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Physical realizations of quantum operations
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Quantum operation®Q’s) describe any state change allowed in quantum mechanics, such as the evolution
of an open system or the state change due to a measurement. We address the problem of which unitary
transformations and which observables can be used to achieve a QO with generally different input and output
Hilbert spaces. We classify all unitary extensions of a QO and give explicit realizations in terms of free-
evolution direct-sum dilations and interacting tensor-product dilations. In terms of Hilbert space dimensionality
the free-evolution dilations minimize the physical resources needed to realize the QO, and for this case we
provide bounds for the dimension of the ancilla space versus the rank of the QO. The interacting dilations on
the other hand, correspond to the customary ancilla-system interaction realization, and for these we derive a
majorization relation which selects the allowed unitary interactions between system and ancilla.
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[. INTRODUCTION suring section, which performs a measurement on another
measuremendncilla, with spacee CR®H. The output sys-
The recent progress in quantum information thedry3]  tem will be in the Hilbert spacé, whereK is such that
offers the possibility of radically different information- L& K=R®H. The result is a machine that performs a QO
processing methods that can achieve much higher perfowith input in H and output ink.
mances than those obtained by classical means, in terms of In the process of classification of all unitary extensions of
security, capacity, and efficieng#—7]. This urges a quan- a QO, we will give explicit realization schemes in terms of
tum system engineering approach for the production of théree-evolution direct-sum dilations and interacting tensor-
quantum tools needed for communication, processing, angroduct dilations, which in the following will be named
storage of quantum information. A first step toward this goalbriefly free andinteractingdilations, respectively. The inter-
is the search for a systematic method to implement in a coracting dilations correspond to the ancilla-system interaction
trolled way any quantum state transformation. scenario just described above, whereas infthe dilations
The mathematical structure that describes the most genve only have the measurement ancilla, and the input space is
eral state change in quantum mechanics isgis@ntum op- embedded in a larger Hilbert space, where a kind of super-
eration (QO) of Kraus[2,8]. Such abstract theoretical evolu- selection rule forces the choice of the input state in a proper
tion has a precise physical counterpart in its implementationsubspace before a free unitary evolution. In terms of Hilbert
as a unitary interaction between the system undergoing thepace dimensionality the free dilations minimize the physical
QO and a part of the apparatus—the so-calettilla—  resources needed to realize the QO, and for this case we will
which after the interaction is read by means of a convenprovide bounds for the dimension of the ancilla space versus
tional quantum measurement. In this paper we address tHbe rank of the QO. For the interacting dilations, on the other
problem of which unitary transformations and which observ-hand, we will derive a majorization relation which allows us
ables can be used to achieve a given QO for a finite dimerto preselect the admissible unitary interactions between sys-
sional quantum system. We consider generally different inputem and ancilla, in relation to the ancilla preparation state
and output Hilbert spacéds andK, respectively, allowing the and the measured observable.
treatment of very general quantum machines, e.g., of the The paper is organized as follows. After briefly recalling
kind of quantum optimal clonerfd,10]. As will be clear the notion of quantum operations in Sec. Il, in Sec. Il we
from the physical implementations of the QO, schematicallyintroduce the Stinespring form for a QO and explicitly con-
this corresponds to a general scenario in which the machingtruct all possible unitary realizations, for both free and in-
prepares a state in the Hilbert spadeand couples it uni- teracting dilations. We also address the problem of finding
tarily with a preparation ancilla in the Hilbert spacdr,  unitary interacting power dilation®f a given QO, namely,
which was previously set to a fixed state. The machine theinteracting dilations that also provide theéh power of the
transfers the joint system with Hilbert spaRe H to a mea- map(i.e., with the map applietd times. In Sec. IV, we give
the criterion to select the admissible unitary interactions for a
QO in the form of a majorization relation. Section V finally
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II. QUANTUM OPERATIONS
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garded as just the set of stateskdn A quantum operatiog” the two pictures being related as follows:

T(H)—T(K) is a linear, trace not-increasing map that is also

completely positivéCP), namely, that preserves the positiv- Tr[pE(O)]=Tr[&(p)O] 4

ity of any input state of the system d¢hentangled with any

other quantum systetmathematically, all trivial extensions [OF €very bounded operat®  B(K). Analogously to Egs.

E®T of the map must preserve the positivity of input states(z) and(3), one has

on the extended Hilbert spacerhe input and theoutput

states are connected via the relation £(0)=> E'OE, (5)
n

&P |
p—>p —m, (1) with

where the trace TE(p)]=<1 also represents the probability gl =K. ©

that the transformation in Ed1) occurs. An analog of the A variation of Stinespring’s theorem can be restated by
spectral theorem for positive operators in finite dimensionsaying that for every QC: T(H)—T(K), there exists a
leads to the following canonical form of the Q& T(H)  Hilbert spaceL such that€ can be obtained as follows:
—>T(K) [8]:

E(X)=E'1 @ X)E, (7

E(P):; EnpEn, (2 whereEeB(H,L&K) is a contractior(i.e., E is an operator
bounded agE||<1). In fact, consider any Kraus decompo-
where the bounded operatdgs e B(H,K) from H to K are ~ sition €=, E;-E for £, and letL be a Hilbert space with
orthogonal, i.e., TE'E,,]=0 for n#m, and moreover they dim(L)=n and orthonormal basig!;)}. The operator
satisfy the condition dim(L)

> ElE,=K=Iy. (3) =1

is a contraction, sinceE'E=K<I, [if one considers

In terms of the positive operatéte B(H), the probability of  dim(L)>n, this means that extra null operators are appended
occurrence of the QO can also be rewritten gKpr]. No-  to the Kraus decompositi¢nHere and throughout the paper,
tice that there are generally infinitely many noncanonicaffor Ae B(H,K) and|v) e L the tensor notatiofw)® A will
ways of writing the mat in the form of Eq.(2), with gen-  denote the linear operator frol to L& K defined as |p)
erally larger and nonorthogonal sets of elemefs} that ®A)|¢2i|v>®A|¢>, for |¢)eH, whereas its adjoint
satisfy Eq.(3). All such decompositions are usually called (v|®A" is the linear operator fronb®K to H given by
Kraus formsof the QO&. In order to satisfy Eq(3), the  ((v|@AN)|@)®|¢)=(v|p)A'|¢), for [¢)eK and |¢)eL.
operators{E;} of a noncanonical Kraus form are related to Using the Kronecker representation of the tensor product
the canonical oneE;} asE/ ==,Y;;E; via an isometric ma-  [15], the contractiorE in Eq. (8) is easily represented by
trix Y, i.e., a matrix with orthonormal columns. When the Vertically joining the operatorg;. By substituting Eq(8)
map is trace preserving, i.e.,[E(p)]=1—or equivalently into Eq. (7) one obtains I_Eq(5), r_lamely, the statement. On
K =1 4—it occurs with unit probability, and is usually named the other hand, the Schdinger picture form of Eq(5) is
channel

It was known since Krauf8] that a trace-preserving QO E(p)=Tr[EpE"]. 9
admits a unitary realization on an extended Hilbert spac
More generally, when we have a set of QO’s that describe
general quantum measureméalso with a continuous spec-
trum and in infinite dimensions: the so-callatstruments,
Ozawa[11] proved the realizability in terms of an observable
measurement over an ancilla after a unitary interaction wit
the quantum system. In the following we will derive explic-
itly all possible unitary dilations for a generic QO for finite
dimension, and give ancillary realizations and bounds for th
dimensions of the Hilbert spaces involved.

®For a trace-preserving map the Stinespring contradias
%ctually an isometry, sinde'E=1, [this case with isometric
E is the original Stinespring theorem version of Eg)].

It is possible to extend trace-decreasing maps to isome-
tries also. For this purpose, first we prove the following
emma.

Lemma 1 For any given positive bounded operater
e B(H) and for every Hilbert spackK, there exists a set of
%ounded operatoh; e B(H,K), i=1,...n, such that

n
IIl. UNITARY DILATIONS OF A QUANTUM OPERATION P= E AiTAi . (10
=1

The Stinespring dilatiorf12,13 is a kind of “purifica-
tion” of the QO. Originally, Stinespring’s theorem was set  Proof. Let P=3""®)|;,.\(y;| where|v;) eH are the or-
for the dual version&™ of the QO, i.e., in the “Heisenberg thogonal eigenvectors d®, generally not normalized. One
picture’—instead of the “Schrdinger picture” of Eq.(1)—  has two possibilities.
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(a) dim(K)=rank(P): the statement holds far=1 with
P=ATA and A=="2"®)|k)(v;|, with {|k;)} any orthonor-
mal set inK.

(b) dim(K)<rank(P): then the result holds withn
=rank(P) andA;=|y;){v;|, with {|;)} any set of normal-
ized vectors irK. |

Notice that in caseb) of the proof, we can suitably
choose the operator§A;} in order to minimizen as n
=[r/k], for r=rank(P), k=dim(K), and[x] denoting the
minimum integer greater than or equalxoThese are given
by the operators

k

=2 Ik

j><v(i71)k+j|a |=1,nE[r/k] (11)

The lemma stated above can be used to prove the follow-

ing theorem.

Theorem 1A linear map&: T(H)—T(K) is a QO if and
only if its dual form can be written as

EX)=VI(SeX)V (12

for a suitable ancillary Hilbert spack, whereV e B(H,L
®K) is an isometry, and, e B(L) is a nonvanishing orthogo-
nal projector on a subspace lof Furthermore =1, if and
only if £ is trace preserving.

.....

vectors ofE having unit elgenvalue Then the operators

Ej=({oj|®lxV, j=1,..rankX) (13
provide a Kraus decomposition for the mé&pwhich then is
a QO. This proves the sufficient condition.

For the necessary condition, consider a @Owhere

{E;}CB(H,K) are the elements of any Kraus decomposition.

From Lemma 1, there eX|sts a set of operaférg C B(H,K)
such that>. F] F=14—2, E E;=0. Now, consider a set of
orthonormal vect0r$|e> |f )} in L, and define the orthogo-
nal projector> ==, |e;)(ej| and the isometry

V=2 e)®E+ > |f;)®F. (14)
i j

These operators will provide the desired dilation in Ed).
To complete the proof we need to show that |, if and
only if £ is trace preserving. If is trace preserving, we do

not need the operatofs=;} and hence we can choose the

spaceL to be spanned by the vectofe;)} that form an
orthonormal basis forL, namely, =;|e;))(e]|=I_. On the
other hand, i =1, one has’(I) =V'V=1,, namely, the
map is trace preserving. |
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canonical Kraus decomposition and for the minimum cardi-
nality of the complementary set of operatdis;} that is
given by[rank(l,—K)/dim(K)]. Therefore, upon denoting
by c the cardinality of the canonical Kraus decomposition,
namely, therank of the QO, one has

=

for every map&: T(H)—T(K). In fact, using Lemma 1, in
Eq. (14 one has at least elementsE; and at least
[r/dim(K)] elements; , wherer is the rank ofl ;— K. From
Eg. (15 and the conditior€’(l ) =K, we have

m}

rank(l,—K)
dim(K)

X dim(K)=dim(H) (15

rani I y—&7(I
dim(K)

dim(H)

dim(L)=c+ dim(K)

(16)

Equation(16) provides a bound on the resources that one
needs to obtain an isometric dilation, without knowan@ri-
ori a Kraus decomposition for the map.

In Theorem 1 we have shown how to obtain a QO via an
isometric embedding. In the following subsections, we ex-
plicitly derive the physical realizations for the QO for both
the free and the interacting formulations.

A. Free dilations

We start by giving a proof of the well-known lemma of
Gram-Schmidt unitary dilationjsL4].

Lemma 2 Every isometryT e B(H;,,Hq,) admits a uni-
tary dilationU e B(Hqy)-

Proof. Introduce a Hilbert space,,, such thatH,,=H;,
®Hgaux- We consider the case ditdf,)=1, otherwiseH,
=H,,, and T is already unitary. For a given isometky
€ B(Haux,How)» define the operatdd e B(H,,) as

U=T-+-W,

U|vout>:(|vin>@|Uaux>):T|Uin>+W|vaux>- (17)

In finite dimension, this can be obtained on a chosen basis
just by joininghorizontallythe two matrice§ andW so that,
by construction,U is a square matrix, whence the symbol
+ .. If the condition

T'w=0 (18)
is satisfied, then the operatdris unitary onH,;. An opera-
tor We B(H,ux, Hou) that satisfies Eq18) has column vec-
tors[W(k)] for k=1,...,dimH,,,) that make an orthonormal
basis forHau,=Rng(lyy  —TT')CHoy. A set of vectors of

Theorem 1 allows us to derive a bound for the physicalthis kind can always be obtained iteratively by the Gram-

resources that one needs to obtain the dilatidi?) of a QO
(as we will see in Sec. Il A, the unitary dilation of the isom-
etry does not introduce any additional ancillary resourtte
is clear that for trace-preserving maps one Ras O for all

j in the proof of the theorem. Notice also that sinde

e B(H,L®K) is an isometry, one has dimj=<dim(L)

X dim(K). The minimum dimension fok is obtained for the

Schmidt procedure oRli,® Hgx, With dim(H,,,)>0. |
Using the previous lemma, one can obtain a unitary op-

erator U e B(L®K) from the isometryV e B(H,L®K) by

sticking V horizontally with an appropriate isometryw

e B(D,L®K), whereD is a second auxiliary Hilbert space

defined by the relatiofl® D=L®K. FromU, conversely, it

is possible to reconstrudf using thedilation operator D
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I . - . bedded in a larger Hilbert space, where a kind of superselec-
€B(H,L@K), which is the trivial isometnyD =In+0up [iN {5y ryle forces the choice of the input state in a proper
analogy with- + -, the Symbog means thevertical joining ~ Subspace before a free unitary evolution on the extended
. space. We are now interested in the tensor-product types of
of two block matrices, whereas the symiil, denotes the realization schemes, in which the role of the dilation operator
operator inB(H,D) corresponding to the rectangular matrix D (i.e., of the superselection rylaill be played by the ten-

with all zero entrie§ such that sor product ofp with the state of a preparation ancilla, with
the system interacting with such ancilla, and with a conven-
V=UD, (19 tional observable measurement then performed on a different

ancilla. This ancilla-system interaction scenario is more

whereD acts as follows: popular in the literature and is the one used in the extension

_ _ theorems for instruments in Refgll]. It is obvious that
D = @0 = ®10)p, 20 . ; - .
[n)=14l0 @O plor) =[vn)@[0)o (20 composite schemes are also possible, with both direct-sum
with |0)p denoting the null vector iD. and tensor-product dilations.

In this way, we can reexpress Theorem 1 stating that a The results of the previous subsection can be rewritten by
linear map&: T(H)—T(K) is a QO if and only if its dual choosing a dilation in terms of a Hilbert spacevith dimen-

form can be written as sion dim() X dim(K)=r dim(H), for integerr. Then, upon
introducing a second ancillary spaRewith dim(R)=r, one
&(X)=DTUT(ZeX)uD. (21)  hasL®K=R®H, and we obtain the following theorem.

i i . Theorem 2A linear mapé&: T(H)—T(K) is a QO if and
Therefore, any trace-decreasing QO can be interpreted Bnly if its dual form can be written as follows:
terms of a unitary interaction between the quantum system

and an ancilla, followed by an orthogonal projection. The EX)=(rlUT(Z®X)U|¢g), (29
dilation operatoD is needed just in order to reduce the out-
put space of the unitary operator to the original output spacwhereX e B(K) is the inputs, e B(L) is a nonvanishing or-

of the map. thogonal projector on a subspace of the ancillary sgace
The Schrdinger form of Eq.(21) can be obtained as fol- U e B(L®K) is unitary, and ¢g) € R is a fixed normalized
lows. From the duality relation in Eq4), one has vector. In the Schidinger picture one has
T E(X)p]=THD U (Z®X)UDp] Ep)=Tr[(E@l)U(|¢r){¢rl®p)UT], (26)
=TI (S®X)UDpDTUT]

where now the input is represented by the spatel (H). We
—TXTr[(S®1)UDpDTUT], (22 refer to the spaceR andL as the preparation and measure-
ment ancilla, respectively.
whence Proof. Notice that the notatiofgg|UT(S ®X)U|¢g) de-
notes a partial matrix element: in our tensor notation this
Ep)=Tr[(2®Ix)UDpDTUT] corresponds to writing(@g| © 1) UT(S@X)U(|dr)®14).
—Tr (381 ,)U(pe0g)UT, (23 parl;gttr?: gsg;d:&ctmhirtntary dilation in ER1), and ex

where Oy is the null operator orD. In Eq. (23) the term
U(p®0p)UT represents dree unitary evolutiorof the sys-
tem in the statedpD'=p®0p, which is a positive block- ¢, integer r. The Hilbert spaceD defined asD=(L
diagonal operator iiT (L& K) with unit trace(remember that ®K)SH, now has dimension dini)=dim(L) X dim(K)
H®&D=L®K). Physically, such a trivial embedding &fin  _ i) = (r — 1)dim(H). Let us introduce a Hilbert space
H& D can be regarded as kind of conservation law or superg \vith dimension dimR)=r, so that
selection rule forbidding a subspace for the input states.

In conclusion of this subsection, we notice that the special dim(L® K) = dim(R&K), (29)
case ofV already unitary in Eq(12) corresponds to no sub-
spaceD, andD=I, andU=V. Then Eq.(23) becomes sim- \hence

ply

dim(Le K)=dim(L) X dim(K)=r dim(H) (27)

LeK=R®H. 2
Ep)=Tr[(S10UpUT], 24 prERe 29
Clearly, if the map has equal input and output spaces, the
preparation ancilla and the measurement ancilla are isomor-
phic, i.e.,R=L. On fixed orthonormal bases f&; L, H, and
R, upon denoting by¢g) € R an element of the basis &,

In the previous subsection we derived a general unitaryve have the following identifications:
realization for a given QO, in terms of a direct-sum dilation,
using a measurement ancilla only, with the input space em- D=|¢r)®Iy (30

and one necessarily has di)=dim(H).

B. Interacting dilations
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and

p®0p=|dr){drl@p. (31)

PHYSICAL REVIEW A68, 042113 (2003

S(P):TrS,L[(IS@)E@IK)U(O'S®|¢R><¢R|®P)UT]:(38)

whereos=WW'/TI{WW] is the fixed normalized state of

The statement of the theorem is then obtained by rewritingne third ancilla. Notice that the spaSeand the operatow

Egs.(21) and(23) with the use of Eqs(30) and(31). MW

are arbitrary, provided that the constraints in E86) are

Alternative proof The above proof is based on the direct- ¢4isfied. For dim@)=2 and W=|0)(1| one recovers the
sum dilation of Eq.(21). An equivalent way to obtain the aimos unitary dilation§17].

result in Theorem 2 is the following. From the Stinespring

form in Eq.(12), let us introduce a Hilbert spaéesuch that

Le®K=R®H. By a repeated use of the Gram-Schmidt pro-

cedure one obtains other isometrdse B(H,L®K), for i
=2,...Jr, such that

VIW,=0 and W/W;= 81, (32)
namely,
Rng(V)®Rng(W,)®---®Rng(W,)=LoK. (33
Let us consider the unitary operator
U=(ry|@V+(r] @Wy+---+(r,|@W,, (34

where{|r;)} CR is an orthonormal basis for the spaReBy

C. Power interacting dilations

We have shown in Theorem 2 how to obtain a unitary
interactionU that realizes a given Q©: T(H)—T(K), as in
Eqg. (26). Consider now a trace-preserving QO wht=K,
namely, a customarghannel The equivalence of the input
and output spaces implies, in the interacting scheme, coinci-
dence also between the preparation and the measurement an-
cillas, namely,R=L [19]. The map& can now be applied
recursively, and we study the properties of ptswers
p—=E(p)—E(E(p))=EX(p)—>+++—>E(p). (39

Of course, the unitary realization given in E@6) does
not satisfy the composition law for powers of the map,

taking |r1)=|¢g), one obtains the statement of the theo-Namely,

rem. |
This constructive proof was used in REE6] to explicitly

derive a unitary realization for the optimal transposition map
The tensor-product form of the unitary dilation is gener-

ally more expensive in terms of resouroég., the dimen-

sion of the extended spacthan the direct-sum form in Eq.
(23); however, the physical realization of the tensor produc
could be more practical, since one just needs to prepare .a
fixed ancilla state, without the need of a superselection rule
By a further enlargement of the ancilla space, the struc-
ture of the unitary interaction that realizes a given QO can b
simplified. The following derivation generalizes the Halmos

method[17] and has been used [18] to provide unitary
realizations of the ideal phase measurement.

From the Stinespring dilatiofl2), where we takd. such
thatLe& K=R®H, let us define the operators

V=V((¢grl@ly) andV'=(|gr)@1 V. (35

One can simply verify that botV" andVV are projectors,
i.e., V(W =V and ¥V)(VIV)=VTV. Let us in-
troduce athird ancilla spaces and a linear operatd on S
such that

W2=W"2=0 and WW+W'W=1g. (36)

These conditions imply thatVW'" and W'W are orthogonal
projectors. We can now write the unitary operatbe B(S
®L®K) as follows:

U=WWeaV-WweV +We -V
+We (1 -VVT), (37)

thus obtaining the map by the equation

t

E'(p) # TrR[U"(| r){ bl @ p) (UH™]. (40)

n fact, the unitary dilation needs faesh resourcei.e., a

disentangled input ancillawhereas generally it returns an
entangledoutput. For this reason, powers dfdo not corre-
spond to powers of.

Here we address the problem of findingitary power
interacting dilationsfor a given map. Using the unitary
and the ancilla statepr) of Eq.(26), let us define the-copy

ncilla stateo=|¢R)(pg|“" and the unitary operator on
®@n

(41)

n—-1
WZ( Il;[l Ein®ln|(l12, n-1®U),

where the product of swap operatdts,| )| ¢)=|p)|¢) for
|¥)eR; and|¢) e R, performs a cyclic permutation of the
ancilla space®;. One has
E(p)=Trrea[ W(o® p)W']. (42

It is now easy to check that the unitary realization in E®)
satisfies the composition law fé&rpowers up ton,

E(p)=Trren WX(o@p)(WNHK], k=1,..n. (43
In fact, the permutation operator selects dresh ancillaat
every stepof the interaction, leaving the others unchanged.

IV. MAJORIZATION SELECTION OF UNITARY
DILATIONS

We give now a criterion to select the unitary dilations of a
QO in terms of anajorizationrelation. We recall that for two
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vectorsx,y € R" we say thak is majorizedby y, i.e.,x<y, if
and only if[20,21]

(44)
and
(45)

wherev! denotes the vector obtained framby rearranging
its entries in nonincreasing order.

In Ref. [22] Nielsen proved the following theorem that
characterizes the ensembles corresponding to a given densi

operator p by means of a majorization relation. Let

e T(H) and (p;) be a probability vector. There exist normal-

ized vectord ;) e H such that

p=2i pil i) Wil (46)

if and only if
(Pi)=<(X\,), (47)

where @) is the vector of eigenvalues of

PHYSICAL REVIEW A 68, 042113 (2003

=3,E/pE/" for £ can be regarded as the “ensemble” real-
ization Re=3;|E/)(E/| for the “density operator”R;.
Hence, different Kraus decompositiofg; ,...,E/} for &£
correspond to different ensembles, with probability vector
(IIE/|13) given by the Hilbert-Schmidt norms of the operators
E/ . On the other hand, the probability vectdE(||2) of the
canonical Kraus decomposition corresponds to the vector of
eigenvalues oR., whence Eq(47) in the present context
becomes

(IE/1B=<(El), (51)

and Eq.(3) guarantees that the two vectors have the same
length. Then the statement of the theorem follows from the
igyentification E/={oi|®1K) L_J(| dr)®1Y). L)

The above theorem provides another bound on the dimen-
sion of the ancilla spac&. Since in Eq.(50) one hasi
=1,...,rank®), andj=1,...c=rank(R¢) (cis the cardinality
of the canonical Kraus decompositjoithen

dim(L)=rank X)=c. (52

This bound can be compared with the tighter one in(&6).
Equation(50) can also be used to introduce a partial or-
dering[26] between all possible unitary interacting dilations
(26) for the same QCE. In fact, Eq. (50) states that the
unitary interactions from a canonical Kraus decomposition
majorize in the sense of E@50) all those derived from a

We now apply the Nielsen theorem in order to select thegeneric Kraus decomposition. In other words, the more the
unitary dilations of a given QO, by exploiting the isomor- Krays decompositiofE/} is “mixed,” i.e., is an isometric

phism[23] between CP maps frof(H) to T(K) and positive

operators orK®@H. This correspondence is defined by the _

relations[10,24]
Re=ERZ(| )1,

Ep)=Tral(1x®p"R¢], (48)

where|l)) e HoH=X|n)®|n) is the maximally entangled
unnormalized vectoil denotes the transposition on the basis
{In)}, Z: T(H)—T(H) is the identity map, and we used the

notation[25]

|A>>: %1 Anm| n>®|m> (49)
for bipartite pure states. In terms of the positive oper&gor
the identity(3) becomes T R:]=K.
Denoting by|Al,= VTI{ATA] the Hilbert-Schmidt norm
of the operatoA, we have the following theorem.
Theorem 3Let £ be a QO fromT(H) to T(K) with ca-
nonical Kraus decomposition given kﬁ,(p)=2f:1EjpE]T

with Tr[EiTEi]=||Ei||§5ij . Then all the possible unitary in-
teracting dilations fo€ obtained by Theorem 2 must satisfy

the majorization constraint

(Kai|uler)<(EIR),

where{|c;)} CL form an orthonormal basis f&ng(3) (see
Theorem 2.

Proof. When representing the CP m&with the positive
operatorR, as in Eq.(48), a Kraus decompositioi(p)

(50

combination of the canonical ore/ ==7_,Y;;E; for YTy

I., the more the unitary interaction constructed with the
{E{} will be “flat” in the Hilbert-Schmidt norms of its par-
tial matrix elementd{( o;|U| ¢g)||3. This means that the par-
tial ordering would also reflect a minimization of the ancil-
lary resource in terms of its Hilbert space dimension.

V. CONCLUSIONS

Given a QO, generally trace nonincreasing and with dif-
ferent input and output spaces, we have seen how to obtain
its unitary realizations in terms of both free and interacting
dilations. These different forms of dilation require different
amounts of resources in order to achieve the unitary interac-
tion, and the minimum resource in terms of the Hilbert space
dimension is obtained with the free dilation, where the input
state is embedded in a larger Hilbert space and a kind of
superselection rule forces the choice of the input state in a
proper subspace before the free unitary evolution. For this
case we derived bounds for the physical resources needed to
achieve a QO in terms of the dimension of the measurement
ancilla space. The interacting dilations, on the other hand,
correspond to the customary realization in terms of an
ancilla-system interaction. Then we have seen how the con-
struction can be generalized in order to include also unitary
power dilations of a given QO, namely, unitary interacting
realizations that also provide theh power of the map. Fi-
nally, we have seen how all possible interactions can be pre-
selected by means of a majorization inequality, involving the
unitary operator, the ancilla preparation state, and the mea-
sured observable.
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