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I. INTRODUCTION 

The state of a physical system is the mathematical description that 
provides complete information on the system. Its knowledge is equivalent to 
knowing the result of any possible measurement on the system. In classical 
mechanics it is always possible, at least in principle, to devise a procedure 
made of multiple measurements which fully recovers the state of the 
system. In quantum mechanics, on the contrary, this is not possible, due to 
the fundamental limitations related to the Heisenberg uncertainty principle 
[1,2] and the no-cloning theorem [3]. In fact, on the one hand one cannot 
perform an arbitrary sequence of measurements on a single system without 
inducing on it a back-action of some sort. On the other hand, the no-cloning 
theorem forbids one to create a perfect copy of the system without already 
knowing its state in advance. Thus, there is no way out, not even in 
principle, to infer the quantum state of a single system without having some 
prior knowledge on it [4]. 

It is possible to estimate the unknown quantum state of a system when 
many identical copies are available in the same state, so that a different 
measurement can be performed on each copy. A procedure of such kind is 
called quantum tomography. The problem of finding a procedure to 
determine the state of a system from multiple copies was first addressed in 
1957 by Fano [5], who called quorum a set of observables sufficient for a 
complete determination of the density matrix. However, since for a particle 
it is difficult to devise concretely measurable observables other than 
position, momentum, and energy, the fundamental problem of measuring 
the quantum state has remained at the level of mere speculation up to 
almost 10 years ago, when the issue finally entered the realm of experimental 
physics with the pioneering experiments by Raymer's group [6] in 
the domain of quantum optics. In quantum optics, in fact, using a 
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balanced homodyne detector one has the unique opportunity of mea- 
suring all possible linear combinations of position and momentum of a 
harmonic oscillator, which here represents a single mode of the electro- 
magnetic field. 

The first technique to reconstruct the density matrix from homodyne 
measurements--so-called homodyne tomography--originated from the 
observation by Vogel and Risken [7] that the collection of probability 
distributions achieved by homodyne detection is just the Radon transform 
of the Wigner function W. Therefore, as in classical imaging, by Radon 
transform inversion one can obtain W, and then from W the matrix 
elements of the density operator. This first method, however, was affected by 
uncontrollable approximations, since arbitrary smoothing parameters are 
needed for the inverse Radon transform. In Ref. [8] the first exact technique 
was given for measuring experimentally the matrix elements of the density 
operator in the photon-number representation, by simply averaging 
functions of homodyne data. After that, the method was further simplified 
[9], and the feasibility for nonunit quantum efficiency of detectors--above 
some bounds--was established. 

The exact homodyne method has been implemented experimentally to 
measure the photon statistics of a semiconductor laser [10], and the density 
matrix of a squeezed vacuum [11]. The success of optical homodyne 
tomography has then stimulated the development of state-reconstruction 
procedures for atomic beams [12], the experimental determination of the 
vibrational state of a molecule [13], of an ensemble of helium atoms [14], and 
of a single ion in a Paul trap [15]. 

Through quantum tomography the state is perfectly recovered in the 
limit of infinite number of measurements, while in the practical finite- 
measurements case, one can always estimate the statistical error that 
affects the reconstruction. For infinite dimensions the propagation of 
statistical errors of the density matrix elements make them useless for 
estimating the ensemble average of unbounded operators, and a method for 
estimating the ensemble average of arbitrary observables of the field without 
using the density matrix elements has been derived [16]. Further insight on 
the general method of state reconstruction has led one to generalize 
homodyne tomography to any number of modes [17], and then to extend the 
tomographic method from the harmonic oscillator to an arbitrary quantum 
system using group theory [18-21]. A general data analysis method has been 
designed in order to unbias the estimation procedure from any known 
instrumental noise [20]. Moreover, algorithms have been engineered to 
improve the statistical errors on a given sample of experimental data--the 
so-called adaptive tomography [22]--and then max-likelihood strategies [23] 
have been used that improved dramatically statistical errors; however, this 
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has been at the expense of some bias in the infinite dimensional case, and of 
exponential complexity versus N for the joint tomography of N quantum 
systems. The latest technical developments [24] derive the general 
tomographic method from spanning sets of operators, the previous group 
theoretical approaches [18-21] being just a particular case of this general 
method, where the group representation is just a device to find suitable 
operator "orthogonality" and "completeness" relations in the linear algebra 
of operators. Finally, a method for tomographic estimation of the unknown 
quantum operation of a quantum device has been derived [25], which uses a 
single fixed input entangled state, which plays the role of all possible input 
states in quantum parallel on the tested device, making finally the method a 
true "quantum radiography" of the functioning of a device. 

In this chapter we will give a self-contained and unified derivation of the 
methods of quantum tomography, with examples of applications to different 
kinds of quantum systems, and with particular focus on quantum optics, 
where also some results from experiments are reexamined. The chapter is 
organized as follows. 

In Section II we introduce the generalized Wigner functions [26,27] and 
we provide the basic elements of detection theory in quantum optics, by 
giving the description of photodetection, homodyne detection, and 
heterodyne detection. As we will see, heterodyne detection also provides a 
method for estimating the ensemble average of polynomials in the field 
operators; however, it is unsuitable for the density matrix elements in the 
photon-number representation. The effect of nonunit quantum efficiency is 
taken into account for all such detection schemes. 

In Section III we give a brief history of quantum tomography, starting 
with the first proposal of Vogel and Risken [7] as the extension to the 
domain of quantum optics of the conventional tomographic imaging. As 
already mentioned, this method indirectly recovers the state of the system 
through the reconstruction of the Wigner function, and is affected by 
uncontrollable bias. The exact homodyne tomography method of Ref. [8] 
(successively simplified in Ref. [9]) is here presented on the basis of the 
general tomographic method of spanning sets of operators of Ref. [24]. As 
another application of the general method, the tomography of spin systems 
[28] is provided from the group theoretical method of Refs. [18-20]. In this 
section we include also further developments to improve the method, such 
as the deconvolution techniques of [20] to correct the effects of experimental 
noise by data processing, and the adaptive tomography [22] to reduce the 
statistical fluctuations of tomographic estimators. 

Section IV is devoted to the evaluation from Ref. [16] of the expectation 
value of arbitrary operators of a single-mode radiation field via homodyne 
tomography. Here we also report from Ref. [29] the estimation of the 
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added noise with respect to the perfect measurement of field observables, for 
some relevant observables, along with a comparison with the noise that 
would have been obtained using heterodyne detection. 

The generalization of Ref. [17] of homodyne tomography to many modes 
of radiation is reviewed in Section V, where it is shown how tomography of 
a multimode field can be performed by using only a single local oscillator 
with a tunable field mode. Some results of Monte Carlo simulations from 
Ref. [17] are also shown for the state that describes light from parametric 
downconversion. 

Section VI reviews some applications of quantum homodyne tomography 
to perform fundamental tests of quantum mechanics. The first is the 
proposal of Ref. [30] to measure the nonclassicality of radiation field. The 
second is the scheme of Ref. [31] to test the state reduction rule using light 
from parametric downconversion. Finally, we review some experimental 
results about tomography of coherent signals with applications to the 
estimation of losses introduced by simple optical components [32]. 

Section VII reviews the tomographic method of Ref. [25] to reconstruct 
the quantum operation of a device, such as an amplifier or a measuring 
device, using a single fixed input entangled state, which plays the role of all 
possible input states in a quantum parallel fashion. 

Section VIII is devoted to the reconstruction technique of Ref. [23] based 
on the maximum likelihood principle. As mentioned, for infinite dimensions 
this method is necessarily biased; however, it is more suited to the estimation 
of a finite number of parameters, as proposed in Ref. [33], or to the state 
determination in the presence of very low number of experimental data [23]. 
Unfortunately, the algorithm of this method has exponential complexity 
versus the number of quantum systems for a joint tomography of many 
systems. 

Finally, in Section IX we briefly review Ref. [34], showing how quantum 
tomography could be profitably used as a tool for reconstruction and 
compression in classical imaging. 

II. WIGNER FUNCTIONS AND ELEMENTS OF DETECTION THEORY 

In this section we review some simple formulas from Ref. [35] that connect 
the generalized Wigner functions for s-ordering with the density matrix, and 
vice versa. These formulas prove very useful for quantum mechanical 
applications as, for example, for connecting master equations with Fokker- 
Planck equations, or for evaluating the quantum state from Monte Carlo 
simulations of Fokker-Planck equations, and finally for studying positivity 
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of the generalized Wigner functions in the complex plane. Moreover, as we 
will show in Section III, the first proposal of quantum state reconstruction 
[7] used the Wigner function as an intermediate step. 

In the second part of the section we evaluate the probability distribution 
of the photocurrent of photodetectors, balanced homodyne detectors, and 
heterodyne detectors. We show that under suitable limits the respective 
photocurrents provide the measurement of the photon number distribution, 
of the quadrature, and of the complex amplitude of a single mode of 
the electromagnetic field. When the effect of nonunit quantum efficiency is 
taken into account an additional noise affects the measurement, giving a 
Bernoulli convolution for photodetection, and a Gaussian convolution for 
homodyne and heterodyne detection. Extensive use of the results in this 
section will be made in subsequent sections devoted to quantum homodyne 
tomography. 

A. Wigner Functions 

Since Wigner's pioneering work [26], generalized phase-space techniques 
have proved very useful in various branches of physics [36]. As a method to 
express the density operator in terms of c-number functions, the Wigner 
functions often lead to considerable simplification of the quantum equations 
of motion, as, for example, for transforming master equations in operator 
form into more amenable Fokker-Planck differential equations (see, for 
example, Ref. [37]). Using the Wigner function one can express quantum 
mechanical expectation values in form of averages over the complex plane 
(the classical phase-space), the Wigner function playing the role of a c- 
number quasiprobability distribution, which generally can also have 
negative values. More precisely, the original Wigner function allows one 
to easily evaluate expectations of symmetrically ordered products of the field 
operators, corresponding to Weyl's quantization procedure [38]. However, 
with a slight change of the original definition, one defines generalized s- 
ordered Wigner function Ws(c~, or*), as follows [27] 

f c  d2X or,k* -c~* ~.-k(s/2) I x [ 2 Ws(ot, or*) - ~ e Tr[D()0p], (1) 

where or* denotes the complex conjugate of or, the integral is performed on 
the complex plane with measure d2)~ = d RegvdImL, p represents the 
density operator, and 

D(o0 = exp(ota t - or*a) (2) 
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denotes the displacement operator, where a and a t ([a,a t] = 1) are the 
annihilation and creation operators of the field mode of interest. The 
Wigner functions in Equation (1) allow one to evaluate s-ordered expec- 
tation values of the field operators through the following relation 

Tr[: (at)nam" s p ] -  fc d2~176176176176 (3) 

The particular cases s - - - 1 ,  0, 1 correspond to antinormal, symmetrical, 
and normal ordering, respectively. In these cases the generalized Wigner 
function W~(ot, a*) are usually denoted by the following symbols and names 

1 
- Q(ot, or*) 

W(~, ~*) 
P(ol, o~*) 

for s = -1  "Q function" 

for s = 0 (usual Wigner function) 
for s = 1 "P  function." 

(4) 

For the normal (s = 1) and antinormal ( s - - - 1 )  orderings, the following 
simple relations with the density matrix are well known 

Q(c~, c~*) ~ <c~lplc~>, 

-- [ dZotP(ot, or*) lot)(eel, P 
Jc 

(5) 

(6) 

where Iol) denotes the customary coherent state Iol> = D(ot)10>, 10> being the 
vacuum state of the field. Among the three particular representations (4), the 
Q function is positively definite and infinitely differentiable (it actually 
represents the probability distribution for ideal joint measurements of 
position and momentum of the harmonic oscillator; see Section II.D). On 
the other hand, the P function is known to be possibly highly singular, and 
the only pure states for which it is positive are the coherent states [39]. 
Finally, the usual Wigner function has the remarkable property of providing 
the probability distribution of the quadratures of the field in the form of a 
marginal distribution, namely 

f ?  d Im otW(otei~, ot*e -i~~ =~ (ReotlPlReot)~, 
o ~  

(7) 

where Ix)~o denotes the (unnormalizable) eigenstate of the field quadrature 

a t ei~ o __1_ ae-i~ o 
X~ = 2 (8) 
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with real eigenvalue x. Notice that any couple of quadratures X~0, Xr rt/2 is 
canonically conjugate, namely [Xr i/2, and it is equivalent to 
position and momentum of a harmonic oscillator. Usually, negative values 
of the Wigner function are viewed as a signature of a nonclassical state, the 
most eloquent example being the Schr6dinger-cat state [40], whose Wigner 
function is characterized by rapid oscillations around the origin of the 
complex plane. From Equation (1) one can notice that all s-ordered Wigner 
functions are related to each other through Gaussian convolution 

Ws(ot, ot*) - f r  d2 fl Ws,(fl, fl *) 2 ( 2 lot_ill2) (9) rt(s' - s) exp - s ' -  s 

= exp(S ' - s  02) 
2 a~--O--ot* W#(ot, or*), (s' > s). (10) 

Equation (9) shows the positivity of the generalized Wigner function for 
s < - 1 ,  as a consequence of the positivity of the Q function. From a 
qualitative point of view, the maximum value of s keeping the generalized 
Wigner functions as positive can be considered as an indication of the 
classical nature of the physical state [41]. 

An equivalent expression for W,(~,a*) can be derived as follows [35]. 
Equation (1) can be rewritten as 

Ws(u, ol*) - Tr[pD(oO l~sD* (o0], (11) 

where 

l~s -- fr --~ d2~" e (s/2)1~12 D(),,). (12) 

Through the customary Baker-Campbell-Hausdorff (BCH) formula 

( 1 ) exp A exp B -- exp A + B + ~ [A, B] , (13) 

which holds when [A, [A, B]] = [B, [A, B]] = 0, one writes the displacement in 
normal order, and integrating on arg0~) and I%1 one obtains 

2 2 (;+l)ata 
1~*- rt(1 -s----~ ~ ~ s -  1 atnan - - r~ (1 - s )  1 ' (14) 
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where we used the normal-ordered forms 
: (ata) n := (at)na n = ata(ata - 1 ) . . . ( a t a -  n + 1), 

and the identity 
oo (__x)l (at)/a I _ (1 - x )  a?a  9 e-xata : =  Z 1! 

/=0 

(15) 

(16) 

The density matrix can be recovered from the generalized Wigner 
functions using the following expression 

ata 
P- -1  +------72 fcd2otWs(ot, ot,)e_(2/(l+s))lal2e(2a/(l+s))at(:-:)_at_ e(2a,/(l+s))a. 

(17) 

For the proof of Equation (17) the reader is referred to Ref. [35]. In 
particular, for s = 0 one has the inverse of the Glauber formula 

(~8) p - 2 fc  d2~176176176 

whereas for s = 1 one recovers Equation (6) that defines the P function. 

B. Photodetection 

Light is revealed by exploiting its interaction with atoms/molecules or 
electrons in a solid, and, essentially, each photon ionizes a single atom or 
promotes an electron to a conduction band, and the resulting charge is then 
amplified to produce a measurable pulse. In practice, however, available 
photodetectors are not ideally counting all photons, and their performance 
is limited by a nonunit quantum efficiency ~, namely only a fraction ~" of the 
incoming photons leads to an electric signal, and ultimately to a count: some 
photons are either reflected from the surface of the detector, or are absorbed 
without being transformed into electric pulses. 

Let us consider a light beam entering a photodetector of quantum 
efficiency ~, i.e., a detector that transforms just a fraction ~" of the incoming 
light pulse into electric signal. If the detector is small with respect to the 
coherence length of radiation and its window is open for a time interval T, 
then the Poissonian process of counting gives a probability p(m; T) of 
revealing m photons written as [42] 

P(m; T) - Tr[ p" [~I(T)T]m ] m! exp[-~I(T)T] : , (19) 
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where p is the quantum state of light, : : denotes the normal ordering of field 
operators, and I(T) is the beam intensity 

2eoc Z T I(T) - ~ E (-)(r, t)- E (+)(r, t) dt, (20) 

given in terms of the positive (negative) frequency part of the electric field 
operator E(+)(r,t) (E(-) (r, t)) . The quantity p ( t ) -  (Tr[pI(T)] equals the 
probability of a single count during the time interval (t, t 4- dt). Let us now 
focus our attention on the case of the radiation field excited in a stationary 
state of a single mode at frequency o9. Equation (19) can be rewritten as 

P~(m) - Tr[ p" (rlat a)m ] m! exp(-r/a t a) : , (21) 

where the parameter r / -  ~cho9/V denotes the overall quantum efficiency of 
the photodetector. Using Equations (15) and (16) one obtains 

p~(m) - p,, r/m(1 - , 
n--m m 

(22) 

where 

Pnn -- (nip[n) = P~=I (n). (23) 

Hence, for unit quantum efficiency a photodetector measures the photon 
number distribution of the state, whereas for nonunit quantum efficiency the 
output distribution of counts is given by a Bernoulli convolution of the ideal 
distribution. 

The effects of nonunit quantum efficiency on the statistics of a 
photodetector, i.e., Equation (22) for the output distribution, can be also 
described by means of a simple model in which the realistic photodetector is 
replaced with an ideal photodetector preceded by a beam splitter of 
transmissivity r--r/. The reflected mode is absorbed, whereas the transmitted 
mode is photodetected with unit quantum efficiency. In order to obtain the 
probability of measuring m clicks, notice that, apart from trivial phase 
changes, a beam splitter of transmissivity r affects the unitary transforma- 
tion of fields 

v q  b ' 
(24) 
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where all field modes are considered at the same frequency. Hence, the 
output mode c hitting the detector is given by the linear combination 

c = x/~a - 41 - rb, (25) 

and the probability of counts reads 

p~(m) -- Tr[U~p | IO)(OlV[lm)(m] | 11 

= Pnn (1 -- . 
n = m  m 

(26) 

Equation (26) reproduces the probability distribution of Equation (22) 
with r = 7. We conclude that a photodetector of quantum efficiency rl is 
equivalent to a perfect photodetector preceded by a beam splitter of trans- 
missivity rl which accounts for the overall losses of the detection process. 

C. Balanced Homodyne Detection 

The balanced homodyne detector provides the measurement of the 
quadrature of the field X~ in Equation (8). It was proposed by Yuen and 
Chan [43], and subsequently demonstrated by Abbas et al. [44]. 

The scheme of a balanced homodyne detector is depicted in Figure 1. The 
signal mode a interferes with a strong laser beam mode b in a balanced 50/50 
beam splitter. The mode b is the so-called the local oscillator (LO) mode of 
the detector. It operates at the same frequency as a, and is excited by the 
laser in a strong coherent state Jz). Since in all experiments that use 
homodyne detectors the signal and the LO beams are generated by a 
common source, we assume that they have a fixed phase relation. In this 
case the LO phase provides a reference for the quadrature measurement, 
namely we identify the phase of the LO with the phase difference between 
the two modes. As we will see, by tuning ~o = argz we can measure the 
quadrature X~o at different phases. 

After the beam splitter the two modes are detected by two identical 
photodetectors (usually linear avalanche photodiodes), and finally the 
difference of photocurrents at zero frequency is electronically processed and 
rescaled by 2lz[. According to Equation (24), the modes at the output of the 
50/50 beam splitter (r = 1/2) are written 

a - b  a + b  
c -  ~/~ , d -  x/2 ' (27) 
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FIGURE 1. Scheme of the balanced homodyne detector. 

hence the difference of photocurrents is given by the following operator 

d t d _  ctc atb + bta 
I -- = . (28) 

21zl 21zl 

Let us now proceed to evaluate the probability distribution of the output 
photocurrent I for a generic state p of the signal mode a. In the following 
treatment we will follow Refs. [45,46]. 

Let us consider the moment generating function of the photocurrent I 

X(X)- Tr[p | Iz)(zleiX'], (29) 

which provides the probability distribution of I as the Fourier transform 

oo d)~ 
P(I)-- oo 2--~e-iZlx(~)" (30) 

Using the BCH formula [47,48] for the SU(2) group, namely 

exp(~ab t - ~*atb) - eCbta(1 + 1~12) (1/2)(b*b-ata) e-~*atb, ~" - ~-~ tan[~l, (31) 

one can write the exponential in Equation (29) in normal-ordered form with 
respect to mode b as follows 

X(~.)--<jtan()~/(21zl))bta[cos(~~l)]ata-btbeitan(~/(21zl))atb>a b. (32) 
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Since mode b is in a coherent state [z) the partial trace over b can be 
evaluated as follows 

X()~)--<eitan(%/(2lzl))z*a[cos(~-~~)l at aeitanO~/(21zl))zat >a 

(33) 

Using now Equation (13), one can rewrite Equation (33) in normal order 
with respect to a, namely 

X()~) -- <eizsin('~/(21zl))a* exp[-2 sin2 (~-~])(at a nt- ]zl2)]eiz*sin(~/(2[z[))a>a ' (34) 

In the strong-LO limit z ~ co, only the lowest order terms in %/Izl are 
retained, at a is neglected with respect to ]z] 2, and Equation (34) simplifies as 
follows 

Jim x()~) -- <ei(Z/2)ei~at exp[-~] ei(X/2)e-i~a} -- <exp[i)~X~o])a, la (35) 

where ~0 = arg z. The generating function in Equation (35) is then equivalent 
to the positive operator-valued measure (POVM) 

YI(x) - ~ ~ exp[iX(X~ - x)] - 6(X~ - x)  = [x)e~<xl, (36) 

namely the projector on the eigenstate of the quadrature Xr with eigenvalue 
x. In conclusion, the balanced homodyne detector achieves the ideal 
measurement of the quadrature Xr in the strong LO limit. In this limit, the 
probability distribution of the output photocurrent I approaches exactly the 
probability distribution p(x ,  ~o)=~ (x[plx)~ of the quadrature X~, and this 
for any state p of the signal mode a. 

It is easy to take into account nonunit quantum efficiency at detectors. 
According to Equation (25) one has the replacements 

c =~ V/-@- v/1 - r/u, 

d , / 1  - 

u, v vacuum modes (37) 

(38) 
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and now the output current is rescaled by 21zlT, namely 

1{[ 
I~-~2- ~ a §  27 (39) 

where only terms containing the strong LO mode b are retained. The POVM 
is then obtained by replacing 

~1 - 7 (u~ + v~) X~ --+ X~ + 27 (40) 

in Equation (36), with w ~ -  (wte @ -+-we-@)~2, w -  u, v, and tracing the 
vacuum modes u and v. One then obtains 

f_ 4-~ dk eik(X_x) eik~/(l_rl)/2rlu ~ 12 n ~ ( x ) -  ~ ~ -  I<Ol IO> 

f_ k~ dk - ~ ~ eik(X~-X)e-k:(( 1-r l ) /8r / )  

1 exp [ -  (x 2A2..]-- X~)21 

2 /2rcA,1 F oo 
dx' e-(1/2A z,)(x-x')21X') ~o~o {X' l , 

o o  

(41) 

where 

2 _ 1 - 7 (42) 
A~ 47 " 

Thus the POVM, and in turn the probability distribution of the output 
photocurrent, are just the Gaussian convolution of the ideal ones with rms 
A, -- v/(1 - 7)/(47). 

D. Heterodyne Detection 

Heterodyne detection allows one to perform the joint measurement of two 
conjugated quadratures of the field [49,50]. The scheme of the heterodyne 
detector is depicted in Figure 2. 
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a(cO+cOlF) 

b(cO--fOIF) 

BS / 
p, / 
z->l 

c(c0) 

It 
F 

 9 COS(COlF t) ~ Re Z / 
 9 sin(c0~Ft) ~ ImZ 

FIGURE 2. Scheme of the heterodyne detector. 

A strong local oscillator at frequency co in a coherent state lot) hits a beam 
splitter with transmissivity r - +  1, and with the coherent amplitude ot 
such that y =  Iotlv/r(1- r) is kept constant. If the output photocurrent is 
sampled at the intermediate frequency cote, just the field modes a and b at 
frequency co 4-cote are selected by the detector. Modes a and b are usually 
referred to as signal band and image band modes, respectively. In the strong 
LO limit, upon tracing the LO mode, the output photocurrent I(cote) 
rescaled by y is equivalent to the complex operator 

Z -- I(cole) -- a - b t, (43) 

where the arbitrary phases of modes have been suitably chosen. The 
heterodyne photocurrent Z is a normal operator, equivalent to a couple of 
commuting selfadjoint operators 

Z - Re Z + ilm Z, [Z, Z t] -- [Re Z, Im Z] -- 0. (44) 

The POVM of the detector is then given by the orthogonal eigenvectors of 
Z. It is here convenient to introduce the notation of Ref. [51] for vectors in 
the tensor product of Hilbert spaces 7-/| 7-/ 

IA)) - ~ Anmln) | Im) = (A | I)lI)) - (I | A':)II)), 
n m  

(45) 

where A ~ denotes the transposed operator with respect to some prechosen 
orthonormal basis. Equation (45) exploits the isomorphism between the 
Hilbert space of the Hilbert-Schmidt operators A, B E HS(7-g) with scalar 
product (A,B)= Tr[A*B], and the Hilbert space of bipartite vectors 
IA)), IB)) E ~ | ~ ,  where one has ((AIB)) = (A, B). 
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Using the above notation it is easy to write the eigenvectors of Z with 
eigenvalue z as (1/~/-~)]D(z))). In fact one has [52] 

O 0  

ZID(z))  ) - (a - b*)(Da(z) @ Ib)lI)) -- (Da(z) | Ib)(a -- b y 4- z) Z [n) | [n) 
n=-0 

= z(Da(z) | Ib)lI)) -- zlD(z))).  (46) 

The orthogonality of such eigenvectors can be verified through the relation 

((D(z)[D(z'))) -- Tr[Dt(z)D(z')] -- rta(2)(z - z'), 

where ~(2)(Ot) denotes the Dirac delta function over the complex plane 

(47) 

f c  d27 exp(vo~* - y*~) a~2)(~) - - W  (48) 

In conventional heterodyne detection the image band mode is in the vacuum 
state, and one is just interested in measuring the field mode a. In this case we 
can evaluate the POVM upon tracing on mode b. One has 

Fl(z, z*) -- 1 Trb[[D(z)) ) ( (D(z)[Ia | 10)(0[] 

_ 1 D ( z ) 1 0 ) ( 0 1 D * ( z )  - 1 Iz ) (z l ,  ( 4 9 )  

namely one obtain the projectors on coherent states. The coherent-state 
POVM provides the optimal joint measurement of conjugated quadratures 
of the field [53]. In fact, heterodyne detection allows one to measure 
the Q-function in Equation (4). According to Equation (3) then it provides 
the expectation value of the antinormal ordered field operator. For a state 
p the expectation value of any quadrature X~ is obtained as 

(X~) - Tr[pX~]-  fc d2~ Re(oee-i~)Q(ot, a*). (50) 

The price to pay for jointly measuring noncommuting observables is an 
additional noise. The rms fluctuation is evaluated as follows 

f d20t [Re(ote-i~~ oe*) (X~o) 2 -- ( A X  2) + ~, m (51) 
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where (AX 2) is the intrinsic noise, and the additional term is usually referred 
to as "the additional 3 dB noise due to the joint measure" [54-56]. 

The effect of nonunit quantum efficiency can be taken into account in an 
analogous way as in Section II.C for homodyne detection. The heterodyne 
photocurrent is rescaled by an additional factor r/1/2, and vacuum modes u 
and v are introduced, thus giving [57] 

~/1 - r/ ~/1 - r/vt Z , - - a - b  t + u -  . 
0 O 

(52) 

Upon tracing over modes u and v, one obtain the POVM 

fc d2V v(Ole•215 I0) n , ( z , z * )  - -7-u(OI u v 

-- [ d2y ey(Z,_z,)_• e-((1-o)/o)l• 2 
J~ 7 -  

-- f e  d2z' rl _(o/(l_o)lZ_zl 2 _ e-(Iz'-zl2)/A~ - rt(1 - 0-------~ e - ~ ID (z l ) ) ) ( (D (z ' ) l .  

(53) 

The probability distribution is then a Gaussian convolution on the complex 
2 plane of the ideal probability with rms A -- (1 - 0)/0. 

Analogously, the coherent-state POVM for conventional heterodyne 
detection with vacuum image band mode is replaced with 

f c  d2zf 1-I,(z, z*) - rtzX----~o e-(Iz'-zl2/a~,)lz')(z'l. (54) 

From Equation (9) we can equivalently say that the heterodyne 
detection probability density is given by the generalized Wigner function 
Ws(a, c~*), with s = 1 - (2/r/). Notice that for r /<  1, the average of functions 
ana*m is related to the expectation value of a different ordering of field 
operators. However, one has the relevant identity [27,58] 

 nm, ( )( )( 
 9 (at) nam " s - -  ~ k! n m t -  s k 

k=O k k ~ " (at) ~-kam-k :t, (55) 
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where (n, m) = min(n, m), and then 

Z d2o~Wl_(2/o)(ot, or*) crmol*n 

(n,m) n m 1 - -  rl = Z k! <am-k(at)n-k>. 
k=O k k 7/ " 

(56) 

Notice that the measure of the Q-function (or any smoothed version for 
r/< 1) does not allow one to recover the expectation value of a n y  operator 
through an average over heterodyne outcomes. In fact, one needs the 
admissibility of anti-normal ordered expansion [59] and the convergence of 
the integral in Equation (56). In particular, the matrix elements of the 
density operator cannot be recovered. For some operators in which 
heterodyne measurement is allowed, a comparison with quantum homodyne 
tomography will be given in Section IV.C. 

Finally, it is worth mentioning that all results of this section are valid also 
for an image-band mode with the same frequency of the signal. In this case a 
measurement scheme based on multiport homodyne detection should be 
used [50,58,60-66]. 

III .  GENERAL TOMOGRAPHIC METHOD 

In this section we review the general tomographic method of spanning sets 
of operators of Ref. [24], and re-derive in this general framework the exact 
homodyne tomography method of Ref. [8]. In the first section we first give a 
brief history of quantum tomography, starting with the original proposal of 
Vogel and Risken [7], that extended the conventional tomographic imaging 
to the domain of quantum optics. Here we will briefly sketch the 
conventional imaging tomographic method, and show the analogy with the 
method of Ref. [7]. The latter achieves the quantum state via the Wigner 
function, which in turn is obtained by inverse Radon transform of the 
homodyne probability distributions for varying phase with respect to the 
LO. As already mentioned, the Radon transform inversion is affected by 
uncontrollable bias: such limitations and the intrinsic unreliability of this 
method are thoroughly explained in the same section. 

In contrast to the Radon transform method, the first exact method of Ref. 
[8] (and successively refined in Ref. [9]) allows the reconstruction of the 
density matrix p, bypassing the step of the Wigner function, and achieving 
the matrix elements of p--or  the expectation of any arbitrary operator--by 
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just averaging the pertaining estimators (also called Kernel functions 
or pattern functions), evaluated on the experimental homodyne data. This 
method will be re-derived in Section III.C.3, as a special case of the general 
tomographic method of Ref. [24] here reviewed in Section III.C, where 
we introduce the concept of "quorum," which is the complete set of 
observables whose measurement provides the expectation value of any 
desired operator. Here we also show how some "orthogonality" and 
"completeness" relations in the linear algebra of operators are sufficient to 
individuate a quorum. As another application of the general method, in 
Section III.C.5 the tomography of spin systems [28] is reviewed, which was 
originally derived from the group theoretical methods of Refs. [18-20]. 
Another application is the quantum tomography of a free particle state, 
given in Section III.C.6. 

In Section III.D we include some further developments to improve the 
tomographic method, such as the deconvolution techniques of Ref. [20] to 
correct the imperfections of detectors and experimental apparatus with a 
suitable data processing, and the adaptive tomography of Ref. [22] to reduce 
the statistical fluctuations of tomographic estimators, by adapting the 
averaged estimators to the given sample of experimental data. 

The other relevant topics of homodyning observables, multimode 
tomography, and tomography of quantum operations will be given a 
separate treatment in the following sections of the chapter. 

A. Brief Historical Excursus 

The problem of quantum state determination through repeated measure- 
ments on identically prepared systems was originally stated by Fano in 
1957 [5], who first recognized the need for measuring more that two 
noncommuting observables to achieve such a purpose. However, it was only 
with the proposal by Vogel and Risken [7] that quantum tomography was 
born. The first experiments, which already showed reconstructions of 
coherent and squeezed states, were performed by Raymer and his group at 
the University of Oregon [6]. The main idea at the basis of the first proposal 
is that it is possible to extend to the quantum domain the algorithms that are 
conventionally used in medical imaging to recover two-dimensional (mass) 
distributions from unidimensional projections in different directions. 
This first tomographic method, however, was unreliable for the reconstruc- 
tion of an unknown quantum state, since arbitrary smoothing parameters 
were needed in the Radon transform-based imaging procedure. The first 
exact unbiased tomographic method was proposed in Ref. [8], and 
successively simplified in Ref. [9]. Since then, the new exact method has 
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been practically implemented in many experiments, such as the measure- 
ment of the photon statistics of a semiconductor laser [10], and the 
reconstruction of the density matrix of a squeezed vacuum [11]. The success 
of optical homodyne tomography has then stimulated the development of 
state-reconstruction procedures in other quantum harmonic oscillator 
systems, such as for atomic beams [12], and the vibrational state of a 
molecule [13], of an ensemble of helium atoms [14], and of a single ion in a 
Paul trap [15]. 

After the original exact method, quantum tomography has been 
generalize d to the estimation of arbitrary observables of the field [16], to 
any number of modes [17], and, finally, to arbitrary quantum systems via 
group theory [18-21], with further improvements such as noise deconvolu- 
tion [20], adaptive tomographic methods [22], and the use of max-likelihood 
strategies [23], which has made it possible to reduce dramatically the number 
of experimental data, up to a factor of 103-105, with negligible bias for most 
practical cases of interest. Finally, a method for tomographic estimation of 
the unknown quantum operation of a quantum device has been proposed 
[25], where a fixed input entangled state plays the role of all input states in a 
sort of quantum parallel fashion. Moreover, as another manifestation of 
such a quantum parallelism, one can also estimate the ensemble average of 
all operators by measuring only one fixed "universal" observable on an 
extended Hilbert space in a sort of quantum hologram [67]. This latest 
development is based on the general tomographic method of Ref. [24], 
where the tomographic reconstruction is based on the existence of spanning 
sets of operators, of which the irreducible unitary group representations of 
the group methods of Refs. [18-21] are just a special case. 

B. Conventional Tomographic Imaging 

In conventional medical tomography, one collects data in the form of 
marginal distributions of the mass function m(x, y). In the complex plane the 
marginal r(x, ~p) is a projection of the complex function m(x,y) on the 
direction indicated by the angle ~0 E [0, n], namely 

- - dY m((x + iy ei , (x - iy)e-i ) (57) 

The collection of marginals for different ~0 is called "Radon transform." The 
tomography process essentially consists in the inversion of the Radon 
transform (57), in order to recover the mass function m(x,y) from the 
marginals r(x, ~o). 
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Here we derive inversion of Equation (57). Consider the identity 

m(ot, ol*) -- fc d2 fl{~(2)(O/ --  fl)m(fl, ,8"), (58) 

where ~(2)(IY) denotes the Dirac delta function of Equation (48), and 
m(~,  ~ * ) =  m(x ,  y)  with ~ = x + iy and ~*=  x - i y .  It is convenient to rewrite 
Equation (48) as follows 

fo io +ec dk  2~ dq9 e_ik~ _ 
{~(2)(0/) - -  --~ k -~- ~ -4  Ikl ~ , (59) 

with ~e-Re(c~e- i~)--c~+~.  Then, from Equations (58) and (59) the 
inverse Radon transform is obtained as follows: 

m(x,y) fo d*f_ f_~dkeik(x' - ~ d x ' r ( x ' ,  ~) -s Ikl -~)  
o o  o o  

(60) 

Equation (60) is conventionally written as 

m ( x , y )  fo~d~Pf_  ~ - ~ dx 'r(x ' ,  q)) K ( x '  - ot~), ec (61) 

where K(x)  is given by 

f__t-e~ ~ 1 f0+oo K ( x )  = ~ Ikle i~x - ~ Re dk ke  ikx - 1 1 - 2 79x2' (62) 

with 79 denoting the Cauchy principal value. Integrating Equation (61) by 
parts one obtains the tomographic formula that is usually found in medical 
imaging, i.e., 

lfo  m(x ,  y) -- ~ d~o 79 dx'  
o o  

1 0 
x' - oqo ax' r(x',  q)), (63) 

which allows the reconstruction of the mass distribution m(x ,  y) from its 
projections along different directions r(x,  ~p). 

1. Ex tens ion  to the Quan tum Domain  

In the "quantum imaging" process the goal is to reconstruct a quantum 
state in the form of its Wigner function starting from its marginal 
probability distributions. As shown in Section II.A, the Wigner function is a 
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real normalized function that is in one-to-one correspondence with the state 
density operator p. As noticed in Equation (7), the probability distributions 
of the quadrature operators X~-(atei~~ are the marginal 
probabilities of the Wigner function for the state p. Thus, by applying the 
same procedure outlined in the previous subsection, Vogel and Risken [7] 
proposed a method to recover the Wigner function via an inverse Radon 
transform from the quadrature probability distributions p(x, ~o), namely 

W(x,y) Z ~ d ~ f _  ~-~ f_t-~176176176 - - -  dx'p(x', ~o) ~ Ikl (64) 

(Surprisingly, in the original paper [7] the connection to the tomographic 
imaging method was never mentioned.) As shown in Section II.C the 
experimental measurement of the quadratures of the field is obtained using 
the homodyne detector. The method proposed by Vogel and Risken, namely 
the inversion of the Radon transform, was the one used in the first 
experiments [6]. 

This first method is, however, not reliable for the reconstruction of an 
unknown quantum state, due to the intrinsic unavoidable systematic error 
related to the fact that the integral on k in Equation (64) is unbounded. In 
fact, in order to evaluate the inverse Radon transform, one would need the 
analytical form of the marginal distribution of the quadrature p(x, ~o), which, 
in turn, can only be obtained by collecting the experimental data into 
histograms, and thence "spline-ing" them. This, of course, is not an 
unbiased procedure since the degree of spline-ing, the width and the number 
of the histogram bins, and finally the number of different phases used to 
collect the experimental data sample introduce systematic errors if they are 
not set above some minimal values, which actually depend on the unknown 
quantum state that one wants to reconstruct. Typically, an over-spline-ing 
will washout the quantum features of the state, whereas, vice versa, an 
under-spline-ing will create negative photon probabilities in the reconstruc- 
tion (see Ref. [8] for details). 

A new exact method was then proposed in Ref. [8], as an alternative to the 
Radon transform technique. This approach, referred to as quantum 
homodyne tomography, allows one to recover the quantum state of the 
field p--along with any ensemble average of arbitrary operators--by 
directly averaging functions of the homodyne data, abolishing the inter- 
mediate step of the Wigner function, which is the source of all systematic 
errors. Only statistical errors are present, and they can be reduced arbitrarily 
by collecting more experimental data. This exact method will be re-derived 
from the general tomographic theory in Section III.C.3. 
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C. General Method of Quantum Tomography 

In this section the general method of quantum tomography is explained in 
detail. First, we give the basics of Monte Carlo integral theory which are 
needed to implement the tomographic algorithms in actual experiments and 
in numerical simulations. Then, we derive the formulas on which all schemes 
of state reconstruction are based. 

1. Basic Statistics 

The aim of quantum tomography is to estimate, for an arbitrary quantum 
system, the mean value <O) of a system operator O using only the results of 
the measurements on a set of observables {Qz, ;L e A}, called the"quorum." 
The procedure by which this can be obtained needs the estimator or "Kernel 
function" 7~[O](x, ~) which is a function of the eigenvalues x of the quorum 
operators. Integrating the estimator with the probability p(x, ~) of having 
outcome x when measuring Qz, the mean value of O is obtained as follows 

<O> - dX f du (x)p(x,X)Te[O](x,X), (65) 

where the first integral is performed on the values of ;L that designate all 
quorum observables, and the second on the eigenvalues of the quorum 
observable Qz determined by the ~ variable of the outer integral. For 
discrete set A and/or discrete spectrum of the quorum, both integrals in (65) 
can be suitably replaced by sums. 

The algorithm to estimate (O) with Equation (65) is the following. One 
chooses a quorum operator Qz by drawing L with uniform probability in A 
and performing a measurement, obtaining the result xi. By repeating the 
procedure N times, one collects the set of experimental data {(xi, Li), with 
i - 1 , . . . , N } ,  where /L i identifies the quorum observable used for the ith 
measurement, and xi its result. From the same set of data the mean value of 
any operator O can be obtained. In fact, one evaluates the estimator of (O) 
and the quorum Qz, and then samples the double integral of (65) using 
the limit 

( O ~ -  lira 1 N U---~oo --N Z ']~[O](xi'~i)" (66) 
i=1 

Of course the finite sum 

1 N 
FN -- 

i=1 
(67) 
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gives an approximation of (O). To estimate the error in the approximation 
one applies the central limit theorem that we recall here. 

Central limit theorem. Consider N statistically uncorrelated random 
variables {zi, i =  1 , . . . ,N} ,  with mean values #(z/), variances aZ(zi), and 
bounded third-order moments. If the variances a2(zi) are all of the same 
order then the statistical variable "average" y defined as 

1 N 
YN -- ~ ~ Zi (68) 

i=1 

has mean and variance 

1 N 
/ZQVN) -- ~ Z ~(Zi), 

i=1 

1 N 
O'2QFN) -- ~ Z O'2(Zi)" (69) 

i=1 

The distribution ofyN approaches asymptotically a Gaussian for N ~  e~. In 
practical cases, the distribution of y can be considered Gaussian already for 
N as low as N ~  10. 

For our needs the hypotheses are met if the estimator 7r Li) 
in Equation (67) has limited moments up to the third order, since, even 
though xi have different probability densities depending on Xi, nevertheless, 
since Xi is also random all zi here given by 

Z i ~--- T~[O](xi, i~i) (70) 

have common mean 

l~(Zi)--- (0 )  (71) 

and variance 

~2(zz)- fA dx f du~(x)p(x,Z)~2[O](x,Z)- (0) 2. (72) 

Using the central limit theorem, we can conclude that the experimental 
average y----FN in Equation (67) is a statistical variable distributed as a 
Gaussian with mean value # ( y s )  -- tz(Zi) and variance a2(yu)  = (1/N)a2(zi).  
Then the tomographic estimation converges with statistical error that 
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decreases as N -1/2. A statistically precise estimate of the confidence 
interval is given by 

N Z yN] 2 d Z Z = I [  i -- 
eN-- V _N(-N-1) ' (73) 

with Zz given by Equation (70) and YN by Equation (68). In order to test that 
the confidence intervals are estimated correctly, one can check that the FN 
distribution is actually Gaussian. This can be done by comparing the 
histogram of the block data with a Gaussian, or by using the X 2 test. 

2. Characterization of the Quorum 
Different estimations technique have been proposed tailored to different 
quantum systems, such as the radiation field [9,17], trapped ions and 
molecular vibrational states [68], and spin systems [69]. All the known 
quantum estimation techniques can be embodied in the following approach. 

The tomographic reconstruction of an operator O is possible when there 
exists a resolution of the form 

0 - fA dX Tr[OB*(X)]C(X), (74) 

where ;~ is a (possibly multidimensional) parameter on a (discrete or 
continuous) manifold A. The only hypothesis in (74) is the existence of the 
trace. If, for example, O is a trace-class operator, then we do not need to 
require B(;~) to be of Hilbert-Schmidt class, since it is sufficient to require 
B(;~) bounded. The operators C(~,) are functions of the quorum of 
observables measured for the reconstruction, whereas the operators B(~,) 
form the dual basis of the set C(~,). The term 

E[O](X) = Tr[OB*(X)]C(X) (75) 

represents the quantum estimator for the operator O. The expectation value 
of O is given by the ensemble average 

(O)=Tr[Op] - fA d~ Tr[OBt(~)]Tr[C(~)P] = fA d~, (C[O](,k)), (76) 

where p is the density matrix of the quantum system under investigation. 
Notice that the quantity Tr[C(;~)p] depends only on the quantum state, and 
it is related to the probability distribution of the measurement outcomes, 
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whereas the term Tr[OBt(;~)] depends only on the quantity to be measured. 
In particular, the tomography of the quantum state of a system corresponds 
to writing Equation (74) for the operators O = [k)(n[, {In)} being a given 
Hilbert space basis. For a given system, the existence of a set of operators 
C(;~), together with its dual basis B(;~) allows universal quantum estimation, 
i.e., the reconstruction of any operator. 

We now give two characterizations of the sets B(;~) and C(;~) that are 
necessary and sufficient conditions for writing Equation (74). 

Condition 1: bi-orthogonality. Let us consider a complete orthonormal 
basis of vectors In) (n=0,  1,.. .).  Equation (74) is equivalent to the bi- 
orthogonality condition 

f~x d)~(qlBe ()~)lp)(mlC()~)[1) - 6mp6tq, (77) 

where 30. is the Kronecker delta. Equation (77) can be straightforwardly 
generalized to a continuous basis. 

Condition 2: completeness. If the set of operators C()~) is complete, namely 
if any operator can be written as a linear combination of the C(;~) as 

O -- fA dX a(X) C(X), (78) 

then Equation (74) is also equivalent to the trace condition 

Tr[ Bt ()0 C(#)] - 6(~, #), (79) 

where 3(;~,/z) is a reproducing kernel for the set B(;~), namely it is a function 
or a tempered distribution which satisfies 

fA dX B(X) ~(X, U) -- B(U). (80) 

An analogous identity holds for the set of C(;~) 

(81) 

The proofs are straightforward. The completeness condition on the 
operators C0~) is essential for the equivalence of (174) and (79). A simple 
counterexample is provided by the set of projectors P(;~)= I;~)(;~1 over the 
eigenstates of a self-adjoint operator L. In fact, Equation (79) is satisfied by 
C(;~) = B(;~)-P(;~). However, since they do not form a complete set in the 
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sense of Equation (78), it is not possible to express a generic operator in the 
form X = fA dX (XIO[X)[X)(XI. If either the set B(X) or the set C(X) satisfy 
the additional trace condition 

Tr[Bt(#)B(X)] = 8(X, #), (82) 

Tr[C*(#)C(,~)] = 6(,~, #), (83) 

then we have C(X)= B(X) (notice that neither B(X) nor C(X) need to be 
unitary). In this case, Equation (74) can be rewritten as 

O - J2 d~. Tr [oc*o0]co0. (84) 

A certain number of observables Q~ constitute a quorum when there 
are functions f~(Q~)= C(k) such that C(~) form an irreducible set. The 
quantum estimator for O in Equation (75) is then written as a function of 
the quorum operators 

s - Sz [O](Q~). (85) 

Notice that if a set of observables Q~ constitutes a quorum, than the set of 
projectors Iq)~(ql over their eigenvectors provides a quorum too, with 
the measure dX in Equation (74) including the measure d#~(q). Notice also 
that, even once the quorum has been fixed, the unbiased estimator for an 
operator O will not in general be unique, since there can exist functions 
A/'(QD that satisfy [22] 

fA dX.A/'(Q~) - O, (86) 

and that will be called "null estimators." Two unbiased estimators that 
differ by a null estimator yield the same results when estimating the operator 
mean value. We will see in Section III.D.2 how the null estimators can be 
used to reduce the statistical noise. 

In terms of the quorum observables Qz Equation (76) is rewritten 

(O) -- fA dX Tr[OBt(,k)] Tr[fx(Q~)p] 

- fA dX f d.~(q)p(q,)OTr[OB'(X)]f~(q), (87) 
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where p(q, )~) = ~<qlplq)z is the probability density of getting the outcome q 
from the measurement of Qz on the state p. Equation (87) is equivalent to 
the expression (65), with estimator 

7r ~) - Tr[OBt()~)]fz(q). (88) 

Of course it is of interest to connect a quorum of observables to a 
resolution of the form (74), since only in this case can there be a feasible 
reconstruction scheme. If a resolution formula is written in terms of a set of 
self-adjoint operators, the set itself constitutes the desired quorum. 
However, in general a quorum of observables is functionally connected 
to the corresponding resolution formula. If the operators C0~) are 
unitary, then they can always be taken as the exponential map of a set of 
self-adjoint operators, which then are identified with our quorum Q~. The 
quantity Tr[C(%)p] is thus connected with the moment generating function 
of the set Q~, and hence to the probability density p(q,%) of the 
measurement outcomes, which play the role of the Radon transform in the 
quantum tomography of the harmonic oscillator. In general, the operators 
C(%) can be any function (neither self-adjoint nor unitary) of observables 
and, even more generally, they may be connected to POVMs rather than 
observables. 

The dual set B()~) can be obtained from the set C0~) by solving 
Equation (79). For finite quorums, this resorts to a matrix inversion. An 
alternative procedure uses the Gram-Schmidt orthogonalization procedure 
[24]. No such general procedure exists for a continuous spanning set. Many 
cases, however, satisfy conditions (82) and (83), and thus we can write 
B(X)-- C(X) t. 

3. Quantum Estimation for Harmonic Oscillator Systems 

The harmonic oscillator models several systems of interest in quantum 
mechanics, such as the vibrational states of molecules, the motion of an ion 
in a Paul trap, and a single mode radiation field. Different proposals have 
been suggested in order to reconstruct the quantum state of a harmonic 
system, which all fit the framework of the previous section, which is also 
useful for devising novel estimation techniques. Here, the basic resolution 
formula involves the set of displacement operators D ( ~ ) =  exp(~a t - ~ * a ) ,  
which can be viewed as exponentials of the field-quadrature operators 
X~ = (ate i~ + ae-i~)/2. We have shown in Section II.C that for a single- 
mode radiation field X~ is measured through homodyne detection. For the 
vibrational tomography of a molecule or a trapped ion X~ corresponds to a 
time-evolved position or momentum. The set of displacement operators 
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satisfies Equations (79) and (83), since 

Tr[D(ot)Dt(fl)] = rta(2)(ot- fl), 

whereas Equation (84) reduces to the Glauber formula 

(89) 

fr d2~ Tr[ODt(ot)]D(ot). O -  - 7  

Changing to polar variables ~ = (-i/2)ke i~, Equation (90) becomes 

(90) 

O - f o  ~ --dgof~_ ~176 o0 dklkl4 Tr[OeikX*]e-ikX*' (91) 

which shows explicitly the dependence on the quorum X,. Taking the 
ensemble average of both members and evaluating the trace over the set of 
eigenvectors of X,, one obtains 

fo ~ dgo f_ ~-~ - - -  dxp(x, go) ~[O](x, go) ( o )  7t ~ (92) 

where p(x; go)= ,(xlplx), is the probability distribution of quadratures 
outcome. The estimator of the operator ensemble average (O) is given by 

~[O](x, go) = Tr[OK(X, - x)], (93) 

where K(x) is the same as in Equation (62). 
Equation (92) is the basis of quantum homodyne tomography. Notice 

that even though K(x) is unbounded, the matrix element (~PIK(Xr x)14~) 
can be bounded, whence it can be used to sample the matrix element (Ttlp[4~) 
of the state p, which, according to Section III.C.1, is directly obtained by 
averaging the estimator (93) over homodyne experimental values. In fact, 
for bounded (~PIK(X~- x)14~), the central limit theorem guarantees that 

(V~IpI~) fo~ dg) f_ ~~ - - -  d x p ( x ,  - x)t4 ) 
g c~ 

(94) 

= lim 1 N N-----~OO -N Z (~[g(Xq3n - Xn))]~) ' (95) 
n=0 
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where x, is the homodyne outcome measured at phase 9, and 
distributed with probability p ( x ,  9). Systematic errors are eliminated by 
choosing randomly each phase 9, at which homodyne measurement is 
performed. As shown in Section III.C.1, for a finite number of measure- 
ments N, the estimate (95) of the integral in Equation (94) is Gaussian 
distributed around the true value (~[P[4~), with statistical error decreasing 
as N -1/2. Notice that the measurability of the density operator matrix 
element depends only on the boundedness of the matrix element of the 
estimator, and that no adjustable parameters are needed in the procedure, 
which thus is unbiased. 

The general procedure for noise deconvolution is presented in 
Section III.D.1. However, we give here the main result for the density 
matrix reconstruction. As shown in Section II.C, the effect of the efficiency 
in homodyne detectors is a Gaussian convolution of the ideal probability 
p ( x ,  ~o), as 

V/Tc 2rl f~-~ d x '  e -(2r#(1-rl))(x-x')2 p (x ' ,  9). P,7( x ,  9) - (1 - r}) (96) 

The tomographic reconstruction procedure still holds upon replacing p ( x ,  9) 
with p,7(x, 9), so that 

fo ~ d9 ffo~ p -- ~ dxp,7(x,  9)K,7(X~o - x) ,  
cx~ 

(97) 

where now the estimator is 

1 f0 K,7(x ) -- -~ Re k dk  e ((1-'7)/8'7)k2+ikx. (98) 

In fact, by taking the Fourier transform of both members of Equation (96), 
one can easily check that 

fo ~ d9 ffo~ P - --~ o0 d x p . ( x ,  9)K.(X~o - x )  

= - -  d x p ( x ,  9)K(X~o - x) .  
X oo 

(99) 

Notice that the anti-Gaussian in Equation (98) causes a much slower 
convergence of the Monte Carlo integral (97): the statistical fluctuation will 
increase exponentially for decreasing detector efficiency r}. In order to 
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achieve good reconstructions with non-ideal detectors, then one has to 
collect a larger number of data. 

It is clear from Equation (95) that the measurability of the density matrix 
depends on the chosen representation and on the quantum efficiency of the 
detectors. For example, for the reconstruction of the density matrix in the 
Fock basis the estimators are given by 

ff ~ dk]k] e((l_ri)/8rl)k2_ik x (n + d[eikX*[n) 7r (n + dl](x, ~0) -- ~ 4 

= eid(~o+(n/2) )~ n! (n + d)! ~ dklkle((1-2~)/2~)k2-i2kxkdLdn(k2)' 

(1001 

where d L~(x) denotes the generalized Laguerre polynomials. Notice that 
the estimator is bounded only for rl > 1/2, and below the method would give 
unbounded statistical errors. However, this bound is well below the values 
that are reasonably achieved in the laboratory, where actual homodyne 
detectors have efficiencies ranging between 70% and 90% [11,70]. 
Moreover, a more efficient algorithm is available, that uses the factorization 
formulas that hold for rl = 1 [71,72] 

7r (dl](x, ~0) = eia~[4xu~(x)v,+d(x) 

-- 2x/n + lun+l(X)Vn+d(x) -- 2x/n + d + lun(x)vn+d+l(x)], (101) 

where uj(x) and vj(x) are the normalizable and unnormalizable eigenfunc- 
tions of the harmonic oscillator with eigenvalue j, respectively. The noise 
from quantum efficiency can be unbiased via the inversion of the Bernoulli 
convolution, which holds for rl > 1/2 [73]. 

The use of Equation (92) to estimate arbitrary operators through 
homodyne tomography will be the subject of Section IV. Notice that 
Equation (90) cannot be used for unbounded operators; however the 
estimators for some unbounded operators will be derived in Section IV.A. 

4. Some Generalizations 

Using condition (79) one can see that the Glauber formula can be 
generalized to 

0 -- ~ d2a~, Tr[OF1D(ot)F2]F21Dt(ot)F11 (102) 
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where F1 and F2 are two generic invertible operators. By choosing 
FI* -- F2 -- S(0, where S(0 is the squeezing operator 

S ( ( ) -  exP[2 (~'2a'2- ('2a2)], ( ~ C, (103) 

we obtain the tomographic resolution 

<o> f d f_ - - -  dxpr 9) Tr[OK(X,r - x)], 
oo 

(104) 

in terms of the probability distribution of the generalized squeezed 
quadrature operators 

1 X~ = S*(OX~S(O-~ [(lze ir + ve-i~)a * + (Ize -ir + v*ei~)a], (105) 

with/z = coshl(I and v = sinhl(lexp[2i arg(0]. Such an estimation technique 
has been investigated in detail in Ref. [74]. 

A different estimation technique can be obtained by choosing in 
Equation (102) F 1 -  I, the identity operator, and F 2 -  (_)a'a, the parity 
operator. In this case one gets 

0 -  fc --~ d2~ Tr[ODt (~176 (106) 

Changing variable to ot = 2/3 and using the relation 

(-)daD(2fl) -- Dt (fl)(-)daD(fl) (107) 

it follows 

( 0 ) -  fc d2flx Tr[ 04Dt(fl)(-)a*aD(fl)] Tr[D(fl)PDt(fl)(-)da]" (108) 

Hence, it is possible to estimate (O) by repeated measurement of the parity 
operator on displaced versions of the state under investigation. An 
approximated implementation of this technique for a single-mode radiation 
field has been suggested in Refs. [75,76] through the measurement of the 
photon number probability on states displaced by a beam splitter. A similar 
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scheme has been used for the experimental determination of the motional 
quantum state of a trapped atom [15]. In comparison with the approximated 
methods, Equation (108) allows one to obtain directly the estimator 7"r 
for any operator O for which the trace exists. For instance, the 
reconstruction of the density matrix in the Fock representation is obtained 
by averaging the estimator 

~[In) (n + dl I](c0 - 4(n + dlDt(a)(-)a*aD(a)ln) 

--4( )~+d~ n! _ _ Ln (4lot I (n + d)! (2~ d 2), (109) 

without the need of artificial cut-off in the Fock space [15]. 

5. Quantum Estimation for Spin Systems 
The spin tomographic methods of Refs. [20,28,69] allow the reconstruction 
of the quantum state of a spin system. These methods utilize measurements 
of the spin in different_, directions, i.e., the quorum is the set of operators 
of the form S. ~, where S is the spin operator and ~ -  (cos qg sin 0, 
sin q9 sin O, cos 0) is a varying unit vector. Different quorums can be used that 
exploit different sets of directions. 

The easiest choice for the set of directions ~ is to consider all possible 
directions. The procedure to derive the tomographic formulas for this 
quorum is analogous to the one employed in Section III.C.3 for homodyne 
tomography. The reconstruction formula for spin tomography for the 
estimation of an arbitrary operator O is 

(0) -- ~ p(m,~) 7r ~,  
m=-s  

(11o) 

where p(m,~) is the probability of obtaining the eigenvalue m when 
measuring the spin along direction ~, ~[O](m,~) is the tomographic 
estimator for the operator O, and f2 is the unit sphere. In this case the 
operators C0~) of Equation (74) are given by the set of projectors over 
the eigenstates Im, ~) of the operators S.  ~. Notice that this is a complete 
set of operators on the system Hilbert space 7-/. In order to find the dual 
basis B, one must consider the uni t~y operators obtained by exponentiating 
the quorum, i.e., D(~, ~ - - e x p ( h p S .  ~), which satisfy the bi-orthogonality 
condition (77). In fact, D0P,~) constitutes a unitary irreducible represen- 
tation of the group G -  SU(2), and the bi-orthogonality condition is just 
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the orthogonality relations between the matrix elements of the group 
representation [77], i.e. 

V 
fG dg D#(g)D~k(g) - 7 ~jk8,,, (111) 

where D is a unitary irreducible representation of dimension d, dg is 
the group Haar invariant measure, and v=fGdg. For G=SU(2),  
with the (2s+ 1)-dimensional unitary irreducible representation D(Tt,~) 
(~ 6 S 2 unit vector on the sphere, and 7t 6 [0,4~] the rotation angle 
around ~) the Haar's invariant measure is sinZ(#r/2)sinOdOd~od74 and 
V/d = 8~2/(2s + 1). We need, however, to integrate only for 7r ~ [0, 2~] (the 
change of sign for 2~ rotation is irrelevant), whence the bi-orthogonality 
condition is 

L /0 2s +1  
4Tc2 

and hence the spin tomography identity is given by 

(112) 

f~ Z 2~ 7t Tr[ODt(Tt,~)]D(gr,~).. (113) O -- 2s +___~1 d~ dTt sin 2 
4~ 2 

Notice the analogy between Equation (113) and Glauber's formula (90). 
In fact, both homodyne and spin tomography can be derived using the 
method of group tomography [20], and the underlying groups are the 
Weyl-Heisenberg group and the SU(2) group, respectively. Formula (110) is 
obtained from Equation (113) through the expectation value calculated on 
the eigenstates of S.  ~. Thus, the explicit form of the tomographic estimator 
is obtained as 

7~[O](m, ~ ) 2 s +  1Z2n ~ [ " ]  - ~ dTt sin 2 Tr Oe -i7~S'~ e item (114) 
2  9 

As already noticed, there are other possible quorums for spin 
tomography. For example, for spin s =  1/2 systems, a self-dual basis for 
the operator space is given by the identity and the Pauli matrices. In fact, 
from the properties Tr[a~] = 0 and a~a# = i Y~y e~#• (~, fl, y = x, y, z), 
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both the bi-orthogonality relation (77) and the trace condition (79) follow. 
In this case the reconstruction formula is 

1 1 
(O) - ~ Tr[O] + ~ Z ~ mp(m, fi~)Tr[Ocr~]. (115) 

ot=x,y,z m=4-1/2 

In the case of generic s spin system, Weigert has also shown [69] that by 
choosing (2s + 1) 2 arbitrary directions for ~, it is possible to obtain (in 
almost all cases) a quorum of projectors Is,~j)(s,~jl ( j -  1 , . . . , (2s  + 1)2), 
where Is, ~j) is the eigenstate pertaining to the maximum eigenvalue s of 
S.fij. 

6. Quantum Estimation for a Free Particle 
The state of a moving packet can be inferred from position measurement at 
different times [78]. Assuming a particle with unit mass and using 
normalized unit h/2 = 1, the free Hamiltonian is given by the square of 
momentum operator HE =-p2. In terms of the eigenvectors Ix) of the 
position operator and of the self-adjoint operator 

R(x, ~) - e-ip2~lx) (xle ip2~, (116) 

the probability density of the position of the free particle at time z is 
obtained as p(x, z) = Tr[pR(x, ~)]. The operators R(x, ~) provide a self-dual 
basis, and an arbitrary particle state can be written as 

p -  fR fR dx dzp(x, z) R(x, z). (117) 

D. Noise Deconvolution and Adaptive Tomography 

In this section we will analyze: (1) the noise deconvolution scheme of Refs. 
[20,79], that allows one to eliminate the experimental noise that arises from 
imperfect detection and lossy devices; and (2) the adaptive tomography 
technique of Ref. [22] that allows one to tune the unbiased tomographic 
estimators to a specific sample of experimental data, in order to reduce the 
statistical noise. 
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1. Noise Deconvolution 

In short, it is possible to eliminate detection noise when it is possible to 
invert the noise map. A noise process is described by a trace preserving a 
completely positive map F. The noise can be deconvolved at the data 
analysis if 

 9 the inverse of F exists, namely F - I :  /2(7-{)--~/2(~), with F-I[F[O]] = 
O, for gO ~ s 

 9 the estimator s is in the domain of F -1, 
 9 the map F-I[s is a function of Q~. 

If the above conditions are met, we can recover the "ideal" expectation 
value (O) that we would get without noise. This is achieved by replacing 
s with F-I[g~[O](Q~)], and evaluating the ensemble average 
with the state F~(p), namely the state affected by the noise (F ~ represents 
the dual map that provides the evolution in the Schroedinger picture). 
Hence, one has 

(o)- fA dX Tr[r-l [G[Ol(Q;O]r~(p)] 

d~. (F -1 [s 
(118) 

Consider, for example, the noise arising from nonunity quantum 
efficiency r/of homodyne detectors. Recall that the ideal probability density 

2 __ (1 - -  17) / (4 / ] ) .  Then, the is replaced by a Gaussian convolution with rms A, 
map F, acts on the quorum as follows 

F,[eikX~] - f_~ ~ 
o o  

d x  e ikx 1-'r/[lX)(Xl] 

- dx 
oc) (x)  

dx' e ikx e-(X-X~)2 /2 A 2 [ ] X t) (x'l] (119) 

___ e- 89 

Of course one has 

i-,-~l [eikX~o] _ e 89 (120) 
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In terms of the Fourier transform of the estimator 

7~[O](y, ~o) - ~ ~ eiXyTg[O](x, ~o), (121) 

one has 
7~,[O](y, ~o) - e  89 ~0). (122) 

We applied the above result in Section III.C.3, where the effect of nonunity 
quantum efficiency for reconstructing the density matrix elements was 
discussed. The use of the estimator in Equation (98) and the origin of the 
bound r /> 1/2 is now more clear. 

Another simple example of noise deconvolution is given here for a spine 
1/2 system. Consider the map that describes the "depolarizing channel" 

Fp[O]-- (1 - p ) o + P  Tr[O]I, 0 < < 1 (123) - P -  . 

This map can be inverted for p -r 1 as follows 

1 (O p Tr[O]I) (124) " 

Then Equation (115) can be replaced with 

1 1 ~ Empp(m,~)Tr[Oa~], 
(O) - ~ Tr[O] + 2(1 - p )  m= /2~=x,y,z (125) 

where now pp(m, Ft~) represents t h e  probability of outcome m when 
measuring a~ on the noisy s t a t e  ['p[p]. 

2. Adaptive Tomography 
The idea of adaptive tomography is that the tomographic null estimators of 
Equation (86) can be used to reduce statistical errors. In fact, the addition of 
a null estimator in the ideal case of infinite statistics does not change the 
average since its mean value is zero, but can change the variance. Thus, one 
can look for a procedure to reduce the variance by adding suitable null 
functions. Consider the class of equivalent estimators for O 

M 
C~[O](Q~) - Cx[O](Qz) 4- E viJVi(Qz). (126) 

i=1 
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Each estimator in the class s is identified by the coefficient vector ~. The 
variance of the tomographic averages can be evaluated as 

M M 
AZU[o] - AZg[o] + 2 Z viN'ig[O] + Z vivyN'iN'y, 

i=1 i j=l  
(127) 

where --fl- (fA d)~ F(Q~)), and 

A2 '[O] -- g2[O]-  E[O] 2. (128) 

Minimizing A2~t [O]  with respect to the coefficients 1)i, one obtains the 
equation 

M 

j= l  
(129) 

which can be solved starting from the estimated mean values, with the vector 
as unknown. Notice that the obtained vector ~ will depend on the 

experimental data, and has to be calculated with the above procedure for 
any new set of data. 

In this way we obtain an adaptive tomographic algorithm, which consists 
of the following steps: 

 9 Find the null estimators N'i(Q~) (i = 1 , . . . ,  M) for the quorum which is 
being used in the experiment. 

 9 Execute the experiment and collect the input data. 
 9 Calculate, using the obtained data, the mean values .A/'i.A/'j and g[O]N'i, 

and solve the linear system (129), to obtain ~. 
 9 Use the vector ~ obtained in the previous step to build the "optimized 

estimator" g'[O](Q~) = g[O](Q~) + Z i  1)i.A/'i(Q)~)" Using the data 
collected in the first step, the mean value (O) is now evaluated as 

(0) - f^ d)~ (g'~[Ol(Qx)), (130) 

where the optimized estimator has been used. 
 9 For each new set of data the whole procedure must be repeated, as ~ is 

dependent on the data. 

Notice that also the experimental mean values are slightly modified in the 
adaptive tomographic process, since null estimators do not change mean 
values only in the limiting case of infinite statistics. Examples of simulations 
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of the adaptive technique that efficiently reduce statistical noise of 
homodyne tomographic reconstructions can be found in Ref. [22]. In 
homodyne tomography null estimators are obtained as linear combinations 
of the following functions 

N'k,n(X~) - X~oek +i(k+2+2n)q), k , n  > . (131) 

One can easily check that such functions have zero average over q), 
independent of p. Hence, for every operator O one actually has an 
equivalence class of infinitely many unbiased estimators, which differ by a 
linear combination of functions JVk,n(Xe). It is then possible to minimize the 
rms error in the equivalence class by the least-squares method, obtaining in 
this way an optimal estimator that is adapted to the particular set of 
experimental data. 

IV. UNIVERSAL HOMODYNING 

As shown in Ref. [16], homodyne tomography can be used as a kind of 
universal detector for measuring generic field operators, at the expense, 
however, of some additional noise. In this section the general class of field 
operators that can be measured in this way is reviewed, which includes also 
operators that are inaccessible to heterodyne detection. In Ref. [29] the most 
relevant observables were analyzedmsuch as the intensity, the real, the 
complex field, and the phase--showing how their tomographic measure- 
ments are affected by noise that is always larger than the intrinsic noise of 
the direct detection of the considered observables. On the other hand, by 
comparing the noise from homodyne tomography with that from 
heterodyning (for those operators that can be measured in both ways), in 
Ref. [29] it was shown that for some operators homodyning is better than 
heterodyning when the mean photon number is sufficiently small, i.e., in the 
quantum regime, and in this section such comparisons will be also reviewed. 

A. Homodyn ing  Observables 

Homodyne tomography provides the maximum achievable information on 
the quantum state of a single-mode radiation field through the use of the 
estimators in Section III.C.3. In principle, the knowledge of the density 
matrix should allow one to calculate the expectation value for unbounded 
operators. However, this is generally true only when one has an analytic 
knowledge of the density matrix, but it is not true when the matrix has been 
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obtained experimentally. In fact, the Hilbert space is actually infinite 
dimensional, whereas experimentally one can achieve only a finite matrix, 
each element being affected by an experimental error. Notice that, even 
though the method allows one to extract any  matrix element in the Hilbert 
space from the same bunch of experimental data, it is the way in which 
errors converge in the Hilbert space that determines the actual possibility of 
estimating the trace (O) = Tr[Op] for an arbitrary operator O. This issue has 
been debated in the set of papers of Ref. [73]. Consider, for example, the 
number representation, and suppose that we want to estimate the average 
photon number (at a). In Ref. [80] it has been shown that for nonunit 
quantum efficiency the statistical error for the diagonal matrix element 
(nlPln) diverges faster than exponentially versus n, whereas for r / -  1 the 
error saturates for large n to the universal value en = ~ / 2 / N  that depends 
only on the number N of experimental data, but is independent of both n 
and on the quantum state. Even for the unrealistic case ~ --= 1, one can see 
immediately that the estimated expectation value (ata) H-1 -- ~n=0 npnn based 
on the measured matrix elements pn,, will exhibit an unbounded error versus 
the truncated-space dimension H, because the nonvanishing error of Pn, 
versus n multiplies the increasing eigenvalue n. 

Here, we report the estimators valid for any operator that admits a 
normal ordered expansion, giving the general class of operators that can be 
measured in this way, also as a function of the quantum efficiency r/. Hence, 
from the same tomographic experiment, one can obtain not only the density 
matrix, but also the expectation value of various field operators, also 
unbounded, and including some operators that are inaccessible to 
heterodyne detection. However, the price to pay for such detection 
flexibility is that all measured quantities will be affected by noise. If one 
compares this noise with that from heterodyning (for those operators that 
can be measured in both ways), it turns out that for some operators 
homodyning is anyway less noisy than heterodyning, at least for small mean 
photon numbers. The procedure for estimating the expectation (O) will be 
referred to as h o m o d y n i n g  the observable  O. 

By homodyning the observable O we mean averaging an appropriate 
estimator 7Z[O](x, qg), independent on the state p, over the experimental 
homodyne data, achieving in this way the expectation value (O) for every 
state p, as in Equation (92). For unbounded operators one can obtain the 
explicit form of the estimator 7~[O](x, q)) in a different way. Starting from the 
identity involving trilinear products of Hermite polynomials [81] 

f_ ~-oo 2(m+n+k)/27r l /2 k!m!n! (132) 
dx  e -x2 H k ( x )  H m ( x )  H n ( x )  -- (s - k)!(s  - m)!(s  - n)! ' 
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for k + m + n - 2s even, Richter proved the following nontrivial formula 
for the expectation value of the normally ordered field operators [82] 

fo ~ d9 f f ~  (atna m) -- --~ dxp(x, qg)e i(m-n)q) 
(x) 

Hn+m(,~/r2x)  
n+m n+m ' ~/2 (0)( n ) 

(133) 

which corresponds to the estimator 

"]~[atnam](x, ~0) -- e i(m-n)9 n n + m ( V / 2 X )  
~/2n+m(n+m) (134) 

This result can be easily extended to the case of nonunit quantum efficiency 
7/< 1. Using Equation (122) one obtains 

7~n[a fnam](x ,  ~0) - -  e i(m-n)g~ n n + m ( ~ / / ~ x )  
V/(2Tl)n+m(n+~ n) 

(135) 

From Equation (135) by linearity one can obtain the estimator 7~o[f](x, qg) 
for any operator function f that has normal ordered expansion 

oo 
f - f ( a ' a t ) -  Z r(N)atnam" (136) 

nm=O 

From Equation (135) one obtains 

oo oo 
7~,[f](x, ~o)= Z Hs(~/~x) Z f(N)ei(m-n)%lml3n+m's 

s=0 s!(2~7) s/2 nm=O a n m -  

Hs(ff~-~x)i s d s - Z  
,-o s!(2~7) s/2 dvs .T[f](v, q)), (137) 

v--O 

where ( )l Z f ( U )  n + m  
: [ f ] ( v ,  ~ )  - - . m  

nm---O m 
(-it)) n+m e i(m-n)~~ (138) 

Continuing from Equation (137) one has 

1 d 2 2ix d )  
~ [ f ] ( x ,  qg) - exp ~ ~ + ~ Y[f](v, qg), (139) 

v--0 
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and finally 
F o o  dw 

g o [ f  ](x, ~p) - oo v/2rcr/---------7 e-(~ f '[f](w + 2ix/~/-~, ~p). (140) 

Hence one concludes that the operator f can be measured by homodyne 
tomography if the function F'[f](v, ~0) in Equation (138) grows slower than 
exp(-r/v2/2) for v--+ oo, and the integral in Equation (140) grows at most 
exponentially for x--+ oo (assuming p(x,~o) goes to zero faster than 
exponentially at x --+ oo). 

The robustness to additive phase-insensitive noise of this method of 
homodyning observables has also been analyzed in Ref. [16], where it was 
shown that just half a photon of thermal noise would spoil completely the 
measurement of the density matrix elements in the Fock representation. 

In Table 1 we report the estimator R,,[O](x, ~p) for some operators O. The 
operator l~s gives the generalized Wigner function Ws(ot, or*) for ordering 
parameter s through the relation in Equation (11). From the expression of 
7~,[W,](x, ~0) it follows that by homodyning with quantum efficiency ~ one 
can measure the generalized Wigner function only for s < 1 -  r/-l: in 
particular the usual Wigner function for s = 0  cannot be measured for any 
quantum efficiency. 

B. Noise in Tomographic Measurements 

In this section we will review the analysis of Ref. [29], where the 
tomographic measurement of following four relevant field quantities has 
been studied: the field intensity, the real field or quadrature, the complex 
field, and the phase. For all these quantities the conditions given after 
Equation (140) are fulfilled. 

T A B L E  1 
ESTIMATOR go[O](x ,  ~0) VOR SOME Or'EmaTORS O (VROM [16]) 

o re,[O](x, ~0) 

atn a m 

a 
a 2 
a'ra 
(ata)  2 

Ws = [2/rffl - s)] [(s + l ) / ( s  - 1)] a*a 

In) (n + d[ 

ei(m-n)~O[ Hn+m ( ,v /~x)  / x/( 2r/)n+m (n+m)] 

2ei~~ x 
e2g~ 2-1/rl) 

2x2--(1/217) 
(8/3)x4 _ [((4 - 2rt)/r/)x21 + [(1 - r/)/2~2] 

fo dt[2e-t/(rt(1 - s) - (1/rl))]cos[2v/2t/((1 - s) - (1/r/)) x] 
g,[ln) (n + dl](x, ~0) in Equation (100) 
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The tomographic measurement of the observable O is provided in terms 
of the average w---~ of the estimator w,7=7-4,[O](x, qg) over the homodyne 
data. The precision of the measurement is given by the confidence interval 
V/ 2 When is real has Aw~. Wr/ a quantity, one 

2 ~--~2, (141) Aw 2 -- w~ - 

where 

fo~ f_ ~ de 2 ~ 2 w, - 7zZo[Ol(x, ~0) - rt ~ dxpo(x, q)) 7~,[O](x, q)). (142) 

When w~ is complex, one has to consider the eigenvalues of the covariance 
matrix, namely 

AW 2 -~l[IwI20-[w-~12-4- Iw~2-W-O~21]. (143) 

When the observable O can also be directly measured by a specific setup we 
can compare the tomographic precision Aw 2 with (AO 2) = (0 2) - (O2) .  

2 Notice that, when we deal with r /< 1 the noise (AO,) is larger that the 
quantum fluctuations due to the smearing effect of nonunit quantum 
efficiency. As we will see, the tomographic measurement is always more 
noisy than the corresponding direct measurement for any observable at any 
quantum efficiency 17. This is not surprising, in view of the larger amount of 
information retrieved in the tomographic measurement as compared to the 
direct measurement of a single quantity. 

According to Equation (142), the evaluation of the added noise 
requires the average of the squared estimator. For the estimators in 
Equation (135) it is very useful to consider the following identity for the 
Hermite polynomials [83] 

2 ~ O2k(X) 
H n (x) -- 2nn! 2 k! 2 2k(n - k)!' 

k=0 
(144) 

that allows one to write 

T~Z~[atn am](x, ~o) 

~__ e 2iq)(m-n) n!2m!2 m+n (2k)!r/k 
rlm+n E kva(n + m - k)! ~~ go), 

k=0 " 
(145) 
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namely the squared estimator 7-~2[atnam](x, 99) can be written just in terms of 
"diagonal" estimators ~n[atkak]'ix, ~o). 

1. Field Intensity 
Photodetection is the direct measurement of the field intensity. For nonunit 
quantum efficiency r/, the probability of detecting m photons is given by the 
Bernoulli convolution in Equation (22). Let us consider the rescaled 
photocurrent 

- - a t a ,  ( 1 4 6 )  

which traces the photon number, namely 

1 
{In) - ~ Z mpn(m) - {ata) - ~" (147) 

m=0 

The variance of I n is given by 

A _ -~ ~ mZp(m) _ ~2 _ (An 2) + ~ -- 1 , 
m--0 

(148) 

where (An 2) denotes the intrinsic photon number variance, and ~(r/-1 - 1) 
represents the noise introduced by inefficient detection. The tomographic 
estimator that traces the photon number is given by the phase-independent 
function wn=_2x 2 -(2r/)  -1. Using Equation (145) we can evaluate its 
variance as follows 

A w 2  - -  ( A n 2 )  -+- 5 (n2) -+- n - + ~ ( 1 4 9 )  2q2" 

The noise N[n] added by tomography in the measurement of the field 
intensity n is then given by 

N[n]- -Aw 2 . ( A I 2 ) n - ~  (n 2 ) + n  ~ - 1  +~5  9 (150) 

Notice that N[n] is always positive, and largely depends on the state under 
examination. For coherent states we have the noise ratio 

_ 1 

6n, V(AI2)" 5 ' (151) 

which is minimum for ~ -  r/-1 . 
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2. Real Field 
For single-mode radiation the electric field is proportional to a quadrature 
X = (a + a*)/2, which is just traced by homodyne detection at fixed zero- 
phase with respect to the local oscillator. The tomographic estimator is 
given by w, - 7r ~0) -= 2x cos ~0, independent of 17, whereas the squared 
estimator 7~2,[X] can be written as 

1 
2 _ 1 [T~n[a2](x ' ~) -4- Tav,7[at2](x, qg)] H- "l~n[a ta](x, go) + ~ H- w, 7 -~ 

cos(2~o)  9 (152) 

Then one has 

1 1 1 )2 Aw 2 -- ~ [(a i2) -k (a2)] -+- n -k ~ - ~ (a + a t 

1 2 - r /  (153) = (AX2) + 2  ~ + 4----~' 

where (AX 2) represents the intrinsic quadrature fluctuations. The tomo- 
graphic noise in Equation (153) can be compared with the rms variance of 
direct homodyne detection (see Section II.C) 

1 - r/ ( 1 5 4 )  (AX'2)r l  - -  { A X  2 } -Jr- 4----~--" 

Then the added noise reads 

N[X] -- + . - - .  (155) 
r/,+ 

For coherent states (AX 2) --1/4, and one has the noise ratio 

Aw~ = v / 2 r / ~ + 2 .  
~Xo -- (AX2)r / (156) 

3. Field Amplitude 

The detection of the complex field amplitude of a single-mode light beam is 
represented by the generalized measurement of the annihilation operator a. 
The tomographic estimator for a is given by the complex function 
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w, = 7r ~0) - 2x exp (i~o), and the precision of the measurement is 
evaluated as in Equation (143). From Equation (145) one obtains 

[• 1 ei2~~ Wr/2 ~ 7pv2r/[a](x, q9 ) _ ei2~o -+- 27E,[a* a](x, ~o) - ~ -:t- 7"q.r/[a2](x, r (157) 

and 

[w,12 = [7~,[a](x, r 2 - ! [1  + 2rfl'4.,7[ata](x, ~p)], 
r/ 

(158) 

and hence 

a w  2 - - ~  + 2 n - I ( a ) l  2 =t= I(a 2) - (a2)l . (159) 

The optimal measurement of the complex field a is obtained through 
heterodyne detection. As noticed in Section II.D the probability distribution 
is given by the generalized Wigner function Ws(ot, ot*), with s = 1 -  (2/r/). 
Using Equation (56) the precision of the measurement is easily evaluated as 
follows 

1 [[cz[2 _ l~12_l_ [c~ 2 ~2 (Aa2)~ - ~ - i] 

~[ 1 i ~ ] - ~  ~ + - - I ( a )  + l ( a  2 ) - (a )21   9 
ri 

(160) 

The noise added by quantum tomography then reads 

1 
N[a] -- -~ -& (161) 

which is independent on quantum efficiency. For a coherent state we have 

1[ , 
Aw 2 - ~ n + , (Aa2)~ = 2---~' (162) 

and the noise ratio is then 

zXw 
~a,7 -- (Aa2)o 

: , / 1  + ~ .  (163) 



QUANTUM TOMOGRAPHY 251 

4. Phase 
The canonical description of the quantum optical phase is given by the 
probability operator measure [53,84] 

d~0 oo 
d#(~0) - ~ ~ exp[i(m - n)~0]ln)(ml. 

n,m=0 
(164) 

However, no feasible setup is known that achieves the optimal measurement 
(164). For this reason, here we consider the heterodyne measurement of 
the phase, and compare it with the phase of the tomographic estimator for 
the corresponding field operator a, i.e., w, --- arg(2xeir Notice that the 
phase w, does not coincide with the local oscillator phase ~0, because x has 
varying sign. The probability distribution of w, can be obtained by the 
following identity 

d x p ~ ( x ,  ~p) - 1 - - -  d x p ~ ( x ,  w~),  (165) 

which implies 

f0 ~ 
1 d x p , ( x ,  w~). (166) p . ( w . )  - 

The precision in the tomographic phase measurement is given by the rms 
variance A w 2 of the probability (166). In the case of a coherent state with 
positive amplitude [fl) - [Jill), Equation (166) gives 

1 E p,(w~)-- f-~ 1 + E r f \  ~ , (167) 

which approaches a "boxed" distribution in [-~/2,  ~/2] for large intensity 
[/~[ >> 1. We compare the tomographic phase measurement with 
heterodyne detection, namely the phase of the direct-detected complex 
field a. The outcome probability distribution is the marginal distribution of 
the generalized Wigner function Ws(a, a*) (s = 1 -(2/r/)) integrated over the 
radius 

fo ~ P,7(~) -- p dp Ws(pe i'p, pe-i'P), (168) 
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whereas the precision in the phase measurement is given by its rms 
varianceAq) 2. We are not able to give a closed formula for the added 
noise N [ q ) ] - A w  2 -  Aq92. However, for high excited coherent states 
Ir (zero mean phase) one has Aw 2 -- rt2/12 and A~o~- (2r/~) -1. 
The asymptotic noise ratio is thus given by 

~ AY 2 _ 
>> 1. (169) 

A comparison for low excited coherent states can be performed numerically. 
The noise ratio 3q), (expressed in dB) is shown in Figure 3 for some values of 
the quantum efficiency r/. It is apparent that the tomographic determination 
of the phase is more noisy than heterodyning also in this low-intensity 
regime. 

In Table 2 a synthesis of the results of this section is reported. We have 
considered the ratio between the tomographic and the direct-measurement 
noise. This is an increasing function of the mean photon number B, scaled by 
the quantum efficiency r/. Therefore homodyne tomography turns out to be 
a very robust detection scheme for low quantum efficiency. 

In Figure 4 the coherent-state noise ratios (in dB) for all the considered 
quantities are plotted for unit quantum efficiency versus ~. 

v 

r.~ 

0 

' ' ' ' 1 ' ' ' ' 1 ' ' ' ' 1 ' ' '  

. 

, , ,  i l l l l * , , , l  

0 1 0  2 0  3 0  

FIGURE 3. Ratio between tomographic and heterodyne noise in the measurement of the 
phase for low excited coherent states. The noise ratio is reported versus the mean photon 
number ~ for some values of the quantum efficiency. From bottom to top we have r/= 0.2, 0.4, 
0.6, 0.8, 1.0. (From Ref. [29].) 
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T A B L E  2 
ADDED NOISE N[O] IN TOMOGRAPHIC MEASUREMENT OF O AND NOISE RATIO 800 FOR 

COHERENT STATES. FOR THE PHASE THE RESULTS ARE VALID IN THE ASYMPTOTIC REGIME ~ >> 1 
(FROM REF. [29]) 

o N[O] ~0. 

ata (1/2)[(n 2) 4- ~((2/~/) - 1) 4- (l/r/2)] [2 4- 0/~/2) 4- (1/2~/~)] 1/2 
X (1/2)[~ 4- (1/20)] [2(1 4- ~/fi)]l/2 
A (1/2)~ (1 4- r/~) ~/2 
~0 (rt/12) - (1/2r/~) lt4~fi--/6 

i ' ' ' ' l ' ' ' ' I ... ~x 
~ , ~  . t  I ~  ~r 

, J ' "  I " "  
" O  . . . J ' "  " 

. /  I "I .. 6a  
0 . . / ' "  . / "  i . . t  ~176 

 9 ,--, / f i -~ 
. . / / . -  j ' "  

: . . / / . ~ ~ - ~ -  I .-/" 

o [! ../). 
Z Oa ;//" 

( 
0 , , , I , , , , I 

0 5 I0 

FIGURE 4. The coherent-state noise ratio (in dB) for all the quantities considered in this 
section. (From Ref. [29].) 

In conclusion, homodyne tomography adds larger noise for highly excited 
states, however, it is not too noisy in the quantum regime of low ~. It is 
then very useful in this regime, where currently available photodetectors 
suffer most limitations. Indeed, it has been adopted in experiments of 
photodetection [10,11]. 

C. Comparison between Homodyne Tomography and Heterodyn&g 

We have seen that homodyne tomography allows one to measure any field 
observable f - f  (a, a t) having normal ordered expansion f----f(N)(a, a t) -- 
~n~=0 f(n u)atnam and bounded integral in Equation (140). On the other 
hand, as shown in Section II.D, heterodyne detection allows one to measure 
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field observables that admit antinormal ordered expansion f=f(A)(a, a t) = 
oo f ( A ) a m a # n  in which case the expectation value is obtained through ~ n m = O  J nm "" "~" 

the heterodyne average 

<f) - fc  d20t ~ f(A)(ot' r (170) 

As shown in Section II.D, for 0 - 1 the heterodyne probability is just the 
Q-function Q(ot, ot*)=(1/rt)(otlplot>, whereas for r / < 1  it is Gaussian 
convoluted with rms (1 - O)/r/, thus giving the Wigner function Ws(ot, ot*), 
with s = 1 - (2/r/). 

Indeed, the problem of measurability of the observable f through 
heterodyne detection is not trivial, since one needs the admissibility of 
antinormal ordered expansion and the convergence of the integral in 
Equation (170). We refer the reader to Refs. [16,59] for more details and to 
Refs. [58,60] for analysis of quantum state estimates based on heterodyne 
detection. 

The additional noise in homodyning the complex field a has been 
evaluated in Equation (161), where we found that homodyning is always 
more noisy than heterodyning. On the other hand, for other field 
observables it may happen that homodyne tomography is less noisy than 
heterodyne detection. For example, the added noise in homodyning the 
intensity at a with respect to direct detection has been evaluated in 
Equation (150). Analogously, one can easily evaluate the added noise Nhet[n] 
when heterodyning the photon number n -- a ta. According to Equation (56), 
the random variable corresponding to the photon number for heterodyne 
detection with quantum efficiency r/is v(a) - -  Io/[  2 - (1/r/). From the relation 

tot[ 4 -- (a2a t2> + 4 1 -- r/(aat ) + 2 (171) 

one obtains 

Av(c~) 2 - (An 2) + ~ ~ -  1 + r/-- 5 . (172) 

Upon comparing with Equation (148), one concludes that the added noise in 
heterodyning the photon number is given by 

1 
~ " 1  ri" 

(173) 
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With respect to the added noise in homodyning of Equation (150) one has 

,( l) 
Nhet[n] - -  N [ n ]  - -~ (n 2) - B ~ . (174) 

Since (n 2) >_ B2, we can conclude that homodyning the photon number is less 
noisy than heterodyning it for sufficiently low mean photon number 
(n) < (1/2)(1 + v/1 + (4/r/2)). 

V. MULTIMODE HOMODYNE TOMOGRAPHY 

The generalization of homodyne tomography from a single-mode to 
a multimode field is quite obvious, the estimator of simple operator 
tensors O = O1 | O2 | . . .  | On being just the product of the estimators of 
each single-mode operator O1,O1,...,On. By linearity, one then obtains 
also the estimator for arbitrary multimode operators. Such a simple 
generalization, however, requires a separate homodyne detector for each 
mode, which is unfeasible when the modes of the field are not 
spatiotemporally separated. This is the case, for example, of pulsed 
fields, for which a general multimode tomographic method is especially 
needed, also due to the problem of mode matching between the local 
oscillator and the detected fields (determined by their relative spatiotem- 
poral overlap) [85], which produces a dramatic reduction of the overall 
quantum efficiency. 

In this section we review the general method of Ref. [17] for homo- 
dyning observables of a multimode electromagnetic field using a s i n g l e  
local oscillator (LO), providing the rule to evaluate the estimator of an 
arbitrary multimode operator. The expectation value of the operator 
can then be obtained by averaging the estimator over the homodyne 
outcomes that are collected using a single LO whose mode randomly 
scans all possible linear combinations of incident modes. We will then 
specifically consider some observables for a two-mode field in a 
state corresponding to a twin-beam produced by parametric downcon- 
version, and prove the reliability of the method on the basis of computer 
simulations. 

Finally, we report some experimental results [86] obtained in Prem 
Kumar's laboratory at Northwestern University. Such an experiment 
actually represents the first measurement of the joint photon number 
probability distribution of the twin-beam state. 
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A. The General Method 

The Hilbert-Schmidt operator expansion in Equation (91) can be 
generalized to any number of modes as follows 

O-- fc d2zofc d 2 z l _ _ , g  ~ ""fe  d2ZM,ff, 

x exp zla~ - z l al , 
/=0 

Tr{Oexp[k(-z'a~+z~a')]},=o 

(175) 

where at and a~, w i t h / -  0 , . . . ,  M and [at, a~l - 6H,, are the annihilation and 
creation operators of M + 1 independent modes, and 0 now denotes an 
operator over all modes. Using the following hyperspherical parameteriza- 
tion for zt e C 

i kuo(~)ei~O, i keiO o zo = g g cos ol, 

i (~)ei7 q . i zl ---~ kul -~ k e iol sin O1 cos 02, 

i ku2(~)eiT, 2 . i kei~2sin 01 sin 02 cos 03 z2 - ~  ~ 

 9 o o 

ZM-1 -- -~i kUM-1 (O)e N/M-1 _" -2i kei~PM_l sin O1 sin 0 2 . . .  sin OM-1 COS OM, 

ZM -- -~i kuM(~)eie/M . -2i keiO M sin O1 sin 02.. .  sin OM-1 sin OM, (176) 

where k ~ [0, ee); ~Pt ~ [0, 2rt] for l = 0 ,1 , . . . ,  M; and 0t E [0, re/2] for 
1 = 1 , 2 , . . . , M ,  Equation (175) can be rewritten as follows: 

+c~ 2M+l 1 Tr[Oe_ikx(a,~)]eikX(a,T/) o-  f .t lf .Ialf0 (177) 

Here we have used the notation 

f M f2~ dot d.t l lq 
l=0 

(178) 
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f M fn/2 dlx[O-] " 2 M M! H dOlsin2(M-l)+lOlcOSOl, 
/=1 dO 

X(O,'-~ap) -- -~1 [At (0, ~) -q- A(0, ~)], 

(179) 

(180) 

M 
A(O. ~) -- ~ e -i7~' ut(O)al. (181) 

/=0 
From the parameterization in Equation (177), one has Z ~ 0  u2(~) - 1, and 
hence [A(O, ~),At(0, ~ ) ] -  1, namely A(0, ~) and At(0, ~) themselves are 
annihilation and creation operators of a bosonic mode. By scanning all 
values of 0l ~ [0, n/2] and 7tl ~ [0,2n], all possible linear combinations of 
modes at are obtained. 

For the quadrature operator X(O, 7t) in Equation (180), one has the 
following identity for the moments generating function 

(eikx(g'~)) - - e x p (  1 81"/--r/k2 ) dxeikXpo(x; 0,~), (182) 

where p,7(x;O, Tt) denotes the homodyne probability distribution of 
the quadrature X(O, Tt) with quantum efficiency rl._. Generally, rl can 
depend on the mode itself, i.e., it is a function 77 = 77(0, 70 of the selected 
mode. In the following, for simplicity, we assume ri to be mode independent, 
however. By taking the ensemble average on each side of Equation (177) and 
using Equation (182) one has 

fff = . . . .  ( 0 / -  dt.[~] du[~] dxpo(x; 0. ~)~,[O](x; 0. ~). (183) 
OO 

where the estimator 7~o[O](x; 0, ~p) has the following expression 

7z,[Ol(x; 0. ~) - 
KM+I f0 +cx~ M-----T dt e -(1-(~/2))t+2i4~ix t M Tr[O e-2i4~ix(~ 

(184) 

with ~ : -  2rl / (20- 1). Equations (183) and (184) allow one to obtain the 
expectation value (O) for any unknown state of the radiation field by 
averaging over the homodyne outcomes of_.the quadrature X(O, Tt) for 0 and 
~p randomly distributed according to d/x[Tt] and dlz[O]. Such outcomes can 
be obtained by using a single LO that is prepared in the multimode coherent 
state | with ?'l-  eir and K >> 1. In fact, in this case the 
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rescaled zero-frequency photocurrent at the output of a balanced homodyne 
detector is given by 

1 M 
I -- -~ ~ (V; a, + yza~), 

l=0 
(185) 

which corresponds to the operator X(O, Or). In the limit of a strong LO 
(K2->_ oo), all moments of the current /correspond to the moments of 
X(O, 70, and the exact measurement of X(O, Or) is then realized. Notice that 
for modes az with different frequencies, in the d.c. photocurrent in 
Equation (185) each LO with amplitude yt selects the mode at at the same 
frequency (and polarization). For less-than-unity quantum efficiency, 
Equation (182) holds. 

Equation (184) can be applied to some observables of interest. In 
particular, one can estimate the matrix element ({nt}lRl{mz}) of the multi- 
mode density operator R. This will be obtained by averaging the estimator 

~ M KM+ 1 
TCo[l{mz})({nz}l](x; O, 70 = e-i~z=~162 M! 

x I-I [-i~/-~u'(O~)]m-~' /Vl! 
V .z! 1=0 

f+c~ d M M • Jo t e -t+2ivc~ix t M+~z=o Ozz-vz)/2 I-I t" l - -P l[~(~U~(  
1=0 

(186) 

w h e r e / z l -  max(ml, nl), v t -  min(ml, nz), and L'~(z) denotes the generalized 
Laguerre polynomial. For diagonal matrix elements, Equation (186) 
simplifies to 

TC,7[l{nzl) ({nz}l](x; O, gr) - ~ KM+I f0+oo M M! dte - '+2i~x tMHLn,[~u2(O)tl (187) 
/=0 

with Ln(z) denoting the customary Laguerre polynomial in z. Using the 
following identity [81] 

L~~ + Xl + " "  + XM) 

: Z L~~ l(X1) ' '"  L72(XM)' 
i0+il + "'" +iM=n 

(188) 
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from Equation (187) one can easily derive the estimator of the probability 
distribution of the total number of photons N -  Y~=o a~al 

~ KM+ 1 fo +~176 7-r (nl](x; O, 70 - M! dt e -t+2i~/-~ix t MLy[~ct], (189) 

where In) denotes the eigenvector of N with eigenvalue n. Notice that the 
estimator in Equation (187) does not depend on the phases ~Pi; only the 
knowledge of the angles 0t is needed. For the estimator in Equation (189), 
even the angles 0t can be unknown. 

Now we specialize to the case of only two modes a and b (i.e., M -  1 and 0 
is a scalar 0). The joint photon number probability distribution is obtained 
by averaging 

7r m)(n, ml](x; 0, 7to, lPl) 

-- rc 2 dt e -t+2i'/-~x t LnOct cos 20)Lm(rCt sin 2 0). (190) 

The estimator (189) of the probability distribution of the total number of 
photons can be written as 

f0 +~176 
~,7[In) (nl](x; 0, 7ro, lpl) -- K 2 dt e -'+2is/%ix t Lln[~Ct]. (191) 

For the total number of photons one can also derive the estimator of the 
moment generating function, using the generating function for the Laguerre 
polynomials [81]. One obtains 

"]"~rl[zata+btb](x; 0, lp0 , lpl ) -- 1 1  9 2 , - -  
(Z -'[-- ((1 -- Z)/K)) 2 2 '  

1 - z X2' ~ 
z +  ((1 - z)/~c) }" 

(192) 

For the first two moments one obtains the simple expressions 

2 7"r + b yb](x; 0, 7ro, 1 / r l )  - -  4x 2 + - -  2, 
K 

7-r + btb)2](x; O, l[ro, lPl) - 8x4 -k- (2-~4y - 20)x2  + - - m  6 10 
y2 y + 4. (193) 

It is worth noting that analogous estimators of the photon number 
difference between the two modes are singular and one needs a cutoff 
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procedure, similar to the one used in Ref. [87] for recovering the correlation 
between the modes by means of the customary two-mode tomography. In 
fact, in order to extract information pertaining to a single mode only one 
needs a delta-function at 0 - 0 for mode a, or 0 = ~/2 for mode b, and, in 
this case, one could better use the standard one-mode tomography by setting 
the LO to the proper mode of interest. 

Finally, we note that for two-mode tomography the estimators can be 
averaged by the integral 

fo 2~ dlP~ dl[rl f~ d(c~ f_ ~ (0) - ~ ~ 1 2 dxp,(x; O, ~Po, 01) 
(x)  

X ~2~..r/[O](x; O, l~rO, lpl ) (194) 

over the random parameters cos(20), ~0, and ~kl. For example, in the case of 
two radiation modes having the same frequency but orthogonal polariza- 
tions, 0 represents a random rotation of the polarizations, whereas ~P0 and 
~r 1 denote the relative phases between the LO and the two modes, 
respectively. 

1. Numerical Results for Two-Mode Fields 
In this section we report some Monte Carlo simulations from Ref. [17] to 
judge the experimental working conditions for performing the single-LO 
tomography on two-mode fields. We focus our attention on the twin-beam 
state, usually generated by spontaneous parametric downconversion, 
namely 

V/ oo I~) - S(x)lO)alO)b - 1 - I~l 2 ~ ~n In)aln)b, 
n:O 

(195) 

where S ( ) ) =  exp(xatb t - x * a b )  and ~ = e iargx tanhlx[. The parameter ~ is 
related to the average number of photons per beam ~ = [~[2/(1 -[~[2). For 
the simulations we need to derive the homodyne probability distribution 
p(x; 0, ~0, ~l) which is given by 

p(x; O, ~0, 1//'1) -- Tr[Ut[X)aa(X[ | lb UI~)(~I] 

= a(O[b(O[St(X)et[[X)aa(X[ @ lb]eS(x)]O)a[O)b, (196) 
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where [X)a is the eigenvector of the quadrature x -  8 9  t + a )  with 
eigenvalue x and U is the unitary operator achieving the mode transfor- 
mation 

U t ( a )  U -  ( e-i~p~ cOS O 
b -e  i~pl sin 0 

e -i'pl sinO) ( a )  (197) 
e ir176 cos 0 b " 

In the case of two radiation modes having the same frequency but 
orthogonal polarizations--the case of Type II phase-matched parametric 
amplifier--Equation (196) gives the theoretical probability of outcome x for 
the homodyne measurement at a polarization angle 0 with respect to the 
polarization of the a mode, and with ~0 and r denoting the relative phases 
between the LO and the two modes, respectively. By using the Dirac-3 
representation of the X-quadrature projector 

Ix) (xl - ~ ~ exp[i)~(X- x)], (198) 

Equation (196) can be rewritten as follows [17] 

f_k-~ d~, (Olb(OlS~f(x)Utei)~(Xa_x) US(x)IO)alO) b p(x; 0, l/f0, l/r l )  - cx~ ~ a 

f ~  dl. -iXx i~[(e- ll, COSOnt-e iol v* sinO)a 
-- ~-~e a(OIb(Olexp IO)alO)b, 

c~ -+-(eiO~ * COSO--~-e -i~pl /z sin0)b + H.c.] 
(199) 

where we have used Equation (197) and the transformation 

( a )  ( Iz  s*(x) b* S (x ) -  v* v)(a) (200) 
/x b t 

with/z = coshlxI and v = e iargx sinhlxI. Upon defining 

KC = e -i~p~ lZ c o s  0 -+- e i~pl v* sin 0, 

KD = e i~p~ v* c o s  0 q-- e -i~pl lZ sin 0, (201) 

where K 6 [~ and C, D 6 C, with I C[2-+ - [D[2= 1 one has 

K 2 = / z  2 Jr-Ivl  2 + 2zzlvl sin 20cos0P0 + ~1 --  arg v). (202) 
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Now, since the unitary transformation 

O)(a)(a) 
(203) D* C* b b 

has no effect on the vacuum state, Equation (199) leads to the following 
Gaussian distribution 

p(x; o, 7*o, ~ )  

~ ea i~ OIb OI exp iK -~[(Ca + Db) + H.c.] IO alO b 

f_~-~dl. ( [  1 . (a+at ) ] lO)  1 -- ~ ~ ea i)~x OI exp iK -~ a-- -~ la(Olx/g)al2 

( ) = 1 exp - , 
V/2rI:A2( 0, 00, 01) 2A2( 0, 00, 01) 

(204) 

where the variance A2(0, ~r0, ~rl) is given by 

K 2 1 + I~l 2 -4- 2l~l sin 20 cos0Po + ~Pl - arg ~) 
A2(0, 7~o, ~q) - - - 4  = 4(1 -[~l  2) . (205) 

Taking into account the Gaussian convolution that results from less-than- 
unity quantum efficiency, the variance just increases as 

2(0, ~r0, l~rl) -- A2(0, l~r0, l/fl) - 4 - ~  A2(0, l/r0, 1/tl) ~ At/ 1 - 7  
47 (206) 

Notice that the probability distribution in Equation (204) corresponds to a 
squeezed vacuum for 0 = re/4 and gr0 + gq - arg ~ = 0 or re. 

We study the tomographic measurement of the joint photon number 
probability distribution and the probability distribution for the total 
number of photons with use of the estimators in Equations (190) and (191), 
respectively. Moreover, using the estimator in Equation (186) we 
reconstruct the matrix elements 

Cn,m =- a(m[b (m [ ~P)(~[n)a[n)b , (207) 
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FIGURE 5. Two-mode photon number probability p(n,m) of the twin-beam state in 
Equation (195) for average number of photons per beam ~ = 5 obtained by a Monte Carlo 
simulation with the estimator in Equation (190) and random parameters cos20, %, and ~p~. 
Left: quantum efficiency r/= 1 and 106 data samples were used in the reconstruction; right: 
77 =0.9, and 5 x 106 data samples. (From Ref. [17].) 

which reveal the coherence of the twin-beam state. Theoretically one 
should have 

C n ,  m ~-  (1 -l~:12)~ ,m ~,n. (208) 

The estimators have been numerically evaluated by applying the Gauss 
method for calculating the integral in Equation (186), which results in a 
fast and sufficiently precise algorithm with the use of just 150 evaluation 
points. 

In Figure 5 a Monte Carlo simulation of the joint photon number 
probability distribution is reported. The simulated values compare very 
well with the theoretical ones. In Ref. [17] a careful analysis of the 
statistical errors has been done for various twin-beam states by 
constructing histograms of deviations of the results from different 
simulated experiments from the theoretical ones. In comparison to the 
customary two-LO tomography of Ref. [87], where for r / -  1 the statistical 
errors saturate for increasingly large n and m, here we have statistical 
errors that are slowly increasing versus n and m. This is due to the fact 
that the range of the estimators in Equation (190) increases versus 
n and m. Overall we find that for any given quantum efficiency the statistical 
errors are generally slightly larger than those obtained with the two-LO 
method. The convenience of using a single LO then comes with its own 
price tag. 
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FIGURE 6. Probability distribution for the total number of photons of the twin beams in 
Equation (195) for average number of photons per beam ~ = 2 obtained using the estimator in 
Equation (191). The oscillation of the total photon number probability due to the perfect 
correlation of the twin beams has been reconstructed by simulating 107 data samples with 
quantum efficiency r /= 0.9 (on the left), and 2 x 107 data samples ~ = 0.8 (on the fight). The 
theoretical probability (thick solid line) is superimposed onto the result of the Monte Carlo 
experiment; the latter is shown by the thin solid line. Notice the dramatic increase of errors (in 
gray shade) versus N and for smaller r/. (From Ref. [17].) 

FIGURE 7. Tomographic reconstruction of the matrix elements Cn,m - a (mlb (m[~) (WIn)a[n)b 
of the twin beams in Equation (195) for average number of photons per beam ~ = 2, obtained 
using the estimator in Equation (186). On the left we used 106 simulated data samples and 
quantum efficiency ~ = 0.9; on the right 3 x 106 data samples and r /= 0.8. The coherence of the 
twin-beam state is easily recognized as Cn,m varies little for n + m = c o n s t a n t  (~ in 
Equation (195) has been chosen real). For a typical comparison between theoretical 
and experimental matrix elements and their relative statistical errors, see results in Figure 6. 
(From Ref. [17].) 
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FIGURE 8. A schematic of the experimental setup. NOPA: nondegenerate optical 
parametric amplifier; LOs: local oscillators; PBS: polarizing beam splitter; LPFs: low- 

By using the estimator in Equation (191) the probability distribution for 
the total number of photons N of the twin beams has been also constructed 
(Figure 6). Notice the dramatic increase of error bars versus N and for 
smaller r/. 

Finally, in Figure 7 we report the results of the tomographic measurement 
of C,,m defined in Equation (207). Because the reconstructed C,,,m is close to 
the theoretically expected value in Equation (208), these reveal the purity of 
the twin beams, which cannot be inferred from the thermal diagonal 
distribution of Figure 5. 

The first experimental results of a measurement of the joint photon 
number probability distribution for a two-mode quantum state created by a 
nondegenerate optical parametric amplifier has been presented in Ref. [86]. 
In this experiment, however, the twin beams are detected separately by two 
balanced-homodyne .detectors. A schematic of the experimental setup is 
reported in Figure 8, and some experimental results are reported in Figure 9. 
As expected for parametric fluorescence, the experiment has shown a 
measured joint photon number probability distribution that exhibited 
up to 1.9 dB of quantum correlation between the two modes, with thermal 
marginal distributions. 

VI. APPLICATIONS TO QUANTUM MEASUREMENTS 

In this section we review a number of applications of quantum tomography 
related to some fundamental tests in quantum mechanics. 
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FIGURE 9. Left: measured joint photon number probability distribution for the twin-beam 
state with average number of photons per beam ~ - 1.5 and 4 x 105 samples. Right: marginal 
distribution for the signal beam for the same data. The theoretical distribution is also shown. 
Very similar results are obtained for the idler beam. (From Ref. [86].) 

First, we report the proposal of Ref. [30] for testing the nonclassicality of 
quantum states by means of an operational criterion based on a set 
of quantities that can be measured experimentally with some given level of 
confidence, even in the presence of loss, noise, and less-than-unity quantum 
efficiency. 

Second, we report the experiment proposed in Ref. [31] for testing 
quantum state reduction. The state reduction rule is tested using optical 
homodyne tomography by directly measuring the fidelity between the 
theoretically expected reduced state and the experimental state. 

Finally, we review some experimental results obtained at the Quantum 
Optics Lab of the University of Naples [32] about the reconstruction of 
coherent signals, together with application to the estimation of the losses 
introduced by simple optical components. 

A. Measuring the Nonclassicality of a Quantum State 

The concept of nonclassical states of light has received much attention in 
quantum optics [41,88-96]. The customary definition of nonclassicality is 
given in terms of the P-function presented in Section II.A: a nonclassical 
state does not admit a regular positive P-function representation, namely it 
cannot be written as a statistical mixture of coherent states. Such states 
produce effects that have no classical analogue. These kinds of states are 
of fundamental relevance not only for the demonstration of the inadequacy 
of classical description, but also for applications, e.g., in the realms of 
information transmission and interferometric measurements [91,92,95]. 
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We are interested in testing the nonclassicality of a quantum state by 
means of a set of quantities that can be measured experimentally with some 
given level of confidence, even in the presence of loss, noise, and less-than- 
unity quantum efficiency. The positivity of the P-function itself cannot be 
adopted as a test, since there is no viable method to measure it. As proved in 
Section IV.A only the generalized Wigner functions of order s < 1 - r/-1 can 
be measured, ~ being the quantum efficiency of homodyne detection. Hence, 
through this technique, all functions from s = 1 to s = 0 cannot be 
recovered, i.e., we cannot obtain the P-function and all its smoothed 
convolutions up to the customary Wigner function. For the same reason, the 
nonclassicality parameter proposed by Lee [41], namely the maximum 
s-parameter that provides a positive distribution, cannot be experimentally 
measured. 

Among the many manifestations of nonclassical effects, one finds 
squeezing, antibunching, even-odd oscillations in the photon-number 
probability, and negativity of the Wigner function [89-91,95,97-100]. Any 
of these features alone, however, does not represent the univocal criterion 
we are looking for. Neither squeezing nor antibunching provides a necessary 
condition for nonclassicality [93]. The negativity of the Wigner function, 
which is well exhibited by the Fock states and the Schr6dinger-cat-like 
states, is absent for the squeezed states. As for the oscillations in the photon 
number probability, some even-odd oscillations can be simply obtained by 
using a statistical mixture of coherent states. 

Many authors [93,94,96] have adopted the nonpositivity of the phase- 
averaged P-function F( I ) -  (1/2re) f2~ d~P(i1/2eie~ ) as the definition for a 
nonclassical state, since F(I) < 0 invalidates Mandel's semiclassical formula 
[88] of photon counting, i.e., it does not allow a classical description in 
terms of a stochastic intensity. Of course, some states can exhibit a "weak" 
nonclassicality [96], namely a positive F(I), but with a nonpositive 
P-function (a relevant example being a coherent state undergoing Kerr-type 
self-phase modulation). However, from the point of view of the detection 
theory, such "weak" nonclassical states still admit a classical description in 
terms of positive intensity probability F(I) > 0. For this reason, we adopt 
nonpositivity of F(I) as the definition of nonclassicality. 

1. Single-Mode Nonclassicality 
The authors of Refs. [93,94,96] have pointed out some relations between 
F(I) and generalized moments of the photon distribution, which, in turn, 
can be used to test the nonclassicality. The problem is reduced to an 
infinite set of inequalities that provide both necessary and sufficient 
conditions for nonclassicality [94]. In terms of the photon number 
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probability p(n ) - -  (nlPln) of the state with density matrix p, the simplest 
sufficient condition involves the following three-point relation [94,96] 

B(n) = (n + 2)p(n)p(n § 2) - (n § 1)[p(n + 1)] 2 < 0. (209) 

Higher-order sufficient conditions involve five-, seven-, . . . ,  (2k § 1)-point 
relations, always for adjacent values of n. It is sufficient that just one of these 
inequalities is satisfied in order to assure the negativity of F(I).  Notice that 
for a coherent state B(n) = 0 identically for all n. 

In the following we show that quantum tomography can be used as a 
powerful tool for performing the nonclassicality test in Equation (209). For 
less-than-unity quantum efficiency (r/< 1), we rely on the concept of a 
"noisy state" p,, wherein the effect of quantum efficiency is ascribed to the 
quantum state itself rather than to the detector. In this model, the effect of 
quantum efficiency is treated in a Schr6dinger-like picture, with the state 
evolving from p to p,, and with r/playing the role of a time parameter. Such 
lossy evolution is described by the master equation [37] 

F [2ap(t)a f a lap(t) - p(t)a ta], Otp(t) -- -~ (210) 

wherein p ( t ) - p ,  with t = - I n  UF.  
For the nonclassicality test, reconstruction in terms of the noisy state has 

many advantages. In fact, for nonunit quantum efficiency 17 < 1 the tomo- 
graphic method introduces errors for p(n) which are increasingly large versus 
n, with the additional limitation that quantum efficiency must be greater 
than the minimum value r /= 0.5. On the other hand, the reconstruction of 
the noisy-state probabilities p~(n) = (nip, In) does not suffer such limitations, 
and even though all quantum features are certainly diminished in the noisy- 
state description, nevertheless the effect of nonunity quantum efficiency does 
not change the sign of the P-function, but only rescales it as follows: 

P(z) --~ P,(z)  - 1 p(z/~l/2) .  (211) 
rl 

Hence, the inequality (209) still represents a sufficient condition for 
nonclassicality when the probabilities p ( n ) =  (nip]n) are replaced with 
p,(n)  = (n]p, ln), the latter being given by a Bernoulli convolution, as shown 
in Equation (22). When referred to the noisy-state probabilities p,(n),  the 
inequality in Equation (209) keeps its form and is simply rewritten as follows 

B , ( n ) -  (n + 2)p,(n)p,(n + 2) - (n + 1)[p,(n + 1)] 2 < 0. (212) 
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The quantities B(n) and B~(n) are nonlinear in the density matrix. Then, they 
cannot be measured by averaging a suitable estimator over the homo- 
dyne data. Hence, in the evaluation of B(n) one has to reconstruct the 
photon number probabilities p(n), using the estimator 7~[[n)(nl](x, ~o) in 
Equation (100). The noisy-state probabilities po(n) are obtained by using the 
same estimator for r /=  1, namely without recovering the convolution effect 
of nonunit quantum efficiency. Notice that the estimator does not depend on 
the phase of the quadrature. Hence, the knowledge of the phase of the local 
oscillator in the homodyne detector is not needed for the tomographic 
reconstruction, and it can be left fluctuating in a real experiment. 

Regarding the estimation of statistical errors, they are generally obtained 
by dividing the set of homodyne data into blocks, as shown in 
Section III.C.1. However, in the present case, the nonlinear dependence 
on the photon number probability introduces a systematic error that is 
vanishingly small for increasingly larger sets of data. Therefore, the 
estimated value of B(n) is obtained from the full set of data, instead of 
averaging the mean value of the different statistical blocks. 

In Figures 10 and 11 some numerical results from Ref. [30] are reported, 
which are obtained by a Monte Carlo simulation of a quantum tomography 
experiment. The nonclassicality criterion is tested either on a Schr6dinger- 
cat state Igr(ot)) (x (lot) + l - o t ) )  or on a squeezed state lot, r)= D(ot)S(r)lO), 
wherein I~), D(~), and S(r) denote a coherent state with amplitude oe, 

FIGURE 10. Tomographic measurement of B(n) (dashed trace) with the respective error 
bars (superimposed in gray-shade) along with the theoretical values (solid trace) for a 
Schr6dinger cat state with average photon number ~ = 5 (left); for a phase-squeezed state with 

= 5 and ~sq = sinh2r = 3 squeezing photons (right). In both cases the quantum efficiency is 
17 = 0.8 and the number of simulated experimental data is 107. (From Ref. [30].) 
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FIGURE 11. Same as Figure 10, but here for B,7(n ). (From Ref. [30].) 

the displacement operator D(o t ) -  r ~at-~*a, and the squeezing operator 
S ( r ) -  r r(at2-a2)/2, respectively. Figure 10 shows tomographically obtained 
values of B(n), with the respective error bars superimposed, along with the 
theoretical values for a Schr6dinger-cat state and for a phase-squeezed state 
(r > 0). For  the same set of states the results for B,(n) obtained by 
tomographic reconstruction of the noisy state are reported in Figure 11. Let 
us compare the statistical errors that affect the B(n) and B~(n) on the original 
and the noisy states, respectively. In the first case the error increases with 
n, whereas in the second it remains nearly constant, albeit with less 
marked oscillations in B~(n) than those in B(n). 

The nonclassicality of the states here analyzed is experimentally verifiable, 
as B,(0) < 0 by more than five standard deviations. In contrast, for coherent 
states one obtains small statistical fluctuations around zero for all n. Finally, 
we remark that the simpler test of checking for antibunching or oscillations 
in the photon number probability in the case of the phase-squeezed 
state (left of Figures 10 and 11) would not reveal the nonclassical features 
of such a state. 

2. Two-Mode Nonclassicality 
In Ref. [30] it is also shown how quantum homodyne tomography can also 
be employed to test the nonclassicality of two-mode states. For  a two-mode 
state nonclassicality is defined in terms of nonpositivity of the following 
phase-averaged two-mode P-function [96]: 

i f  2~ F(I1, I2, ~) -- ~ d~l P(I]/2eiCkl , I 1/2ei(4~ +4))). (213) 
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In Ref. [96] it is also proved  that  a sufficient condi t ion  for nonclassicali ty is 

C = ((nl - n:2) 2) - ((nl - n2)) 2 - (nl + n2) < 0, (214) 

where nl and  n2 are the p h o t o n  number  opera tors  of  the two modes.  
A tomograph i c  test of  the inequali ty in Equa t ion  (214) can be pe r fo rmed  

by averaging the es t imators  for the involved opera tors  using Table  1. Again,  
the value 1 / -  1 can be used to reconstruct  the ensemble averages of  the noisy 
state P0. As an example,  we consider the twin-beam state of  Equa t ion  (195). 
The theoret ical  value of  C is given by C = - 2 1 ~ ] 2 / ( 1 -  ]~]2)< 0. Wi th  
regard  to the effect of  q u a n t u m  efficiency r / <  1, the same a rgumen t  still 
holds  as for the s ingle-mode case: one can evaluate  C o for the twin beams 
degraded  by the effect of  loss, and use ~/= 1 in the est imators.  In this case, 
the theoret ical  value of  C o is simply rescaled, namely  

C o = -2r/21~12/(1 -1~12). (215) 

In Figure 12 we repor t  C 0 vs. 1 - t/, with 7/ranging f rom 1 to 0.3 in steps of  
0.05, for the twin beam in Equa t ion  (195) with ]~l 2 = 0.5, cor responding  to a 
total  average p h o t o n  number  (nl + n2) = 2. The values of  C 0 result f rom 

FIGURE 12. Tomographic measurement of the nonclassical parameter C o for twin beams in 
Equation (195) with I~l 2 =0.5. The results are shown for different values of the quantum 
efficiency r/ (in steps of 0.05), and for each value the number of simulated data is 4 x l05. 
Statistical errors are shown in the gray shade. (From Ref. [30].) 
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a Monte Carlo simulation of a homodyne tomography experiment with a 
sample of 4 x 105 data. The nonclassicality test in terms of the noisy state 
gives values of C, that are increasingly near the classically positive region 
for decreasing quantum efficiency r/. However, the statistical error remains 
constant and is sufficiently small to allow recognition of the nonclassicality 
of the twin beams up to r /= 0.3. 

We conclude that quantum homodyne tomography allows one to perform 
nonclassicality tests for single- and two-mode radiation states, even when 
the quantum efficiency of homodyne detection is rather low. The method 
involves reconstruction of the photon number probability or of some 
suitable function of the number operators pertaining to the noisy state, 
namely the state degraded by the less-than-unity quantum efficiency. The 
noisy-state reconstruction is affected by the statistical errors; however, they 
are sufficiently small that the nonclassicality of the state can be tested even 
for low values of r/. For the cases considered here, we have shown that the 
nonclassicality of the states can be proved (deviation from classicality by 
many error bars) with 105-107 homodyne data. Moreover, since the 
knowledge of the phase of the local oscillator in the homodyne detector is 
not needed for the tomographic reconstruction, it can be left fluctuating in a 
real experiment. 

B. Test of  State Reduction 

In quantum mechanics the state reduction (SR) is still a much discussed rule. 
The so-called "projection postulate" was introduced by von Neumann [2] to 
explain the results from the Compton-Simons experiment, and it was 
generalized by Lfiders [101] for measurements of observables with 
degenerate spectrum. The consistency of the derivation of the SR rule and 
its validity for generic measurements have been analyzed with some criticism 
[102]. In a very general context, the SR rule was derived in a physically 
consistent way from the Schr6dinger equation for the composite system of 
object and measuring apparatus [103]. An experiment for testing quantum 
SR is therefore a very interesting matter. Such a test in general is not 
equivalent to a test of the repeatability hypothesis since the latter holds only 
for measurements of observables that are described by self-adjoint 
operators. For example, joint measurements like the Arthurs-Kelly [54] 
are not repeatable, as the reduced states are coherent states, which are not 
orthogonal. 

Quantum optics offers a possibility of testing the SR, because several 
observables can be chosen to perform different measurements on a fixed 
system. For instance, one can decide to perform either homodyne or 
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heterodyne, or photon number detection. This is a unique opportunity; 
in contrast, in particle physics the measurements are mostly quasiclassical 
and restricted to only a few observables. In addition, optical homodyne 
tomography allows a precise determination of the quantum system after 
the SR. 

A scheme for testing the SR could be based on tomographic measure- 
ments of the radiation density matrix after nondemolition measurements. 
However, such a scheme would reduce the number of observables that are 
available for the test. Instead, one can take advantage of the correlations 
between the twin beams of Equation (195) produced by a nondegenerate 
optical parametric amplifier (NOPA), in which case one can test the SR even 
for demolitive-type measurements. Indeed, if a measurement is performed 
on one of the twin beams, the SR can be tested by homodyne tomography 
on the other beam. This is precisely the scheme for an experimental test of 
SR proposed in Ref. [31], which is reviewed in the following. 

The scheme for the SR test is given in Figure 13. Different kinds 
of measurements can be performed on beam 1, even though here the 
SR only for heterodyne detection and photon number detection will be 
considered. 

FIGURE 13. Schematic of the proposed scheme for testing the SR for heterodyne detection. 
A NOPA generates a pair of twin beams (1 and 2). After heterodyning beam 1, the reduced 
state of beam 2 is analyzed by homodyne tomography, which is conditioned by the heterodyne 
outcome. In place of the heterodyne detector one can put any other kind of detector for 
testing the SR on different observables. We also consider the case of direct photodetection. 
(From Ref. [31].) 
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For a system described by a density operator p, the probability p(Z)dZ 
that the outcome of a quantum measurement of an observable is in the 
interval [Z, Z + dZ) is given by Born's rule p(Z)dZ = Tr[p FixdZ], where lqx is 
the POVM pertaining to the measurement that satisfies Fix _> 0 and 
f dZ 1-Ix = I. For an exact measurement of an observable, which is described 
by a self-adjoint operator, I-Ix is just the projector over the eigenvector 
corresponding to the outcome Z. In the case of the photon number at a the 
spectrum is discrete and the POVM is r l  m - - ] m )  ( m ]  for integer eigenvalue 
m. For the Arthurs-Kelly joint measurement of the position and momentum 
(corresponding to a joint measurement of two conjugated quadratures of 
the field) we have the coherent-state POVM 1-I~ = g-1  lot) (o/1. 

When on beam 1 we perform a measurement described by Fix, the reduced 
normalized state of beam 2 is 

p ( X ) -  Trl[l~)(r | 1)] = EI-I~E t (216) 
Trl,2[l~) (~l(nx | 1)] p(X)  ' 

where O r denotes the transposed operator (on a fixed basis), , q -  
( 1 -  1~12)1/2~ a-a, and p ( Z ) -  Trl,2[EFI~E t] is the probability density of the 
measurement outcome Z. In the limit of infinite gain I~1 ~ 1 one has 
p(Z) (x FI~. For example, for heterodyne detection with outcome or, we have 
p(c0 = I~*)(c~*l. 

If the readout detector on beam 1 has quantum efficiency ~lr, Equation 
(216) is replaced with 

por(X)- E(I-I~r)rE t 
pO,(X) ' (217) 

where p r i r ( ~ ) _  Trl,2[~,(Fi~r)r~,t], and FI~' is the POVM for measurement 
with quantum efficiency 7/r. As shown in Section II.D, for heterodyne 
detection one has the Gaussian convolution 

I-I~' - 1 L d2z -(Iz-alZ/A~) T[~A2y]r e Iz) (zl, (218) 

2 __  (1 - llr)/llr. For direct photodetection 1-I m - -  [m) (ml is replaced with ao, 
with the Bernoulli convolution 

Fir~ -- Z j r/rm(1 - rlr)J-mlJ)(jl. 
 9 m j=m 

(219) 
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The experimental test proposed here consists of performing conditional 
homodyne tomography on beam 2, given the outcome )~ of the measurement 
on beam 1. We can directly measure the "fidelity of the test" 

F()0 = Tr[p"r(,k) Prneas()~)], (220) 

where IOrtr(~) is the theoretical state in Equation (217), and Pmeas()~) is the 
experimentally measured state on beam 2. Notice that we use the term 
"fidelity" even if F@) is a proper fidelity when at least one of the two states 
is pure, which occurs in the limit of unit quantum efficiency Or. In the 
following we evaluate the theoretical value of F@) and compare it with the 
tomographic measured value. 

The fidelity (220) can be directly measured by homodyne tomography 
using the estimator for the operator p'TrO0, namely 

- ~ d x p , h ( x ,  go; )~)Roh[pOr()~)](X, go), (221) 

where P,h(x, go; )~) is the conditional homodyne probability distribution for 
outcome )~ at the readout detector. 

For heterodyne detection on beam 1 with outcome ~ e C, the reduced 
state on beam 2 is given by the displaced thermal state 

pU~ (o 0 _ o~D(v)  (1 - O~) at aDt  (9/), (222) 

where 

0~ = 1 + ( O r -  1)l~[ 2, ~0r , 
9 / -  ~ ~  9 (223) 

0~ 

The estimator in Equation (221) is given by 

2qhq~ ~ ( 1  1 20hO------------L-~ (X- 9/~o) 2) (224) "['~rlh [prlr (IY)](X, (/9) --  20h -- 0~ ' 2; -- 20h -- 0~ 

where yr = Re(ye-i~), and ~(a,b;  z) denotes the customary confluent 
hypergeometric function. The estimator in Equation (224) is bounded for 
Oh > (1/2)0~, then one needs to have 

I [  I - - I ~ [ 2 (  I --  Or)] O h > ~  (225) 
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As one can see from Equation (225), for r/h > 0.5 the fidelity can be 
measured for any value of ~r and any gain parameter ~ of the NOPA. We 
recall that the condition ~h > 0.5 is required for the measurement of the 
density matrix. However, in this direct measurement of the fidelity, the 
reconstruction of the density matrix is bypassed, and we see from 
Equation (225) that the bound Oh = 0.5 can be lowered. 

The measured fidelity F(ot) in Equation (221) with p"r(ot) as given in 
Equation (222) must be compared with the theoretical value 

Fth = ~ / ( 2 -  r/~), (226) 

that is independent of or. 
For direct photodetection on beam 1 with outcome n, the reduced state on 

beam 2 is given by 

p~r(n) -- rl~ 1 -- rl~ n (227) 

The estimator for the fidelity measurement is 

(Or 
7-'r qg) -- n! 2ohr/~  9 (1 -1. 

z=02r /h - r /~+z  \ ' 2 '  
2r/h(O~ - z) x2'~ 

2 ~ h - ~ + z  ,]" 
(228) 

We see that the same bound of Equation (225) holds. In this case the 
measured fidelity F(n)  must be compared with the theoretical value 

Fth(n) -- rl~+2nF(2n + 1,2n + 1; 1; (1 - ~)2), (229) 

where F(a,  b; c; z) denotes the customary hypergeometric function. 
Several simulations have been reported in Ref. [31] for both heterodyne 

and photodetection on beam 1. In the former case the quadrature 
probability distribution has been simulated, pertaining to the reduced state 
(222) on beam 2, and averaged the estimators in Equation (224). In the latter 
case the reduced state (227) and the estimators in Equation (228) have been 
used. 

Numerical results for the fidelity were thus obtained for different values of 
the quantum efficiencies Or and Oh, and of the NOPA gain parameter ~. A 
decisive test can be performed with samples of just a few thousand 
measurements. The statistical error in the measurement was found to be 
rather insensitive to both quantum efficiencies and NOPA gain. 
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C. Tomography of Coherent Signals and Applications 

Quantum homodyne tomography has been proved useful in various 
experimental situations, such as for measuring the photon statistics of a 
semiconductor laser [10], for determining the density matrix of a squeezed 
vacuum [11] and the joint photon number probability distribution of a twin 
beam created by a nondegenerate optical parametric amplifier [86], and for 
reconstructing the quantum states of spatial modes with an array detector 
[104]. In this section we review some experimental results about homodyne 
tomography with coherent states, with application to the estimation of the 
loss introduced by simple optical components [32]. 

The experiment has been performed in the Quantum Optics Lab of the 
University of Naples, and a schematic is presented in Figure 14. The 
principal radiation source is provided by a monolithic Nd : YAG laser ( ~ 50 
mW at 1064 nm; Lightwave, model 142). The laser has a linewidth of less 
than 10 kHz/ms with a frequency jitter of less than 300 kHz/s, while its 
intensity spectrum is shot-noise limited above 2.5 MHz. 

The laser emits a linearly polarized beam in a TEM00 mode, which is split 
in two parts by a beam splitter. One part provides the strong local oscillator 
for the homodyne detector. The other part, typically less than 200 lzW, is the 
homodyne signal. The optical paths traveled by the local oscillator and 

FR HWPt H W P 3  

I I " m :  ~ ~ I ~ I ! "~ I 4UH= I ] I~V ] 
laser @1064nm HWP, EOM _ ~ : : : : : :  

BS P D 2  
^ i 5 e ~  ~.i A r ' - ,  " x  PZT ~ - - - - - - - - ~ ~ ,  ",,,,. 

^ ) ) 
I I I '~"1, l..llvll,.,ll~.l = ~ PD1 " - "  ~ ' !X~  . . . .  . . . . I  

FIGURE 14. Schematic of the experimental setup. A Nd:YAG laser beam is divided into 
two beams, the first acting as a strong local oscillator, the second representing the signal beam. 
The signal is modulated at frequency ~2 with a defined modulation depth to control the average 
photon number in the generated coherent state. The tomographic data are collected by a 
homodyne detector whose difference photocurrent is demodulated and then acquired by a 
digital oscilloscope. (From Ref. [32].) 
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the signal beams are carefully adjusted to obtain a visibility typically 
above 75% measured at one of the homodyne output ports. The signal beam 
is modulated by means of a phase electrooptic modulator (EOM, Linos 
Photonics PM0202), at 4 MHz, and a halfwave plate (HWP2, HWP3) is 
mounted in each path to carefully match the polarization state at the 
homodyne input. 

The detector is composed of a 50/50 beam splitter (BS), two amplified 
photodiodes (PD1, PD2), and a power combiner. The difference 
photocurrent is demodulated at 4 MHz by means of an electrical mixer. 
In this way the detection occurs outside any technical noise and, more 
important, in a spectral region where the laser does not carry excess noise. 

The phase modulation added to the signal beam moves a certain number 
of photons, proportional to the square of the modulation depth, from the 
carrier optical frequency co to the side bands at co 4-f2 so generating two 
weak coherent states with engineered average photon number at frequencies 
co 4- S2. The sum sideband mode is then detected as a controlled perturbation 
attached to the signal beam. The demodulated current is acquired by a 
digital oscilloscope (Tektronix TDS 520D) with 8-bit resolution and record 
length of 250,000 points per run. The acquisition is triggered by a triangular- 
shaped waveform applied to the PZT mounted on the local oscillator 
path. The piezo ramp is adjusted to obtain a 2n phase variation between the 
local oscillator and the signal beam in an acquisition window. 

The homodyne data to be used for tomographic reconstruction of the 
state have been calibrated according to the noise of the vacuum state. This is 
obtained by acquiring a set of data leaving the signal beam undisturbed 
while scanning the local oscillator phase. It is important to note that in the 
case of the vacuum state no role is played by the visibility at the homodyne 
beam splitter. 

The tomographic samples consist of N homodyne data {xj, qgj}j= 1 ..... U with 
phases qgj equally spaced with respect to the local oscillator. Since the 
piezo ramp is active during the whole acquisition time, we have a single 
value xj for any phase ~0j. From calibrated data we first reconstruct the 
quantum state of the homodyne signal. According to the experimental 
setup, we expect a coherent signal with nominal amplitude that can be 
adjusted by varying the modulation depth of the optical mixer. However, 
since we do not compensate for the quantum efficiency of photodiodes in the 
homodyne detector (r/-~90%) we expect to reveal coherent signals with 
reduced amplitude. In addition, the amplitude is further reduced by the 
nonmaximum visibility (ranging from 75 to 85%) at the homodyne 
beam splitter. 

In Figure 15 we report a typical reconstruction, together with the 
reconstruction of the vacuum state used for calibration. For both states, we 
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FIGURE 15. Reconstruction of the quantum state of the signal, and of the vacuum state 
used for calibration. For both states, from left to right, we report the raw data, a histogram 
of the photon number distribution, and a countour plot of the Wigner fumction. The 
reconstruction has been performed by a smaple of N=242250 homodyne data. The 
coherent signal has an estimated average photon number equal to (ata)=8.4. The solid line 
denotes the theoretical photon distribution of a coherent state with such number of photons. 
Statistical errors on matrix elements are about 2%. The slight phase asymmetry in the Wigner 
distribution corresponds to a value of about 2% of the maximum. (From Ref. [32].) 

report the raw data, the photon number distribution Pnn, and a contour 
plot of the Wigner function. The matrix elements are obtained by sampling 
the corresponding estimators in Equation (100), whereas the confidence 
intervals for diagonal elements are given by 8Pnn = A p / x / N ,  Ap  being the 
rms deviation of the estimator over data. For off-diagonal elements 
the confidence intervals are evaluated for the real and imaginary part 
separately. 

In order to see the quantum state as a whole, we also report the 
reconstruction of the Wigner function of the field, which can be expressed in 
terms of the matrix elements as the discrete Fourier transform 

O0 0 0  

W(a, or*) - Re ~ e ida~ ~_~ A(n, d; [a[)P~,~+d 
d=O n=O 

(230) 
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where q9 - arg ~, and 

! 
A(n, d; Iotl) - (-)n2(2 - 8a~ 

n! 
n + d)! 

e-21'~l~L~(12c~12), (231) 

L~(x) denoting the Laguerre polynomials. Of course, the series in 
Equation (230) should be truncated at some point, and therefore the 
Wigner function can be reconstructed only at some finite resolution. 

Once the coherence of the signal has been established we may use 
homodyne tomography to estimate the loss imposed by a passive optical 
component like an optical filter. The procedure may be outlined as follows. 
We first estimate the initial mean photon number ~0 --lot012 of the signal 
beam, and then the same quantity inserting an optical neutral density filter 
in the signal path. If F is the loss parameter, then the coherent amplitude 
is reduced to otr = otoe -r, and the intensity to ~r = no e-zr. 

The estimation of the mean photon number can be performed adaptively 
on data, using the general method presented in Section III.D.2. One takes 
the average of the estimator 

1 "R,[a t a] (x ,  qg) - -  2x 2 --~-+- iJ, e i2~~ --k l z*e  -i2~~ (232) 

where # is a parameter to be determined in order to minimize fluctuations. 
As proved in Ref. [22] one has / z - - 1 / 2 ( a t 2 ) ,  which itself can be 
obtained from homodyne data. In practice, one uses the data sample 
twice: first to evaluate/z, then to obtain the estimate for the mean photon 
number. 

In Figure 16 the tomographic determinations of ~r are compared with 
the expected values for three sets of experiments, corresponding to 
three different initial amplitudes. The expected values are given by 
n r -  n0e-Zr'~, where F is the value obtained by comparing the signal d.c. 
currents I0 and Iv at the homodyne photodiodes and V -  Vr/Vo is the 
relative visibility. The solid line in Figure 16 denotes these values. The 
line is not continuous due to variations of visibility. It is apparent from the 
plot that the estimation is reliable in the whole range of values we could 
explore. It is worth noting that the estimation is absolute, i.e., it does not 
depend on the knowledge of the initial amplitude, and it is robust, since it 
can be performed independently of the quantum efficiency of the homodyne 
detector. 

One may notice that the estimation of loss can be pursued also by 
measuring an appropriate observable, typically the intensity of the light 
beam with and without the filter. However, this is a concrete possibility only 
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FIGURE 16. Estimation of the mean photon number of a coherent signal as a function of 
the loss imposed by an optical filter. Three sets of experiments, corresponding to three different 
initial amplitudes are reported. Open circles are the tomographic determinations, whereas the 
solid lines denote the expected values, as follow from nominal values of loss and visibility at the 
homodyne detector. Statistical errors are within the circles (From Ref. [32].) 

for high-amplitude signals, whereas losses on weak coherent states cannot 
be properly characterized neither by direct photocounting using photo- 
diodes (due to the low quantum efficiency and large fluctuations) nor by 
avalanche photodetectors (due to the impossibility of discriminating among 
the number of photons). On the contrary, homodyne tomography provides 
the mean intensity (actually the whole photon distribution) independent of 
the signal level, thus allowing a precise characterization also in the quantum 
regime. Indeed, in Ref. [22] adaptive tomographic determination of the 
mean photon number has been extensively applied to (numerically 
simulated) homodyne data for coherent states of various amplitudes. The 
analysis has shown that the determination is reliable also for small samples 
and that precision is not much affected by the intensity of the signal. 

V I I .  TOMOGRAPHY OF A QUANTUM DEVICE 

If we want to determine experimentally the operation of a quantum device, 
we need, by definition, quantum tomography. In fact, the characterization 
of the device operation could be done by running a basis of possible known 
inputs, and determining the corresponding outputs by quantum tomog- 
raphy. In quantum mechanics the inputs are density operators, and the role 
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of the transfer matrix is played by the so-called quantum operation of the 
device, here denoted by ~'. Thus the output state pout (a part from a possible 
normalization) is given by the quantum operation applied to the input state 
as follows 

pout = S(pi,,). (233) 

Since the set of states p actually belongs to a space of operators, this means 
that if we want to characterize ~' completely, we need to run a complete 
orthogonal basis of quantum states In) (n = 0, 1,2,.. .),  along with their 
linear combinations (1/~/2)(in')+ ik]n")), with k = 0, 1,2,3 and i denoting 
the imaginary unit. However, the availability of such a set of states in the 
laboratory is, by itself, a very difficult technological problem. For example, 
for an optical device, the states In) are those with a precise number n of 
photons, and, apart from very small n--say at most n -  2--they have never 
been achieved in the laboratory, whereas preparing their superpositions 
remains a dream for experimentalists, especially if n >> 1 (a kind of 
Schrodinger kitten state). 

The idea of achieving the quantum operation of a device by scanning the 
inputs and making tomography of the corresponding output is the basis of 
the early methods proposed in Refs. [105,106]. Due to the mentioned 
problems of the availability of input states, both methods have limited 
application. The method of Ref. [105] has been designed for NMR quantum 
processing, whereas the method of Ref. [106] was conceived for determining 
the Liouvillian of a phase-insensitive amplifier, namely for a case in which 
the quantum operation has no off-diagonal matrix elements, to evaluate 
which one needs the superpositions (1/~/2)(In ') +/kin")) with k = 0,1,2,3 
mentioned above. The problem of availability of input states and their 
superpositions was partially solved by the method of Ref. [107], where it was 
suggested to use randomly drawn coherent states to estimate the quantum 
operation of an optical device via a maximum likelihood approach. This 
method, however, cannot be used for quantum systems different from the 
em radiation--such as finite dimensional systems, i.e., qubits--due to the 
peculiarity of coherent states. The solution to the problem came with 
the method of Ref. [25], where the problem of the availability of input states 
was solved by using a single bipartite entangled input, which is equivalent to 
run all possible input states in a kind of "quantum parallel" fashion 
(bipartite entangled states are nowadays easily available in most quantum 
systems of interest). The method is also very simple and effective, and 
its experimental feasibility (for single-photon polarization-encoded qubits) 
has been already demonstrated in an experiment performed in the Francesco 
De Martini laboratory in Roma La Sapienza [108]. In the next sections 
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we will review the general method and report some computer simulated 
results from Ref. [25]. 

A. The Method 

As already mentioned, the description of a general state transformation 
in quantum mechanics is given in terms of the so-called quantum operation. 
The state transformation due to the quantum operation g is given as follows 

g(P) (234) P ~ Tr(g(p))" 

The transformation occurs with probability given by p = Tr[g(p)] _< 1. 
The quantum operation g is a linear, trace-decreasing completely positive 
(CP) map. We remember that a map is completely positive if it preserves 
positivity generally when applied locally to an entangled state. In other 
words, upon denoting by Z the identical map on the Hilbert space/C of a 
second quantum system, the extended map ,5' | 2- on ~ | K; is positive for 
any extension /C. Typically, the CP map is written using a Kraus 
decomposition [109] as follows 

C(p) - ~ K~pK~, (235) 
n 

where the operators K~ satisfy 

Z K~Kn <_ I. (236) 
n 

The transformation (235) occurs with generally nonunit probability 
Tr[,5(p)] < 1, and the probability is unity independent of p when ~" is 
trace-preserving, i.e., when we have the equal sign in Equation (236). The 
particular case of unitary transformations corresponds to having just one 
term K1 = U in the sum (235), with U unitary. However, one can consider 
also nonunitary operations with one term only, namely 

S(p) = ApA t, (237) 

where A is a contraction, i.e., I IAI] _< 1. Such operations leave pure states as 
pure, and describes, for example, the state reduction from a measurement 
apparatus for a particular fixed outcome that occurs with probability 
Tr[pAtA] < 1. 
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In the following we will use the notation for bipartite pure states intro- 
duced in Equation (45), and we will denote by O ~ and O* the transposed and 
the conjugate operator of O with respect to some prechosen orthonormal 
basis. 

The basic idea of the method in Ref. [25] is the following. An unknown 
quantum operation g can be determined experimentally through quantum 
tomography, by exploiting the following one-to-one correspondence: 
~'+-~ RE between quantum operations g and positive operators RE on two 
copies of the Hilbert space 7-[ | 

RE = ,5' | Z([I)) ((I[), ,$(p) -- Tr2[I | p~RE]. (238) 

Notice that the vector II)) represents a (unnormalized) maximally entangled 
state. If we consider a bipartite input state [~)) and operate with $ only on 
one Hilbert space as in Figure 17, the output state is given by 

R(r g | z(lr ((r (239) 

For invertible 7t the two matrices R ( / ) -  RE and R(~) are related as follows 

R ( I )  = ( I  | 1/J "-Ir | ~-1"). (240) 

Hence, the (four-index) quantum operation matrix RE can be obtained by 
estimating via quantum tomography the following ensemble averages 

( ( i , j lR( I ) l l ,  k)) - Tr[R(Tr)(I/) (il | l/f-l* Ik) (jl~-~*)]. (241) 

G 
C O M P U T E R  

FIGURE 17. General scheme of the method for the tomographic estimation of a quantum 
operation. Two identical quantum systems are prepared in a bipartite state [~)), with invertible 
~p. One of the two systems undergoes the quantum operation g, whereas the other is left 
untouched. At the output one performs a quantum tomographic estimation, by measuring 
jointly two observables Xz and X[ from two quorums {Xz} and {X[} for the two Hilbert spaces, 
such as two different quadratures of the two field modes in a two-mode homodyne tomography. 
(From Ref. [25].) 
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Then one simply has to perform a quantum tomographic estimation, by 
measuring jointly two observables X~ and X[ from two quorums {X~} and 
{X[} for the two entangled quantum systems. 

B. An Example in the Optical Domain 

In Ref. [25] it is shown that the proposed method for quantum tomography 
of a device can be actually performed using joint homodyne tomography 
on a twin-beam from downconversion of vacuum, with an experimental 
setup similar to that used in the experiment in Ref. [86]. The feasibility 
analysis considers, as an example, the experimental determination of the 
quantum operation corresponding to the unitary displacement operator 
D(z) = e zat-z*a. The pertaining matrix R(/) is given by 

R(I) = ID(z))) ((D(z)l, (242) 

which is the (unnormalizable) eigenstate of the operator a - b  t with 
eigenvalue z, as shown in Section II.D. As an input bipartite state, one 
uses the twin beam from parametric downconversion of Equation (195), 
which is clearly invertible, since 

1 1 ~-a*a. (243) lp -- V/1 -]~:]2 ~a~a, 1/t'- -- V/1 _ I~l 2) 

The experimental apparatus is the same as in the experiment of Ref. [86], 
where the twin beam is provided by a nondegenerate optical parametric 
amplifier (a KTP crystal) pumped by the second harmonic of a Q-switched 
mode-locked N d : Y A G  laser, which produces a 100-MHz train of 120-ps 
duration pulses at 1064 nm. The orthogonally polarized twin beams emitted 
by the KTP crystal (one of which is displaced D(z) by a nearly transparent 
beam splitter with a strong local oscillator) are separately detected by 
two balanced homodyne detectors that use two independent local oscillators 
derived from the same laser. This provides the joint tomography of 
quadratures X# | X#, needed for the reconstruction. The only experimental 
problem which still needs to be addressed (even though is practically 
solvable) with respect to the original experiment of Ref. [86] is the control of 
the quadrature phases 4~' and 4~" with respect to the LO, which in the 
original experiment were random. 

In Figure 18 the results of a simulated experiment are reported, for 
displacement parameter z = 1, and for some typical values of the quantum 
efficiency r/ at homodyne detectors and of the total average photon 
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FIGURE 18. Homodyne tomography of the quantum operation corresponding to the 
unitary displacement operator D(z), with z =  1. The reconstructed diagonal elements 
Ann = (n[D(z)ln) are shown (thin solid lines on an extended abscissa range, with their respective 
error bars in gray shade), compared to the theoretical value (thick solid lines). Similar results are 
obtained for off-diagonal terms. The reconstruction has been achieved using at the input the 
twin beam state of Equation (195), with total average photon number B and quantum efficiency 
at homodyne detectors rl. Left: B = 5, r /=  0.9, and 150 blocks of 104 data have been used. 
Right: B = 3, 1/= 0.7, and 300 blocks of 2 x l0 s data have been used. (From Ref. [25].) 

number B of the twin beam. The diagonal elements Ann = (nlD(z)ln)= 
[(nJ(nJRD(z)ln)n)] 1/2 are plotted for the displacement operator with z -  1. The 
reconstructed values are shown by thin solid lines on an extended abscissa 
range, with their respective error bars in gray shade, and compared to the 
theoretical probability (thick solid line). A good reconstruction of the 
matrix can be achieved in the given range with ~ ~ 1, quantum efficiency as 
low as ~ = 0.7, and 106-107 data. The number of data can be decreased by a 
factor of 100-1000 using the tomographic max-likelihood techniques of Ref. 
[23], at the expense, however, of the complexity of the algorithm. Improving 
the quantum efficiency and increasing the amplifier gain (toward a 
maximally entangled state) have the effect of making statistical errors 
smaller and more uniform versus the photon labels n and rn of the 
matrix Anm. 

It is worth emphasizing that the quantum tomographic method of Ref. 
[25] for measuring the matrix of a quantum operation can be much 
improved by means of a max-likelihood strategy aimed at the estimation of 
some unknown parameters of the quantum operation. In this case, instead 
of obtaining the matrix elements of R(/) from the ensemble averages in 
Equation (241), one parametrizes R(/) in terms of unknown quantities to be 
experimentally determined, and the likelihood is maximized for the set of 
experimental data at various randomly selected (tensor) quorum elements, 
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keeping the same fixed bipartite input state. This method is especially useful 
for a very precise experimental comparison between the characteristics of a 
given device (e.g., the gain and loss of an active fiber) and those of a 
quantum standard reference. 

VIII. MAXIMUM LIKELIHOOD METHOD IN QUANTUM ESTIMATION 

Quantum estimation of states, observables, and parameters is, from very 
basic principles, a matter of statistical inference from a population sampling, 
and the most comprehensive quantum estimation procedure is quantum 
tomography. As we have shown in Section III, the expectation value of an 
operator is obtained by averaging an estimator over the experimental data 
of a "quorum" of observables. The method is very general and efficient, 
however, in the averaging procedure, we have fluctuations which result in 
relatively large statistical errors. 

Another relevant strategy, the maximum likelihood (ML) method, can be 
used for measuring unknown parameters of transformation on a given state 
[33], or for measuring the matrix elements of the density operator itself [23]. 
The ML strategy [110,111] is an entirely different approach to quantum state 
measurement compared to the standard quantum tomographic techniques. 
The ML procedure consists in finding the quantum state, or the value of the 
parameters, that are most likely to generate the observed data. This idea 
can be quantified and implemented using the concept of the likelihood 
functional. 

As regards state estimation, the ML method estimates the quantum 
state as a whole. Such a procedure incorporates a priori knowledge 
about relations between elements of the density matrix. This guarantees 
positivity and normalization of the matrix, with the result of a substantial 
reduction of statistical errors. Regarding the estimation of specific 
parameters, we notice that in many cases the resulting estimators are 
efficient, unbiased, and consistent, thus providing a statistically reliable 
determination. 

As we will show, by using the ML method only small samples of data are 
required for a precise determination. However, we want to emphasize that 
such a method is not always the optimal solution of the tomographic 
problem, since it suffers from some major limitations. Besides being biased 
due to the Hilbert space truncation---even though the bias can be very small 
if, from other methods, we know where to truncate--it cannot be 
generalized to the estimation of any ensemble average, but just of a set of 
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parameters on which the density matrix depends. In addition, for increasing 
number of parameters the method has exponential complexity. 

In the following we will review the ML methods proposed in Refs. [23] 
and [33], by deriving the likelihood functional, and applying the ML method 
to the quantum state reconstruction, with examples for both radiation and 
spin systems, and, finally, considering the ML estimation for the relevant 
class of Gaussian states in quantum optics. 

A. Maximum Likelihood Principle 

Here we briefly review the theory of the ML estimation of a single 
parameter. The generalization to several parameters, as for example the 
elements of the density matrix, is straightforward. The only point that 
should be carefully analyzed is the parameterization of the multidimensional 
quantity to be estimated. In the next section the specific case of the density 
matrix will be discussed. 

Let p(xl)v) the probability density of a random variable x, conditioned to 
the value of the parameter )v. The form ofp is known, but the true value of )v 
is unknown, and will be estimated from the result of a measurement of x. 
Let Xl,XZ,.. . ,Xu be a random sample of size N. The joint probability 
density of the independent random variable X l , X Z , . . . , X u  (the global 
probability of the sample) is given by 

/~(Xl,  X2,  9 XNI)~) - -  l ' IN  9 . , k=lP(XklX), (244) 

and is called the likelihood function of the given data sample (hereafter we 
will suppress the dependence of E on the data). The maximum likelihood 
estimator (MLE) of the parameter ~ is defined as the quantity kmZ =-kmt({Xk}) 
that maximizes E(k) for variations of ~, namely kmZ is given by the solution 
of the equations 

oqs oq2~(~,) 
a-----f- - O; a~ 2 < O. (245) 

The first equation is equivalent to OL/O)~ = 0 where 

N 
L(X) -- log E(k) - ~ logp(xklk) 

k=l 

is the so-called log-likelihood function. 

(246) 
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In order to obtain a measure for the confidence interval in the 
determination of )~ml w e  consider the variance 

(247) 

In terms of the Fisher information 

f dxrOp(xJ .)]2 1 (248) 
F -  L ox 

it is easy to prove that 

1 a2 > (249) 
- N F '  

where N is the number of measurements. The inequality in Equation (249) 
is known as the Cram6r-Rao bound [112] on the precision of the ML 
estimation. Notice that this bound holds for any functional form of the 
probability distribution p(xl)v), provided that the Fisher information 
exists V)v and O~p(xl)~) exists Vx. When an experiment has "good statistics" 
(i.e., for a large enough data sample) the Cram&-Rao bound is saturated. 

B. M L  Quantum State Estimation 

In this section we review the method of the maximum likelihood estimation 
of the quantum state of Ref. [23], focusing attention to the cases of 
homodyne and spin tomography. 

We consider an experiment consisting of N measurements performed on 
identically prepared copies of a given quantum system. Each measurement is 
described by a positive operator-valued measure (POVM). The outcome of 
the ith measurement corresponds to the realization of a specific element 
of the POVM used in the corresponding run, and we denote this element by 
I-Ii. The likelihood is here a functional of the density matrix s and is given 
by the product 

N 
E,(p) - 1-I Tr(pFli), (250) 

i=1 

which represents the probability of the observed data. The unknown 
element of the above expression, which we want to infer from data, is the 
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density matrix describing the measured ensemble. The estimation strategy of 
the ML technique is to maximize the likelihood functional over the set of the 
density matrices. Several properties of the likelihood functional are easily 
found, if we restrict ourselves to finite dimensional Hilbert spaces. In this 
case, it can be easily proved that s is a concave function defined on a 
convex and closed set of density matrices. Therefore, its maximum is 
achieved either on a single isolated point, or on a convex subset of density 
matrices. In the latter case, the experimental data are insufficient to provide 
a unique estimate for the density matrix using the ML strategy. On the other 
hand, the existence of a single maximum allows us to assign unambiguously 
the ML estimate for the density matrix. 

The ML estimation of the quantum state, despite its elegant general 
formulation, results in a highly nontrivial constrained optimization 
problem, even if we resort to purely numerical means. The main difficulty 
lies in the appropriate parameterization of the set of all density matrices. 
The parameter space should be of the minimum dimension in order to 
preserve the maximum of the likelihood function as a single isolated 
point. Additionally, the expression of quantum expectation values in terms 
of this parameterization should enable fast evaluation of the likelihood 
function, as this step is performed many times in the course of numerical 
maximization. 

For such a purpose one introduces [23] a parameterization of the 
set of density matrices which provides an efficient algorithm for maxi- 
mization of the likelihood function. We represent the density matrix in 
the form 

p= TtT, (251) 

which automatically guarantees that p is positive and Hermitian. The 
remaining condition of unit trace Trp - -  1 will be taken into account using 
the method of Lagrange multipliers. In order to achieve the minimal 
parameterization, we assume that T is a complex lower triangular matrix, 
with real elements on the diagonal. This form of T is motivated by the 
Cholesky decomposition known in numerical analysis [113] for arbitrary 
nonnegative Hermitian matrix. For an M-dimensional Hilbert space, the 
number of real parameters in the matrix T is M + 2 M ( M -  1)/2 = M 2, 
which equals the number of independent real parameters for a Hermitian 
matrix. This confirms that such parameterization is minimal, up to the unit 
trace condition. 

In numerical calculations, it is convenient to replace the likelihood 
functional by its natural logarithm, which of course does not change the 
location of the maximum. Thus the log-likelihood function subjected to 
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numerical maximization is given by 

N 
L(T) -- Z In Tr(T* TrIi) - XTr(T t T), (252) 

i--1 

where )~ is a Lagrange multiplier accounting for normalization of p. Writing 
2 p in terms of its eigenvectors 17%) as p -  ~ ,  y ,  lg%)(gt, l,, with real y, ,  the 

maximum likelihood condition OL/Oy~- 0 reads 

N 

Xy. - Z [y~(g/~lFlilg/.) /Tr(plqi)], (253) 
i=1 

which, after multiplication by y~ and summation over v, yields ;~ = N. The 
Lagrange multiplier then equals the total number of measurements N. 

This formulation of the maximization problem allows one to apply 
standard numerical procedures for searching the maximum over the M 2 real 
parameters of the matrix T. The examples presented below use the downhill 
simplex method [114]. 

The first example is the ML estimation of a single-mode radiation field. 
The experimental apparatus used in this technique is the homodyne 
detector. According to Section II.D the homodyne measurement is 
described by the POVM 

20 I 20 H(x; ~0)- x (1 - r l )  exp - 1 _  7/(Xr - x)2], (254) 

where rl is the detector efficiency, and X~o =(ate i~~ +ae-i~~ is the 
quadrature operator at phase ~0. 

After N measurements, we obtain a set of pairs (Xi;qgi), where 
i = 1 , . . . ,  N. The log-likelihood functional is given by Equation (252) with 
I"[i~-~(Xi; (t9i). Of course, for a light mode it is necessary to truncate the 
Hilbert space to a finite dimensional basis. We shall assume that the highest 
Fock state has M -  1 photons, i.e., that the dimension of the truncated 
Hilbert space is M. For the expectation Tr[T t TH(x; 9)] it is necessary to use 
an expression which is explicitly positive, in order to protect the algorithm 
against the occurrence of small negative numerical arguments of the 
logarithm function. A simple derivation yields 

M-1  k k--j 
Tr[T t TH(x; ~p)]- ~ Z ~ ~ (k[T]n +j)Bn+j,n(n[x/-~x)e in~~ 

k=0 j=0 n=0 
(255) 
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where 

"n+ n (256) 

and 

2 )  1/4 1 
(nix) - ~ Hn(~/2x) exp(-x 2) (257) 24un7. 

are the eigenstates of the harmonic oscillator in the position representa- 
tion--Hn(x) being the nth Hermite polynomial. 

The ML technique can be applied to reconstruct the density matrix in the 
Fock basis from Monte Carlo simulated homodyne statistics. Figure 19 
depicts the matrix elements of the density operator as obtained for a 
coherent state and a squeezed vacuum. Remarkably, only 50,000 homodyne 
data have been used for quantum efficiency r/=80%. We recall that in 
quantum homodyne tomography the statistical errors are known to grow 
rapidly with decreasing efficiency r/of the detector [29,80]. In contrast, the 
elements of the density matrix reconstructed using the ML approach remain 
bounded, as the whole matrix must satisfy positivity and normalization 
constraints. This results in much smaller statistical errors. As a comparison 
one could see that the same precision of the reconstructions in Figure 19 
could be achieved using 107-108 data samples with conventional quantum 

FIGURE 19. Reconstruction of the density matrix of a single-mode radiation field by the 
ML method. The plot shows the matrix elements of a coherent state (left) with (at a) = 1 
photon, and for a squeezed vacuum (right) with (a ta)= 0.5 photon. A sample of 50,000 
simulated homodyne data for quantum efficiency r/= 80% has been used. (From Ref. [23].) 
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tomography. On the other hand, in order to find numerically the ML 
estimate we need to set a priori the cut-off parameter for the photon number, 
and its value is limited by increasing computation time. 

Another relevant example is the reconstruction of the quantum state of 
two-mode field using single-LO homodyning of Section V. Here, the full 
joint density matrix can be measured by scanning the quadratures of all 
possible linear combinations of modes. For two modes the measured 
quadrature operator is given by 

1 be -iv' h.c.), X(O, lp0 , lPl )  - -  ~ (ae -i~~ cos 0 + sin 0 + (258) 

where (0, 7r0, lpl ) E S 2 X [0, 2rt], S 2 being the Poincar6 sphere and one phase 
ranging between 0 and 2ft. In each run these parameters are chosen 
randomly. The POVM describing the measurement is given by the right- 
hand side of Equation (254), with X~ replaced by X(0, gr0,~Pl). An 
experiment for the two orthogonal states I~1)--(100)+111))/~/-2 and 
ItP2) = (101)+ 110))/~/2 has been simulated, in order to reconstruct the 
density matrix in the two-mode Fock basis using the ML technique. The 
results are reported in Figure 20. 

The ML procedure can also be applied for reconstructing the density 
matrix of spin systems. For  example, let us consider N repeated preparations 
of a pair of spin-l/2 particles. The particles are shared by two parties. In 
each run, the parties select randomly and independently from each other a 

FIGURE 20. ML reconstruction of the density matrix of a two-mode radiation field. On the 
left the matrix elements obtained for the state I%)--(100)+111))/~/2; on the right for 
I%) = (101) + 110))/~/2. For I%) we used 100,000 simulated homodyne data and ~ = 80%; for 
I%) we used 20,000 data and r/= 90%. (From Ref. [23].) 
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direction along which they perform a spin measurement. The obtained result 
is described by the joint projection operator (spin coherent states [115]) 
Y ' i -  If2/A, f2/B) (f2A, f2/~l, where f2 A and f2~ are the vectors on the Bloch 
sphere corresponding to the outcomes of the ith run, and the indices A and 
B refer to the two particles. As in the previous examples, it is convenient to 
use an expression for the quantum expectation value Tr(T t T.fi) which is 
explicitly positive. The suitable form is 

Tr(Tt T.Ti) -- ~ I<tzlZl~/A, ~/~>12, (259) 

where I/z) is an orthonormal basis in the Hilbert space of the two 
particles. The result of a simulated experiment with only 500 data for 
the reconstruction of the density matrix of the singlet state is shown in 
Figure 21. 

Summarizing, the ML technique can be used to estimate the density 
matrix of a quantum system. With respect to conventional quantum 
tomography this method has the great advantage of needing much smaller 
experimental samples, making experiments with low data rates feasible; 
however, with a truncation of the Hilbert space dimension. We have shown 
that the method is general and the algorithm has solid methodological 
background, its reliability being confirmed in a number of Monte Carlo 
simulations. However, for increasing dimension of Hilbert spaces the 
method has exponential complexity. 

FIGURE 21. ML reconstruction of the density matrix of a pair of spin-1/2 particles in the 
singlet state. The particles are shared by two parties. In each run, the parties select randomly 
and independently from each other a direction along which they perform a spin measurement. 
The matrix elements have been obtained by a sample of 500 simulated data. (From Ref. [23].) 
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C. Gaussian State Est imation 

In this section we review the ML determination method of Ref. [33] for the 
parameters of Gaussian states. Such states represent the wide class of 
coherent, squeezed, and thermal states, all of them being characterized by a 
Gaussian Wigner function. Apart from an irrelevant phase, we consider 
Wigner functions of the form 

W(x ,  y) - 2A---~2 e x p { - 2 A 2 [ e - 2 r ( x  -- Re #)2 + e 2 r ( y  _ Im/~)2] }, (260) 

and the ML technique with homodyne detection is applied to estimate the 
four real parameters A, r, Re #, and Im/x. The four parameters provide the 
number of thermal, squeezing, and coherent-signal photons in the quantum 
state as follows 

nth - -~ - 1 , 

n s q  - -  sinh 2r, 

neoh = I~12. (261) 

The density matrix p corresponding to the Wigner function in Equation 
(260) is written 

p - -  D(pt)S(r) 1 ( nth )a*a nth + 1 \nth + 1 St  (r)Dt (/x)' (262) 

where S(r )=exp[r(a2-a*2) /2]  and D(/x)=exp(/xat-#  *a) denote the squeez- 
ing and displacement operators, respectively. 

The theoretical homodyne probability distribution at phase ~o with respect 
to the local oscillator can be evaluated using Equation (7), and is given by 
the Gaussian 

~~  2A2 
p(x,  r -- ( e2r cos2 (P + e_Zr sin2 q 9) 

2A 2 
x exp - e 2r cos2~ o + e -2r sin2~o 

[x - Re (/xe-i~)] 2 }. (263) 
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The log-likelihood function (246) for a set of N homodyne outcomes x i at 
random phase (/9 i is then written as follows 

U 1 2 A  2 
L -  E ~ log 

i=1 It'( ezr c~ 9i -3t- e-2r sinZq 9i) 

2A 2 
e2 r cos2q9 i -[- e_2r sin2cp / [xi -- Re,  ,l~,/ze-i~oi)j2. (264) 

The ML estimators A m l  , r m l  , Re/zm/, and Im/zml are found upon maximizing 
Equation (264) versus A, r, Re/z, and Im/z. 

In order to evaluate globally the state reconstruction, one considers the 
normalized overlap (9 between the theoretical and the estimated state 

0 -- Tr[ppml] . (265) 
v/Tr[p2]Tr[p21] 

Notice that O -  1 iff p = Pml. Through Monte Carlo simulations, one always 
finds a value around unity, typically with statistical fluctuations over the 
third digit, for number of data samples N =  50,000, quantum efficiency at 
homodyne detectors ~=80%,  and state parameters with the following 
ranges: nth < 3, ncoh < 5, and nsq < 3. Also with such a small number of data 
samples, the quality of the state reconstruction is so good that other physical 
quantities that are theoretically evaluated from the experimental values 
of m m l  , rml, Re/zml, and Im/zml are inferred very precisely. For example, in 
Ref. [33] the photon number probability of a squeezed thermal state has 
been evaluated, which is given by the integral 

fo re d~ [C(qb, nth, r ) -  1] n 
(nlpln) - 2rr -~-nt-hl  ;)Y+i , (266) 

with C(~b, nth, r) = (nth + 1/2)(e -2r sin 2 4~ + e2r COS2 ~b) + 1/2. The comparison 
of the theoretical and the experimental results for a state with nth = 0.1 and 
nsq= 3 is reported in Figure 22. The statistical error of the reconstructed 
number probability affects the third decimal digit, and is not visible on the 
scale of the plot. 

The estimation of parameters of Gaussian Wigner functions through 
the ML method allows one to estimate the parameters in quadratic 
Hamiltonians of the generic form 

1 1 ~, H - o t a + o t * a  t+cpa t a + ~ a  2 + ~  a t2. (267) 
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FIGURE 22. Photon number probability of a squeezed thermal state (thermal photons 
nth =0.1, squeezing photons nsq= 3). Compare the reconstructed probabilities by means of the 
maximum likelihood method and homodyne detection (gray histogram) with the theoretical 
values (black histogram). Number of data samples N =  50,000, quantum efficiency ~/= 80%. 
The statistical error affects the third decimal digit, and it is not visible on the scale of the 
plot. (From Ref. [33].) 

In fact, the unitary evolution operator U - ~ e  - iHt  preserves the Gaussian 
form of an input state with Gaussian Wigner function. In other words, one 
can use a known Gaussian state to probe and characterize an optical 
device described by a Hamiltonian as in Equation (267). Assuming t = 1 
without loss of generality, the Heisenberg evolution of the radiation mode 
a is given by 

with 

U t a U  - ya  + 6a t + lz, (268) 

y -  COS(~/992 --I~l 2) - i 
q~ 1 

sin(~/992 -l~12), 
V/q9 2 --I~12 

~* s in(v/~ -1~12) ,  = - i  v/q92 _ I~l 2 

qgot* - ~*ot or* sin(~/q92 _ [~[2). (269) 
/z -- ~ _ 1~12 (cos(~/~ - [ ~ [ 2 ) _  1 ) -  iv/q92 _ I~12 

For an input state p with known Wigner function Wo(f l ,  fl*), the 
corresponding output Wigner function is 

W v o w ( f l ,  1 3 " ) -  Wo[(f l  - t z )y* - (fl* - tz*)3, (fl* - t z* )y  - (fl - / z ) 8 * ] .  (270) 
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Hence, by estimating the parameters y, 8, # and inverting Equation (269), 
one obtains the ML values for or, ~0 and ~ of the Hamiltonian in 
Equation (267). The present example can be used in practical applications 
for the estimation of the gain of a phase-sensitive amplifier or equivalently 
to estimate a squeezing parameter. 

IX. CLASSICAL IMAGING BY QUANTUM TOMOGRAPHY 

As we showed in Section II, the development of quantum tomography has 
its origin in the inadequacy of classical imaging procedures to face the 
quantum problem of Wigner function reconstruction. In this section we 
briefly illustrate how to go back to classical imaging and profitably use 
quantum tomography as a tool for image reconstruction and compression: 
this is the method of fictitious photons tomography of Ref. [34]. 

The problem of tomographic imaging is to recover a mass distribution 
m(x, y) in a two-dimensional slab from a finite collection of one-dimensional 
projections. The situation is schematically sketched in Figure 23 where 
m(x,y) describes two circular holes in a uniform background. The 
tomographic machine, say X-ray equipment, collects many stripe photos 
of the sample from various directions 0, and then numerically performs a 
mathematical t ransformation--the so-called inverse Radon transform 
[116]--in order to reconstruct m(x, y) from its radial profiles at different 

FIGURE 23. (a) Tomography of a simple object: analytical transmission profiles are 
reported for 0-0, ~/2. (b) The same case of (a), but for very weak signals: in this case the 
transmission profiles are given in terms of random points on a photographic plate (here 
obtained from a Monte Carlo simulation). (From Ref. [34].) 
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values of 0. The problem which is of interest for us is when the radial profiles 
are not well-resolved digitalized functions, but actually represent the density 
distribution of random points, as if in our X-ray machine the beam is so 
weak that radial photos are just the collection of many small spots, each 
from a single X-ray photon (this situation is sketched in Figure 23(b). It is 
obvious that this case can be reduced to the previous one by counting all 
points falling in a predetermined one-dimensional mesh, and giving radial 
profiles in the form of histograms (this is what actually happens in a real 
machine, using arrays of photodetectors). However, we want to use the 
whole available information from each "event"--i.e., the exact one- 
dimensional location of each spot--in a way which is independent of any 
predetermined mesh. In practice, this situation occurs when the signal is 
so weak and the machine resolution is so high (i.e., the mesh-step is so 
tiny) that only zero or one photon at most can be collected in each channel. 
As we will see, this low-signal/high-resolution case naturally brings the 
imaging problem into the domain of quantum tomography. Images are 
identified with Wigner functions, so as to obtain a description in terms of 
density matrices. These are still trace-class matrices (corresponding to 
"normalizable" images), but are no longer positive definite, because an 
"image" generally is not a genuine Wigner function and violates 
the Heisenberg relations on the complex plane (the phase space of a single 
mode of radiation). Hence, such density matrices are unphysical: they 
are just a mathematical tool for imaging. This is the reason why this method 
has been named fictitious photons tomography [34]. As we will see in the 
following, the image resolution improves by increasing the rank of the 
density matrix, and in this way the present method also provides a new 
algorithm for image compression, which is suited to angular image 
scanning. 

A. From Classical to Quantum Imaging 

We adopt the complex notation, with ot = x + iy representing a point in the 
image plane. In this way ot and or* are considered as independent variables, 
and the two-dimensional image--here denoted by the same symbol W(a, a*) 
used for the Wigner function--is just a generic real function of the point in 
the plane. In the most general situation W(a,a*) is defined on the whole 
complex plane, where it is normalized to some finite constant, and it is 
bounded from both below and above, with range representing the darkness 
nuance. For X-ray tomography W(a, a*) roughly represents the absorption 
coefficient as a function of the point ~. We consider a linear absorption 
regime, i.e., the image extension is negligible with respect to the radiation 
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absorption length in the medium. At the same time we neglect any 
diffraction effect. 

As shown in Section III.B the customary imaging technique is based on 
the inverse Radon transform. A tomography of a two-dimensional image 
W(a,a*) is a collection of one-dimensional projections p(x, O) at different 
values of the observation angle 0. We rewrite here the definition of the 
Radon transform of W(ot, a*) 

f 
~oo 

p(x, - ay W( (x  + iy)  ( x -  
e~ 7~ 

(271) 

In Equation (271) x is the current coordinate along the direction orthogonal 
to the projection and y is the coordinate along the projection direction. The 
situation is depicted in Figure 23 where W(ot, c~*) is plotted along with its 
p(x, O) profiles for 0 = 0, x/2 for a couple of identical circular holes that are 
symmetrically disposed with respect to the origin. 

The reconstruction of the image W(~, c~*) from its projections p(x, O) .h 
also called "back projection"--is given by the inverse Radon transform, 
which, following the derivation in Section III.B, leads to the filtering 
procedure 

fo ~ dO f_~-~ Op(x, O)/Ox w ( ) - p dx 
oo X m Ol 0 

(272) 

where P denotes the Cauchy principal value and d0= Re(ore-i~ Equation 
(272) is commonly used in conventional tomographic imaging (see, for 
example, [117]). 

Let us now critically consider the above procedure in the case of 
very weak signals, namely when p(x,O) just represents the probability 
distribution of random X-ray spots on a fine-mesh multichannel: this 
situation is sketched in Figure 23(b). From Equation (272) one can recover 
W(a,a*) only when the analytical form of p(x,O) is known. But the 
experimental outcomes of each projection actually are random data 
distributed according to p(x, 0), whereas in order to recover W(a, a*) from 
Equation (272) one has to evaluate the first-order derivatives ofp(x, 0). The 
need of the analytical form for projections p(x,O) requires a filtering 
procedure on data, usually obtained by "splining" data in order to use 
Equation (272). 

The above procedure leads to approximate image reconstructions, and the 
choice of any kind of smoothing parameter unavoidably affects in a 
systematic way the statistics of errors. In the following we show how 
quantum tomography can be used for conventional imaging in the presence 
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of weak signals, providing both ideally controlled resolution and reliable 
error statistics. 

The basic formula we will use is the expansion of the Wigner function in 
the number representation of Equations (230) and (231). In practice, the 
Hilbert space has to be truncated at some finite dimension dm and this sets 
the resolution for the reconstruction of W(a, a*). However, as we will show, 
this resolution can be chosen at will, independently of the number of 
experimental data. 

As previously noticed, in general an image does not correspond to a 
Wigner function of a physical state, due to the fact that the Heisenberg 
relations unavoidably produce only smooth Wigner functions, whereas a 
conventional image can have very sharp edges. However, if one allows the 
density matrix to be no longer positive definite (but still trace class), a 
correspondence with images is obtained, which holds in general. In this way 
every image is stored into a trace-class matrix Pn,m via quantum 
tomography, and a convenient truncation of the matrix dimension dn can 
be chosen. 

The connection between images and matrices is the main point of this 
approach: the information needed to reconstruct the image is stored in a 
dn x dn matrix. For suitably chosen dimension dn the present method can 
also provide a procedure for image compression. Notice that the 
correspondence between images and trace-class matrices retains some 
symmetries of the image, which manifest as algebraic properties of the 
matrix pn,m. For example, an isotropic image (like a uniform circle centered 
at the origin) is stored in a diagonal matrix. Other symmetries are given in 
Table 3. 

The truncated Hilbert space dimension dn sets the imaging resolution. 
The kind of resolution can be understood by studying the behavior of the 
kernels ~[[n + d ) ( n [ ] ( x ,  O) of Equation (100), which are averaged over the 
experimental data in order to obtain the matrix elements Pn,,,+a. Outside a 
region that is almost independent of n and d, all functions 7~[[n + d)(nl](x, 0) 

TABLE 3 
GEOMETRICAL SYMMETRIES OF AN IMAGE, ANALYTICAL PROPERTIES OF PROJECTIONS, AND 

ALGEBRAIC PROPERTIES OF THE CORRESPONDING MATRIX (FROM REF. [34]) 

Symmetry p(x ,  O) p 

Isotropy p(x,  O) - p ( x )  Pn,m = Pn,mS,,,m 
X-axis mirror p(x,  ~ -- O) = p(- -x ,  O) P,,,m e R 
Y-axis mirror p(x,  ~ - O) = p(x ,  O) ip,,,m ~ 
Inversion through the origin p(x,  O) = p ( - x ,  O) Pn,n+2d+l " -  0 
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FIGURE 24. Tomographic reconstruction of the font "a" for increasing dimension of the 
truncated matrix, d n =  2, 4, 8, 16, 32, 48. The plot is obtained by averaging the kernel function 
7~[In + d)(nl](x, O) of Equation (100) with assigned analytic transmission profiles p(x, 0), and 
then using Equations (230) and (231) (From Ref. [34].) 

decrease exponentially, whereas inside this region they oscillate with a 
number of oscillations linearly increasing with 2n + d. This behavior 
produces the effects illustrated in Figure 24, where we report the 
tomographic reconstruction of the font "a" for increasing dimension dn. 
The plot is obtained by numerically integrating the kernel functions from 
given analytic transmission profiles p(x, 0). As we see from Figure 24 both 
the radial and the angular resolutions improve versus d~, making the 
details of the image sharper and sharper already from a relatively small 
truncation d~ = 48. 

A quantitative measure of the precision of the tomographic reconstruc- 
tion can be given in terms of the distance D between the true and the 
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FIGURE 25. Convergence of both trace and Hilbert distance D in Equation (273) versus the 
dimensional truncation du of the Hilbert space. Here the image is a uniform circle of unit radius 
centered at the origin. The reconstructed matrix elements are obtained as in Figure 24, whereas 
the exact matrix elements are provided by Equation (274) (From Ref. [34].) 

reconstructed image, which, in turn, coincides with the Hilbert distance D 
between the corresponding density matrices. One has 

D - f dZoel A W(oe, oe*)l 2 - Tr(Ap) 2 

OO (2<3 OO 

_ _ Z A p 2 n q . _ 2 ~ Z [ A p 2  ]2 
- -  , n,n-k-X 

n=0 n=0 ~.=1 
(273) 

where A[...] = [.. "]true -- ['"-]reconstructed" The convergence of D versus dn is 
given in Figure 25 for a solid circle of unit radius centered at the origin. In 
this case the obtained density matrix has only diagonal elements, according 
to Table 3. These are given by 

p,,, - 2 ~ ( - 2 ) " ( n ) ~ ( 1 -  v, 2,2R2), 
v=0 1) 

(274) 

where ~(ot, fl, z) denotes the confluent hypergeometric function of argument 
z and parameters oe and ft. 

So far we have analyzed the method only on the basis of given 
analytic profiles p(x, 0). As already said, however, the method is partic- 
ularly advantageous in the weak-signal/high-resolution situation, where 
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FIGURE 26. Monte Carlo simulation of an experimental tomographic reconstruction of 
the font "a." The truncation dimension is fixed at d~t = 48, and the number of scanning 
phases is F -- 100. The plots correspond to 103, 104, 105, 106 data for each phase, respectively. 
(From Ref. [34].) 

the imaging can be achieved directly from averaging the kernel functions 
on data. In this case the procedure allows one to exploit the whole avail- 
able experimental resolution, whereas the image resolution is set at will. 
In Figure 26 we report a Monte Carlo simulation of an experimental 
tomographic reconstruction of the font "a" for increasing number of 
data. All plots are obtained at the maximum available dimension d n =  48, 
and using F =  100 scanning phases. The situation occurring for 
small numbers of data is given in the first plot, where the highly 
resolved image still exhibits the natural statistical fluctuations due to the 
limited number of data. For a larger sample the image appears sharper 
from the random background, and it is clearly recognizable for a number 
of data equal to 106 . The method is efficient also from the computational 
point of view, as the time needed for image reconstruction is quadratic in 
the number of elements of the density matrix, and linear in the number 
of experimental data. Needless to say, imaging by quantum homo- 
dyne tomography is at the very early stages and further investigation is 
in order. 
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