states behave very similarly to the
mathematical states of Jackiw.® The present states, how-
ever, involve multiphoton processes and provide a new
suggestive physical description of the amplitude squeez-
ing. This phenomenon results from two competing lim-
its, one of which—the bright limit—is semiclassical,
whereas the other—the photon fractioning—is a quan-
tum one. In the concluding remarks this last point is dis-
cussed in detail.

II. FRACTIONAL-PHOTON STATES

Fractional-photon states!*!* are introduced through

their probability distributions, resorting to the general
statement that the matrix elements of h-photon observ-
ables acting on k-photon states, depend on 4 and k only
through their ratio ¢ =k /h: the corresponding probabili-
ties are referred to as t-fractional-photon probabilities, ¢
being the fractional-photon index. Such arguments lead
to defining the fractional-photon states as those quantum
states which exhibit exactly the z-fractional-photon prob-
ability distributions for all the usual one-photon observ-
ables. A straightforward calculations shows that such
states can be constructed for every t: for integer ¢ they
correspond to the multiphoton states of Ref. 16; for
strictly fractional ¢ they are mixed states given in terms of
density matrices.!*

A. h-photon particle operators

h-photon observables (5(,,) are constructed by using the
generalized Bose operators of Brandt and Greenberg!’
b, ,,),bzh,, satisfying the commutation relations

[bisbin]=1

2.1
la'a,byy1=—hby, ,

where a,aJr denote the usual annihilation and creation
ogerators. Equations (2.1) lead one to interpret b,, and
b, as annihilation and creation operators of & photons
sxmultaneous]y However, it should be noted that
by 7a" for h >2, even though bm
On the Fock space b, and b( " operate as follows:

buylsh +A)=Vs|(s—1h+A) ,
bl sh+0)=V5sF1|(s+Dh+A),

where 0SA<h—1. From Eq. (2.1) and (2.2) one can
derive the normal-ordered representation

(2.2)

b= 2 alfayalth (2.3)

j=0

where
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w_ & = [pmy |7,
AP Yy T T Ew AT ’ 24
¢é,,, m=0,...,j being arbitrary real phases ([x] denotes

the maximum integer = x). Equations (2.2) show that the
Fock space ¥ splits into & orthogonal subspaces F, which
are invariant under the action of the A-photon operators:

h—1 o
F= @E?;L, F = @span{ish+k)}

(2.5)

b FCF b(,,)S‘kC Fr -

Therefore the generic Fock state [sh +A) can be labeled
by two quantum numbers s and A, which are the elgenval-
ues of the complete set of commuting operators b( mbm
andﬁ y=a fa— hb(,,,b(,,)

b(Th)b(h)|Sh +A)=s|sh+A),

A~ (2.6)
D ,lsh+A)=Alsh+1) .

B. h-photon observables

An h-photon observable (5( » is a Hermitian analytic
function of h-photon creation and annihilation operators
bhysbiny

(a(h):g(b(h))bz-h)) , 2.7)

where ¥ is an analytic function and (,f)(,,)—@zh). Typical

examples of h-photon observables are the “‘canonical
variables” Q(h) and P(h,,
Oun =75 (bl +buw)
. (2.8)
~ i
P(h):T/Tz(b(Th) —bw),
and the “number operator” N (h)»
+
N =blmbu - 2.9)

As a consequence of the general definition (2.7) and the
representation (2.2), the h-photon operator O, is
represented on a fixed Fock sector 7, in terms of the cor-
responding one-photon operator @, matrix elements

(nh+AlO ) lmh+1)=(n|O,|m) . (2.10)
Furthermore, every h- photon observable commutes with
the operator D, = hb(h,b

C. Fractional-photon probabilities

The definition of the (5( n-probability distributions for
fractional-photon states is based on the construction of a
complete set of eigenvectors for the two mutually
commuting operators @, and D,

OmlO1) (1 =0lO,1) ) ,
(2.11)
ﬁ(h)'@:lxm:}»wk)(h) .

Equation (2.10) implies that the eigenstates can be ex-
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panded as follows:

§ llh+1)(1O) , (2.12)

=0

|O1) =

where |©) denotes the eigenstate of the one-photon

|

wlOA )=

L,n=0pu=0

3 Inh 42000, [1){110)=0'S [Ih+1){1|0)=0|0,1) 4

Ln=0 1=0
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operator

0,,))0)=0\0) . (2.13)

In fact, using Eq. (2.10), one can verify that the state
(2.12) is an eigenstate for O,

2 2 |nh +p)(nh+pl O\ h +1)(1|10)

(2.14)

The next step in the construction of the fractional probability distribution is to consider a k-photon state of the form

)= 3 oylkm), |ol’= 3 lo,l*=1,
m =0 m =0

(2.15)

and then to obtain the probability distribution of the @( 4 observable for the k-photon state, |@ ), summing over the

hidden degree of freedom A (kh,

t=k/h=s/r, s,rrelativity prime)

P(0)= 2 [ O @), (2.16)
D. Density-matrix states
The construction of a density-matrix state 5.’ which exhibits the probability (2.16) for the usual observables @
POO)=Tr(|0)(O|p") 2.17)
can be achieved by writing the probability (2.16) in the form
r—1 o
PrO)=3 3 (elir+1)10)OIm){(mr+ilo)
A=01.Lm=0
) r—1
3 (OO | 3 Im) mr+ilw) ) o (olir+2)] |11 . (2.18)
IL,m=0 A=0

Comparlson of Eq. (2.17) with (2.18) leads to the densi-
ty matrix pm

= 2 [,

Q)= 2 QP lm) (2.19)

o)y =el¢"(mr +Alw)

A1)

(¢, arbitrary phases). One can see that g’ is correctly

normalized, since

Trpd= 3 2 14, P=o|?=1.

m=0A=0

(2.20)

The matrix in Eg. (2.19) does not depend on the particu-
lar observable O, but only on the state |w), and on
t=s/r: consequently, we can refer to it as the
fractional-photon state.

E. 1/r-coherent states

The 1/r-coherent states are those statistical states
which exhibit the probability distributions of the
coherent states for the r observables. They are obtained
choosing s=1 and |w);, being defined as the coherent
state in Eq. (2.19). In this case the density matrix is given
by

A“/’)— mr+)\wt1r+k

Iaﬂzr—l © ) I
Po Aéo,,,,;:o'm}\/(mr+7uz(1r+m< X

(2.21)

In Ref. 14 it has been shown that the states (2.21) can be
squeezed and strongly sub-Poissonian in the photon num-
ber distribution. In the next section, I show that they ap-
pear as NUS states in the amplitude-squeezing mecha-
nism driven by multiphoton processes.
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III. PHASE-NUMBER UNCERTAINTIES

The situation of the conjugate pair of variables i —
number operator—and ®—phase operator—is some-
what more complicated than for other conjugate pairs
(such as position § and momentum p). In fact, the phase
operator ® is not Hermitian. In the following I briefly
recall this subject,* in order to construct the multiphoton
generalized operators and to illustrate the mechanism of
amplitude-squeezing by fractional coherent states.

A. Phase and number operators
One defines the phase operator & through the relation
E,=e*i®, (3.1)
where E, are the shift operators
E_=@la+1)"",
E,=a%a'a+1) 12, (-2

-~ o, N .
However, ® is not Hermitian, because £, are not uni-
tary, as shown by

E,E_=1—|0)(0|, (3.3)
even though
E_E,=1. (3.4)

P~3 . . ., .
Instead of ® one can use the sine and cosine Hermitian
operators, respectively,

s=1lp —
S“ZI(E_ E+),

(3.5
C=LE_+E,),
having the following commutation relations with 7:
[7,8]1=iC,
(3.6)

(7,C1=-iS .
Equations (3.6) correspond to the Heisenberg uncertainty
relations

(ARZ)(AS?) 2 1(C)?,

(ART)(AC*) > 1(8)?,
where AO=0—(0). For highly excited states one can

consider E, as approximately unitary operators, since
such states are almost orthogonal to the vacuum state |0)

(3.7

(E_)y=(ala+1)""%(ata+1)"12% - (afa+1)"12

=(ata+1)""2ata+2)"12 - (ata+r)V2a"

172
!

(A+r)

a"=(1+[R/rD)™" b, =(1+b{pb)) by,
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|0) [see Eq. (3.3)]. One can thus treat & as an almost
Hermitian operator and expand S and Cin powers of ®,

&6_ A 6)3
S—CD—T‘F R

'Y (3.8)
C=1——+

2!

Focusing attention on states with small phase uncertainty
(1}\':1) 2) <«<1, and fixing the phase reference point at
(®)=0, the sine and cosine operators will be approxi-
mated in the form

§=a8~A9,

C~1.

Accordingly, the commutation relations in Egs. (3.6) can
be rewritten

(3.9

[7,8]~i, (3.10)
and the uncertainly relations (3.7) reduce to
(AR ) (AS ) ~(Ar2) (A2 2 L. (3.11)

Therefore, in the limit of large mean numbers (bright lim-
it) and small mean phases, the phase and number opera-
tor can be approximately considered as a conjugate pair
of variables.

B. Multiphoton phase and number operators

The multiphoton operators in Eq. (2.3) can be used to
construct generalized r-photon shift operators as follows:

(E_ )(r)z(b:rr)b(r)‘H)_mbm )

. o o (3.12)
(E 1 )n=b(bnb,)+1) .

The shift operators in (3.12) define a new r-photon phase
operator

* ia’lr)

(Ey),=e (3.13)

which, as the usual phase operator, is not Hermitian. I
now show that it is exactly » times the one-photon phase

operator, namely,
&,=rd . (3.14)

The r-photon shift operators correspond to the rth

powers of the usual shift operators
(EL)p=(EL) (3.15)

as it appears from the equation

(3.16)
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by using the relations

172
= ﬂ% ar, (3.17)
bl b, =[R/r]. (3.18)
The r-photon counterpart of the number operator
Niy=blyb, (3.19)

satisfies an approximate relation which is the inverse of
(3.14),

Noy=r"'a, (3.20)
and can be derived from Eq. (3.18) for highly excited
states. Equations (3.14) and (3.20) show that the transi-
tion to r-photon operators has the effect of multiplying
the phases by the factor r while dividing the numbers by
r. These results suggest that the fractional-photon states
are good candidates as amplitude-squeezed states, as
shown in the following.

C. Fractional-photon uncertainties

The multiphoton variables do not correspond to the
physical observed quantities. On the other hand, one can
utilize the fractional density matrices to find probability
distributions for the observed variables which are exactly
the same as the multiphoton ones. Thus, for example,
one can start with a coherent state |w) satisfying the un-
certainty relation {w|AfA o) {w|A®Yw)~ 1, and, by
moving to 1/r-coherent states, reduce the number vari-
ance to the detriment of the phase one, while keeping the
product constant. Namely, one has

(AR 2),=(wlaNY) o) =1 (w|af X|o) , (3.21)
where the following notation is used:
(0),=Tr(p"0) . (3.22)

J

(AD?), =t X 0|Adw) =t w|AS 2|w)
t‘2

4

The last sum is a particular case of the functions (¢; real)

ns—1 )

Is) -5 X' @
H“O’al""'as—l(x) n§0 nl iI;Io(n+l+l)

2~—e_““’|2——2e_""]2
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In an analogous way, one has for the phase operator

(A®?), =(0|Ad}, o) =t Hw|Ad?w) (3.23)
and for the uncertainty relations
(AR 2) (AD?), ~(0|Af o) 0|Ad o) ~L . (3.24)

To ensure the validity of Eq. (3.10) and Eq. (3.20), one
has to consider highly excited coherent states. Further-
more, since the photon fractioning reduces the average
photon number itself as follows:

(1), ~t{olf|w)=tlol*, (3.25)

one should increase the average photon number by excit-
ing the state |w) while reducing ¢; otherwise the vacuum
state would be obtained. As is shown in Eq. (3.25), one
can attain a constant photon number by keeping constant
the product ¢|w|? in the fractioning process.

D. Asymptotic behavior

The uncertainties in Egs. (3.21) and (3.23) can be ex-
plicitly evaluated for a coherent state |w) in the bright
limit |w| >>1. The A fluctuations are given by

(AR %), =t w AR Yw)=1tn, , (3.26)

where n,=|w|**~(A), denotes the average photon
number, constant in the fractioning process. The 7 vari-
ance in Eq. (3.26) is identical to the leading term of the
asymptotic expansion obtained in Ref. 14 and is in agree-
ment with the # moments which will be evaluated in the
next section.

As regards the phase uncertainty, one first has to fix
the reference phase at <</I\>), =0 by restricting @ to posi-
tive real values. Then one has to compute the following
expression:

already studied!* in the limit x >>1. The asymptotic expansions are

H‘[;O]’a]v- . .,aj_'(x )NX”a”e"

1+

where ||a||=3{_ha,. One has

s> ft—,[(n 4]~ x e 1= Lx T+ 0(x )]
n=0 :

leading to the asymptotic variance for ®

(A®2), ~Li ng' +0(p™) .

s—1
[[|a||2+1 ]+ S kay
k=0

1) (3.27)

<o nV (n+1)(n+2)
(3.28)
£+O(x ~2)] , (3.29)
(3.30)

(3.31)
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The same result can also be obtained using the density matrix (2.21). The average sine operator is given by

r—1
($H)=Tr(p"S)= 3 (Q,I510,)
A=0

*xrm +k m+A

w2 ,—
e\mlrloo ©

o 21
=sin(r¢le Pp 23'— (I+1) - (I+r)]72,

2i e Vrm +2M)rn +M'(

m,n—l_am,n+l)

(3.32)

where o =pe’?; therefore, ¢ =2k in order to fix the phase reference point at (8)=0. The second moment is derived

in a way analogous to Eq. (3.32),
(AS ) =(82)=Tr(p!"'S?)

r—1

2

which, in the bright limit (p >>1) reads

(AS2)~1[1—e P pHZ), | ,(p]. (3.34)
Equation (3.29) yields the asymptotic expansion
= pH
pI [(1+1 e (I42r)]7 12
n=0
—2r,p? r’ -2 —4
~p~ ‘e 1-——2—p +0(p™") (3.35)

which can be substituted into Eq. (3.33), leading to

2 2A _2 9 © 21
—_—_L—-%e P ze}d—_%e pp2 221'_[(1+1)...
A=0 * I=0 *°

(I+2r]7 "2, (3.33)

IV. PROBABILITY DISTRIBUTIONS

In this section, I derive some asymptotic evaluations of
the density matrix, the f-probability distribution, and the
quasiprobability distribution (Q function)

Q(z*,2)=(z|pYz) =Tr(|z ) (z|p)

for the 1/r-coherent states. Some numerical results for
the Q function will also be given and discussed in com-
parison with the analytical evaluations.

(4.1)

A. Density matrix

In the bright limit—i.e., for large coherent mean field
|| >>1—the density matrix p,,; (2.21) becomes sharply
peaked on the main diagonal, around the most probable
indices m =1=(f/),=ny=|w|*. This allows the matrix

AS2) =1y 2 4+0(p ) =1 s 40007 %) . to be approximated by taking advantage of the Gaussian
¢ Y=t P =5t o ) limit of the Poisson distribution:
(3.36) o
e_“n ~8u4n) (fora>1,n~a), (4.2)
For small phase uncertainty (A® ?), <<1 Eq. (3.36) coin- ' ‘ o
cides with Eq. (3.31). One can see that the product of the ~ Where the following shorthand notation is used:
uncertainties (3.21) and (3.31) is equal to 1 up to the | (x—%)
second order in p~!: this emphasizes that, in the bright 9. po(x)=02mrA%) ™ exp | — CRRUVE (4.3)
limit, the 1/r-coherent states are number-phase minimum ' A
uncertainty states. The asymptotic behavior is
|
= (/D] artr ,—(1/2)|o]? | mr+2
Pn. p 2 e-zr(m—n)d)e iwl e 150
mn = Viinr+A) Vimr+21)!
) r—1
~e M S 190 atingt (M) ainge (M) (4.4)
A=0
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(0= pe"”) and, after the substitution m =n +d, it reduces
to
pn,n +d =p:+d,n

~(8mngt)!%e 491G, ((d)t

r—1

X 2 gnO—Atwd/Z,not(n) .
A=0

(4.5)

One should note that the approximate expression in Eq.
(4.5) preserves the normalization of the density matrix

Ttp= 3 Pnn
0

r—1

~ 3t G pingln)

n=0 A=0

r—1
~t 3 1N, o, =tr=1. (4.6)
0 *70
A=0
The double angular brackets in (4.6) denote the Gaussian
average

e, p=["Tdx 9, wx)f(x) . 4.7)

B. Number distribution

Using the asymptotic evaluation in Eq. (4.5), one can
derive the asymptotic form of the probabilities. In par-
ticular, the number probability distribution corresponds
to the diagonal of the density matrix

r—1

N~ 3 9y apnoe(n) - (4.8)
A=0

By means of Eq. (4.8) the gth moment can be evaluated as
follows:

r—1
(B, ~t T L=y, o, - (4.9)
A=0

One obtains

r—1
(R9),~t Eo K(n—ng+ne—=At)N, 4,

r—1(q/2] -1y
=t 2 9L (Y ng—Ar)?

)20 ,§0 I'(g—=2I)
~n§ 1—n;1§<qt—1)+(o<n52) (4.10)
The last result is identical to the asymptotic expansion
obtained in Ref. 14 using a completely different ap-
proach. Furthermore, one can see that the leading terms

in the expansion (4.10) for (# ), and ( Af ), are identical
to the expressions (3.25) and (3.26).

C. Quasiprobability distribution

The Q function defined in (4.1)

Q'V(z*,z)=Tr(|z){z|p)
2
, (4.11)

© ztnwrn+k

W= Vnlrn +21)!

r—1

2,2
=¢ ~lol" =zl 2

A=0
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can be evaluated using the Gaussian approximation (4.2)
for the projector matrix (|z }{z|), ,,

(1z)4z]), 4 g0~ (8m|z|})!2e¥g (d)

0,4/z|?

xgizlz_d/z,lzlz(n) . (412)

As a matter of fact, only the terms with large entries
n~m ~ny>>1 will contribute in the trace (4.11). There-
fore this latter can be rewritten in terms of Gaussian
averages

P(z*,z)~(2aTH) " 2(explid(p—¢/1)]))

o,r?
r—1
xzéo«glz‘zm‘zlz(n>>>,,o,,,o,, (4.13)
where

nyt|z|?
F2=4—i|—|*2 : (4.14)

not +|z|

Using the identities
€8, paIM oy = G g pdlX =X, 4.15)
(explix) ), . =(27A™2)28 ) | (¥), (4.16)

the quasiprobability is decomposed in a z-phase and a z-
modulus factor

r—1

(QS)(Z*»Z)~279¢/1,A1(¢)’ S gkl,n0+[z|2(n0_lz|2)-
A=0
4.17)

The Q function (4.17) is Gaussian in the phase of z, with
variance
not+|z|?
A} =P 2=—— (4.18)
4|z|’nyt

and average value ¢/t. On the other hand, regarding the
z-modulus behavior, the probability (4.17) is no more
Gaussian and exhibits its maximum value near to
|z|*~n,. Substituting this value in Eq. (4.18) and taking
the limit for t — 0, one obtains

Ay~ Hngt) =11 0|72, (4.19)
which corresponds to the second moment of the phase
operator (3.31).

Some numerical calculations of the summations in
(4.11) have been performed for fixed average photon
number {(f),~|w|’. The series sum has been cut at
sufficiently high index »n =30, while convergence and
completeness of the scanning on the z plane have been
checked up to the fourth digit using the identity

1=Tr(pl")= % [d%z QP2 . (4.20)
A three-dimensional plot for the lowest ¢ value
(r=1/t=50) is shown in Fig. 1. The results for several ¢
values are shown in Fig. 2, where the contours of 0.8, 0.6,
0.4, and 0.2 times the maximum value are represented
[the limiting case r=1 of Fig. 2(a) corresponds to the
usual coherent state]. One can see that the asymptotic
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r=50

FIG. 1. Three-dimensional plot of the Q function @\/(z*,z)
of Eq. (4.11) for fixed average number of photons n, =25 and
for r=1/t=50.

factorization (4.17) fits the numerical results quite well in
the t—0 limit. For decreasing t (increasing r) the
quasiprobability is expanded in the phase (tangential)
direction while being slightly “‘squeezed” in the number
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(radial) direction. The expanded tangential distribution
for the Q function is intimately connected with the
enhancement in the phase operator variance. On the oth-
er hand, the lack of correspondence between the radial
squeezing and the 7 distribution squeezing is only an ar-
tifact related to the Q function (see also the numerical
plots in Ref. 11) and the sub-Poisson character of the
state should be inferred only from the A distribution
shape.

Comparing the present results with those in Ref. 11,
one can notice that the 1/r-coherent states exhibit a Q
function which is symmetrically distributed on the
tangential direction around its maximum value, while the
states of Kitagawa and Yamamoto!! produce a quasi-
probability which is asymmetrical and slightly tilted with
respect to the tangential direction. In this sense, the
1/r-coherent states are more similar to the mathematical-
ly constructed NUS of Jackiw.® This observation is also
supported by the fact that the sub-Poisson parameter
(AR2) /(A ) is equal to ¢ for the 1/r-coherent states—
i.e., it can be reduced to zero without affecting the aver-
age number of photons—whereas, for the states in Ref.
11, it is proportional to {f ) ~2/3,

S
1

i (b)

Imz

AN AN O N AN
T T
=’
| I N

i =10
-8 L -
-10 L 1 Il L ]
-10 -5 0 5 10
Rez
10 T T T
8+ @
6 i
41 4
2L .
N
g OF 4
260 _
41 B
O =so 7
8 4
-10 . | .
-10 -5 0 5 10
Rez

FIG. 2. The Q function @/(z*,z) of Eq. (4.11) for fixed average number of photons n,=25 and for r=1/t=1,10,30,50. Con-
tours correspond to 0.8, 0.6, 0.4, and 0.2 times the maximum value. (d) corresponds to Fig. 1. (a) (r=1) represents the limiting case
of the pure coherent state.
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V. CONCLUSIONS

The prototype mechanism of producing amplitude
squeezing presented here is highly nonlinear and involves
many well-balanced multiphoton processes. The
amplitude-squeezing phenomenon turns out to result
from two competing limits: the bright limit and the pho-
ton fractioning (¢ —0) limit. The former has a semiclas-
sical character, and it is needed in order to well define the
phase and to minimize the number-phase uncertainty
product. The latter has strictly quantum character—it
goes towards the vacuum state—and it is responsible for
the enhancement of the phase fluctuations and the simul-
taneous reduction of the noise in the number. Since the
mechanism, starting from a coherent state, results in a
density-matrix state, it cannot be implemented through a
unitary time evolution. This last feature is common to
the mathematically constructed NUS of Jackiw® and is
related to the change in the commutation algebra, from

the Heisenberg-Weyl type (connecting a and a’), to the
larger algebra generated by #, S, and € (for this argu-
ment see also Ref. 11). The bright limit produces density
matrices which become sharply peaked around a number
eigenstate, thus recovering an almost pure state. Never-
theless, the present analysis seems to indicate that the
passage from the coherent state to the number eigenstate
could involve a dissipative mechanism. This last point
will be further investigated in view of physical applica-
tions.
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