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Physical realizations of quantum operations
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Quantum operations~QO’s! describe any state change allowed in quantum mechanics, such as the evolution
of an open system or the state change due to a measurement. We address the problem of which unitary
transformations and which observables can be used to achieve a QO with generally different input and output
Hilbert spaces. We classify all unitary extensions of a QO and give explicit realizations in terms of free-
evolution direct-sum dilations and interacting tensor-product dilations. In terms of Hilbert space dimensionality
the free-evolution dilations minimize the physical resources needed to realize the QO, and for this case we
provide bounds for the dimension of the ancilla space versus the rank of the QO. The interacting dilations on
the other hand, correspond to the customary ancilla-system interaction realization, and for these we derive a
majorization relation which selects the allowed unitary interactions between system and ancilla.
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I. INTRODUCTION

The recent progress in quantum information theory@1–3#
offers the possibility of radically different information
processing methods that can achieve much higher pe
mances than those obtained by classical means, in term
security, capacity, and efficiency@4–7#. This urges a quan
tum system engineering approach for the production of
quantum tools needed for communication, processing,
storage of quantum information. A first step toward this g
is the search for a systematic method to implement in a c
trolled way any quantum state transformation.

The mathematical structure that describes the most g
eral state change in quantum mechanics is thequantum op-
eration ~QO! of Kraus@2,8#. Such abstract theoretical evolu
tion has a precise physical counterpart in its implementati
as a unitary interaction between the system undergoing
QO and a part of the apparatus—the so-calledancilla—
which after the interaction is read by means of a conv
tional quantum measurement. In this paper we address
problem of which unitary transformations and which obse
ables can be used to achieve a given QO for a finite dim
sional quantum system. We consider generally different in
and output Hilbert spacesH andK, respectively, allowing the
treatment of very general quantum machines, e.g., of
kind of quantum optimal cloners@9,10#. As will be clear
from the physical implementations of the QO, schematica
this corresponds to a general scenario in which the mac
prepares a state in the Hilbert spaceH and couples it uni-
tarily with a preparation ancilla in the Hilbert spaceR,
which was previously set to a fixed state. The machine t
transfers the joint system with Hilbert spaceR^ H to a mea-
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suring section, which performs a measurement on ano
measurementancilla, with spaceL,R^ H. The output sys-
tem will be in the Hilbert spaceK, where K is such that
L^ K5R^ H. The result is a machine that performs a Q
with input in H and output inK.

In the process of classification of all unitary extensions
a QO, we will give explicit realization schemes in terms
free-evolution direct-sum dilations and interacting tens
product dilations, which in the following will be name
briefly free and interactingdilations, respectively. The inter
acting dilations correspond to the ancilla-system interact
scenario just described above, whereas in thefree dilations
we only have the measurement ancilla, and the input spa
embedded in a larger Hilbert space, where a kind of sup
selection rule forces the choice of the input state in a pro
subspace before a free unitary evolution. In terms of Hilb
space dimensionality the free dilations minimize the physi
resources needed to realize the QO, and for this case we
provide bounds for the dimension of the ancilla space ver
the rank of the QO. For the interacting dilations, on the ot
hand, we will derive a majorization relation which allows u
to preselect the admissible unitary interactions between
tem and ancilla, in relation to the ancilla preparation st
and the measured observable.

The paper is organized as follows. After briefly recallin
the notion of quantum operations in Sec. II, in Sec. III w
introduce the Stinespring form for a QO and explicitly co
struct all possible unitary realizations, for both free and
teracting dilations. We also address the problem of find
unitary interacting power dilationsof a given QO, namely,
interacting dilations that also provide thekth power of the
map~i.e., with the map appliedk times!. In Sec. IV, we give
the criterion to select the admissible unitary interactions fo
QO in the form of a majorization relation. Section V final
closes the paper with a summary of the results.

II. QUANTUM OPERATIONS

In the following, byT~H! we denote the set of trace-clas
operators on the Hilbert spaceH ~which can be simply re-

,
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garded as just the set of states onH!. A quantum operationE:
T(H)→T(K) is a linear, trace not-increasing map that is a
completely positive~CP!, namely, that preserves the positi
ity of any input state of the system onH entangled with any
other quantum system~mathematically, all trivial extension
E^ I of the map must preserve the positivity of input sta
on the extended Hilbert space!. The input and theoutput
states are connected via the relation

r°r85
E~r!

Tr@E~r!#
, ~1!

where the trace Tr@E(r)#<1 also represents the probabili
that the transformation in Eq.~1! occurs. An analog of the
spectral theorem for positive operators in finite dimensio
leads to the following canonical form of the QOE: T(H)
→T(K) @8#:

E~r!5(
n

EnrEn
† , ~2!

where the bounded operatorsEnPB(H,K) from H to K are
orthogonal, i.e., Tr@En

†Em#50 for nÞm, and moreover they
satisfy the condition

(
n

En
†En5K<I H . ~3!

In terms of the positive operatorKPB(H), the probability of
occurrence of the QO can also be rewritten as Tr@Kr#. No-
tice that there are generally infinitely many noncanoni
ways of writing the mapE in the form of Eq.~2!, with gen-
erally larger and nonorthogonal sets of elements$Ej8% that
satisfy Eq.~3!. All such decompositions are usually calle
Kraus formsof the QO E. In order to satisfy Eq.~3!, the
operators$Ej8% of a noncanonical Kraus form are related
the canonical ones$Ei% asEj85( iYji Ei via an isometric ma-
trix Y, i.e., a matrix with orthonormal columns. When th
map is trace preserving, i.e., Tr@E(r)#51—or equivalently
K5I H—it occurs with unit probability, and is usually name
channel.

It was known since Kraus@8# that a trace-preserving QO
admits a unitary realization on an extended Hilbert spa
More generally, when we have a set of QO’s that describ
general quantum measurement~also with a continuous spec
trum and in infinite dimensions: the so-calledinstruments!,
Ozawa@11# proved the realizability in terms of an observab
measurement over an ancilla after a unitary interaction w
the quantum system. In the following we will derive expli
itly all possible unitary dilations for a generic QO for finit
dimension, and give ancillary realizations and bounds for
dimensions of the Hilbert spaces involved.

III. UNITARY DILATIONS OF A QUANTUM OPERATION

The Stinespring dilation@12,13# is a kind of ‘‘purifica-
tion’’ of the QO. Originally, Stinespring’s theorem was s
for the dual versionEt of the QO, i.e., in the ‘‘Heisenberg
picture’’—instead of the ‘‘Schro¨dinger picture’’ of Eq.~1!—
04211
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the two pictures being related as follows:

Tr@rEt~O!#5Tr@E~r!O# ~4!

for every bounded operatorOPB(K). Analogously to Eqs.
~2! and ~3!, one has

Et~O!5(
n

En
†OEn ~5!

with

Et~ I K!5K. ~6!

A variation of Stinespring’s theorem can be restated
saying that for every QOE: T(H)→T(K), there exists a
Hilbert spaceL such thatE can be obtained as follows:

Et~X!5E†~ I L^ X!E, ~7!

whereEPB(H,L^ K) is a contraction~i.e., E is an operator
bounded asiEi<1). In fact, consider any Kraus decomp
sition E5( i 51

n Ei•Ei
† for E, and letL be a Hilbert space with

dim(L)>n and orthonormal basis$u l i&%. The operator

E5 (
i 51

dim~L!

u l i& ^ Ei ~8!

is a contraction, sinceE†E5K<I H @if one considers
dim(L).n, this means that extra null operators are appen
to the Kraus decomposition#. Here and throughout the pape
for APB(H,K) and uv&PL the tensor notationuv& ^ A will
denote the linear operator fromH to L^ K defined as (uv&
^ A)uf&8uv& ^ Auf&, for uf&PH, whereas its adjoint
^vu ^ A† is the linear operator fromL^ K to H given by
(^vu ^ A†)uw& ^ uc&8^vuw&A†uc&, for uc&PK and uw&PL.
Using the Kronecker representation of the tensor prod
@15#, the contractionE in Eq. ~8! is easily represented b
vertically joining the operatorsEi . By substituting Eq.~8!
into Eq. ~7! one obtains Eq.~5!, namely, the statement. O
the other hand, the Schro¨dinger picture form of Eq.~5! is

E~r!5TrL@ErE†#. ~9!

For a trace-preserving map the Stinespring contractionE is
actually an isometry, sinceE†E5I H @this case with isometric
E is the original Stinespring theorem version of Eq.~7!#.

It is possible to extend trace-decreasing maps to iso
tries also. For this purpose, first we prove the followi
lemma.

Lemma 1. For any given positive bounded operatorP
PB(H) and for every Hilbert spaceK, there exists a set o
bounded operatorAiPB(H,K), i 51,...,n, such that

P5(
i 51

n

Ai
†Ai . ~10!

Proof. Let P5( i 51
rank(P)uv i&^v i u where uv i&PH are the or-

thogonal eigenvectors ofP, generally not normalized. On
has two possibilities.
3-2
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PHYSICAL REALIZATIONS OF QUANTUM OPERATIONS PHYSICAL REVIEW A68, 042113 ~2003!
~a! dim(K)>rank(P): the statement holds forn51 with
P5A†A and A5( i 51

rank(P)uki&^v i u, with $uki&% any orthonor-
mal set inK.

~b! dim(K),rank(P): then the result holds withn
5rank(P) andAi5uc i&^v i u, with $uc i&% any set of normal-
ized vectors inK. j

Notice that in case~b! of the proof, we can suitably
choose the operators$Ai% in order to minimizen as n
5 dr /ke, for r 8rank(P), k8dim(K), and dxe denoting the
minimum integer greater than or equal tox. These are given
by the operators

Ai5(
j 51

k

ukj&^v ~ i 21!k1 j u, i 51,...,n[ dr /ke. ~11!

The lemma stated above can be used to prove the foll
ing theorem.

Theorem 1. A linear mapE: T(H)→T(K) is a QO if and
only if its dual form can be written as

Et~X!5V†~S ^ X!V ~12!

for a suitable ancillary Hilbert spaceL, where VPB(H,L
^ K) is an isometry, andSPB(L) is a nonvanishing orthogo
nal projector on a subspace ofL. Furthermore,S[I L if and
only if E is trace preserving.

Proof. Let us denote by$us j&% j 51,...,rank(S),L the eigen-
vectors ofS having unit eigenvalue. Then the operators

Ej5~^s j u ^ I K!V, j 51,...,rank~S! ~13!

provide a Kraus decomposition for the mapE, which then is
a QO. This proves the sufficient condition.

For the necessary condition, consider a QOE where
$Ei%,B(H,K) are the elements of any Kraus decompositio
From Lemma 1, there exists a set of operators$F j%,B(H,K)
such that( jF j

†F j5I H2( iEi
†Ei>0. Now, consider a set o

orthonormal vectors$uei&,u f j&% in L, and define the orthogo
nal projectorS5( i uei&^ei u and the isometry

V5(
i

uei& ^ Ei1(
j

u f j& ^ F j . ~14!

These operators will provide the desired dilation in Eq.~12!.
To complete the proof we need to show thatS5I L if and

only if E is trace preserving. IfE is trace preserving, we do
not need the operators$F j% and hence we can choose th
spaceL to be spanned by the vectors$uei&% that form an
orthonormal basis forL, namely, ( i uei&^ei u5I L . On the
other hand, ifS5I L , one hasEt(I K)5V†V5I H , namely, the
map is trace preserving. j

Theorem 1 allows us to derive a bound for the physi
resources that one needs to obtain the dilation~12! of a QO
~as we will see in Sec. III A, the unitary dilation of the isom
etry does not introduce any additional ancillary resource!. It
is clear that for trace-preserving maps one hasF j50 for all
j in the proof of the theorem. Notice also that sinceV
PB(H,L^ K) is an isometry, one has dim(H)<dim(L)
3dim(K). The minimum dimension forL is obtained for the
04211
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canonical Kraus decomposition and for the minimum car
nality of the complementary set of operators$F j% that is
given by drank(I H2K)/dim(K) e. Therefore, upon denoting
by c the cardinality of the canonical Kraus decompositio
namely, therank of the QO, one has

S c1 drank~ I H2K !

dim~K! e D3dim~K!>dim~H! ~15!

for every mapE: T(H)→T(K). In fact, using Lemma 1, in
Eq. ~14! one has at leastc elements Ei and at least
dr /dim(K) e elementsF j , wherer is the rank ofI H2K. From
Eq. ~15! and the conditionEt(I K)5K, we have

dim~L!>c1 drank@ I H2Et~ I K!#

dim~K! e> dim~H!

dim~K!
. ~16!

Equation ~16! provides a bound on the resources that o
needs to obtain an isometric dilation, without knowinga pri-
ori a Kraus decomposition for the map.

In Theorem 1 we have shown how to obtain a QO via
isometric embedding. In the following subsections, we e
plicitly derive the physical realizations for the QO for bo
the free and the interacting formulations.

A. Free dilations

We start by giving a proof of the well-known lemma o
Gram-Schmidt unitary dilations@14#.

Lemma 2. Every isometryTPB(Hin ,Hout) admits a uni-
tary dilationUPB(Hout).

Proof. Introduce a Hilbert spaceHaux such thatHout5Hin
% Haux. We consider the case dim(Haux)>1, otherwiseHout
>Hin , and T is already unitary. For a given isometryW
PB(Haux,Hout), define the operatorUPB(Hout) as

U5T•1•W,

Uuvout&5~ uv in& % uvaux&)5Tuv in&1Wuvaux&. ~17!

In finite dimension, this can be obtained on a chosen b
just by joininghorizontallythe two matricesT andW so that,
by construction,U is a square matrix, whence the symb
•1•. If the condition

T†W50 ~18!

is satisfied, then the operatorU is unitary onHout. An opera-
tor WPB(Haux,Hout) that satisfies Eq.~18! has column vec-
tors @W(k)# for k51,...,dim(Haux) that make an orthonorma
basis forHaux5Rng(I Hout

2TT†),Hout. A set of vectors of
this kind can always be obtained iteratively by the Gra
Schmidt procedure onHin% Haux, with dim(Haux).0. j

Using the previous lemma, one can obtain a unitary
erator UPB(L^ K) from the isometryVPB(H,L^ K) by
sticking V horizontally with an appropriate isometryW
PB(D,L^ K), whereD is a second auxiliary Hilbert spac
defined by the relationH% D5L^ K. FromU, conversely, it
is possible to reconstructV using thedilation operator D
3-3
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PB(H,L^ K), which is the trivial isometryD5I H1
.

.

0H,D @in

analogy with•1•, the symbol1
.

.

means thevertical joining

of two block matrices, whereas the symbol0H,D denotes the
operator inB~H,D! corresponding to the rectangular matr
with all zero entries#, such that

V5UD, ~19!

whereD acts as follows:

DuvH&5I HuvH& % 0H,DuvH&5uvH& % u0&D , ~20!

with u0&D denoting the null vector inD.
In this way, we can reexpress Theorem 1 stating tha

linear mapE:T(H)→T(K) is a QO if and only if its dual
form can be written as

Et~X!5D†U†~S ^ X!UD. ~21!

Therefore, any trace-decreasing QO can be interprete
terms of a unitary interaction between the quantum sys
and an ancilla, followed by an orthogonal projection. T
dilation operatorD is needed just in order to reduce the ou
put space of the unitary operator to the original output sp
of the map.

The Schro¨dinger form of Eq.~21! can be obtained as fol
lows. From the duality relation in Eq.~4!, one has

Tr@Et~X!r#5Tr@D†U†~S ^ X!UDr#

5Tr@~S ^ X!UDrD†U†#

5Tr†X TrL@~S ^ I K!UDrD†U†#‡, ~22!

whence

E~r!5TrL@~S ^ I K!UDrD†U†#

5TrL@~S ^ I K!U~r % 0D!U†#, ~23!

where 0D is the null operator onD. In Eq. ~23! the term
U(r % 0D)U† represents afree unitary evolutionof the sys-
tem in the stateDrD†[r % 0D , which is a positive block-
diagonal operator inT(L^ K) with unit trace~remember that
H% D5L^ K). Physically, such a trivial embedding ofH in
H% D can be regarded as kind of conservation law or sup
selection rule forbidding a subspace for the input states.

In conclusion of this subsection, we notice that the spe
case ofV already unitary in Eq.~12! corresponds to no sub
spaceD, andD[I H andU[V. Then Eq.~23! becomes sim-
ply

E~r!5TrL@~S ^ I K!UrU†#, ~24!

and one necessarily has dim(K)<dim(H).

B. Interacting dilations

In the previous subsection we derived a general unit
realization for a given QO, in terms of a direct-sum dilatio
using a measurement ancilla only, with the input space
04211
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bedded in a larger Hilbert space, where a kind of superse
tion rule forces the choice of the input state in a prop
subspace before a free unitary evolution on the exten
space. We are now interested in the tensor-product type
realization schemes, in which the role of the dilation opera
D ~i.e., of the superselection rule! will be played by the ten-
sor product ofr with the state of a preparation ancilla, wit
the system interacting with such ancilla, and with a conv
tional observable measurement then performed on a diffe
ancilla. This ancilla-system interaction scenario is mo
popular in the literature and is the one used in the extens
theorems for instruments in Refs.@11#. It is obvious that
composite schemes are also possible, with both direct-
and tensor-product dilations.

The results of the previous subsection can be rewritten
choosing a dilation in terms of a Hilbert spaceL with dimen-
sion dim(L)3dim(K)5r dim(H), for integerr. Then, upon
introducing a second ancillary spaceR with dim(R)5r , one
hasL^ K>R^ H, and we obtain the following theorem.

Theorem 2. A linear mapE: T(H)→T(K) is a QO if and
only if its dual form can be written as follows:

Et~X!5^fRuU†~S ^ X!UufR&, ~25!

whereXPB(K) is the inputSPB(L) is a nonvanishing or-
thogonal projector on a subspace of the ancillary spaceL,
UPB(L^ K) is unitary, andufR&PR is a fixed normalized
vector. In the Schro¨dinger picture one has

E~r!5TrL@~S ^ I K!U~ ufR&^fRu ^ r!U†#, ~26!

where now the input is represented by the staterPT(H). We
refer to the spacesR andL as the preparation and measur
ment ancilla, respectively.

Proof. Notice that the notation̂fRuU†(S ^ X)UufR& de-
notes a partial matrix element: in our tensor notation t
corresponds to writing (^fRu ^ I H)U†(S ^ X)U(ufR& ^ I H).

Let us consider the unitary dilation in Eq.~21!, and ex-
pand the spaceL such that

dim~L^ K!5dim~L!3dim~K!5r dim~H! ~27!

for integer r. The Hilbert spaceD defined as D5(L
^ K)*H, now has dimension dim(D)5dim(L)3dim(K)
2dim(H)5(r 21)dim(H). Let us introduce a Hilbert spac
R with dimension dim(R)5r , so that

dim~L^ K!5dim~R^ K!, ~28!

whence

L^ K>R^ H. ~29!

Clearly, if the map has equal input and output spaces,
preparation ancilla and the measurement ancilla are isom
phic, i.e.,R>L. On fixed orthonormal bases forK, L, H, and
R, upon denoting byufR&PR an element of the basis ofR,
we have the following identifications:

D[ufR& ^ I H ~30!
3-4
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and

r % 0D[ufR&^fRu ^ r. ~31!

The statement of the theorem is then obtained by rewri
Eqs.~21! and ~23! with the use of Eqs.~30! and ~31!. j

Alternative proof. The above proof is based on the direc
sum dilation of Eq.~21!. An equivalent way to obtain the
result in Theorem 2 is the following. From the Stinespri
form in Eq.~12!, let us introduce a Hilbert spaceR such that
L^ K>R^ H. By a repeated use of the Gram-Schmidt p
cedure one obtains other isometriesWiPB(H,L^ K), for i
52,...,r , such that

V†Wi50 and Wi
†Wj5d i j I H , ~32!

namely,

Rng~V! % Rng~W2! %¯% Rng~Wr !5L^ K. ~33!

Let us consider the unitary operator

U5^r 1u ^ V1^r 2u ^ W21¯1^r r u ^ Wr , ~34!

where$ur i&%,R is an orthonormal basis for the spaceR. By
taking ur 1&[ufR&, one obtains the statement of the the
rem. j

This constructive proof was used in Ref.@16# to explicitly
derive a unitary realization for the optimal transposition m

The tensor-product form of the unitary dilation is gene
ally more expensive in terms of resources~i.e., the dimen-
sion of the extended space! than the direct-sum form in Eq
~23!; however, the physical realization of the tensor prod
could be more practical, since one just needs to prepa
fixed ancilla state, without the need of a superselection r

By a further enlargement of the ancilla space, the str
ture of the unitary interaction that realizes a given QO can
simplified. The following derivation generalizes the Halm
method@17# and has been used in@18# to provide unitary
realizations of the ideal phase measurement.

From the Stinespring dilation~12!, where we takeL such
that L^ K>R^ H, let us define the operators

Ṽ5V~^fRu ^ I H! and Ṽ†5~ ufR& ^ I H!V†. ~35!

One can simply verify that bothṼṼ† andṼ†Ṽ are projectors,
i.e., (ṼṼ†)(ṼṼ†)5ṼṼ† and (Ṽ†Ṽ)(Ṽ†Ṽ)5Ṽ†Ṽ. Let us in-
troduce athird ancilla spaceS and a linear operatorW on S
such that

W25W†250 and WW†1W†W5I S . ~36!

These conditions imply thatWW† andW†W are orthogonal
projectors. We can now write the unitary operatorUPB(S
^ L^ K) as follows:

U5WW†
^ Ṽ2W†W^ Ṽ†1W†

^ ~ I 2Ṽ†Ṽ!

1W^ ~ I 2ṼṼ†!, ~37!

thus obtaining the map by the equation
04211
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E~r!5TrS,L@~ I S^ S ^ I K!U~sS^ ufR&^fRu ^ r!U†#,
~38!

wheresS5WW†/Tr@WW†# is the fixed normalized state o
the third ancilla. Notice that the spaceS and the operatorW
are arbitrary, provided that the constraints in Eq.~36! are
satisfied. For dim(S)52 and W5u0&^1u one recovers the
Halmos unitary dilations@17#.

C. Power interacting dilations

We have shown in Theorem 2 how to obtain a unita
interactionU that realizes a given QOE: T(H)→T(K), as in
Eq. ~26!. Consider now a trace-preserving QO withH[K,
namely, a customarychannel. The equivalence of the inpu
and output spaces implies, in the interacting scheme, coi
dence also between the preparation and the measuremen
cillas, namely,R[L @19#. The mapE can now be applied
recursively, and we study the properties of itspowers

r°E~r!°E„E~r!…8E2~r!°¯°En~r!. ~39!

Of course, the unitary realization given in Eq.~26! does
not satisfy the composition law for powers of the ma
namely,

En~r!ÞTrR@Un~ ufR&^fRu ^ r!~U†!n#. ~40!

In fact, the unitary dilation needs afresh resource, i.e., a
disentangled input ancilla, whereas generally it returns a
entangledoutput. For this reason, powers ofU do not corre-
spond to powers ofE.

Here we address the problem of findingunitary power
interacting dilationsfor a given map. Using the unitaryU
and the ancilla stateufR& of Eq. ~26!, let us define then-copy
ancilla states5ufR&^fRu ^ n and the unitary operator on
R^ n

^ H,

W5S )
i 51

n21

Ei ,n^ I HD ~ I 1,2,...,n21^ U !, ~41!

where the product of swap operatorsEi ,nuc&uf&5uf&uc& for
uc&PRi and uf&PRn performs a cyclic permutation of th
ancilla spacesRi . One has

E~r!5TrR^ n@W~s ^ r!W†#. ~42!

It is now easy to check that the unitary realization in Eq.~42!
satisfies the composition law fork powers up ton,

Ek~r!5TrR^ n@Wk~s ^ r!~W†!k#, k51,...,n. ~43!

In fact, the permutation operator selects onefresh ancillaat
every stepof the interaction, leaving the others unchange

IV. MAJORIZATION SELECTION OF UNITARY
DILATIONS

We give now a criterion to select the unitary dilations o
QO in terms of amajorizationrelation. We recall that for two
3-5
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vectorsx,yPRn we say thatx is majorizedby y, i.e.,xay, if
and only if @20,21#

(
j 51

k

xj
↓<(

j 51

k

yj
↓ , 1<k,n, ~44!

and

(
j 51

n

xj
↓5(

j 51

n

yj
↓ , ~45!

wherev↓ denotes the vector obtained fromv by rearranging
its entries in nonincreasing order.

In Ref. @22# Nielsen proved the following theorem tha
characterizes the ensembles corresponding to a given de
operator r by means of a majorization relation. Letr
PT(H) and (pi) be a probability vector. There exist norma
ized vectorsuc i&PH such that

r5(
i

pi uc i&^c i u ~46!

if and only if

~pi !a~lr!, ~47!

where (lr) is the vector of eigenvalues ofr.
We now apply the Nielsen theorem in order to select

unitary dilations of a given QO, by exploiting the isomo
phism@23# between CP maps fromT~H! to T~K! and positive
operators onK^ H. This correspondence is defined by t
relations@10,24#

RE5E^ I~ uI &&^̂ I u!,

E~r!5TrH@~ I K^ rT!RE#, ~48!

where uI &&PH^ H5(nun& ^ un& is the maximally entangled
unnormalized vector,T denotes the transposition on the ba
$un&%, I: T(H)→T(H) is the identity map, and we used th
notation@25#

uA&&5(
n,m

Anmun& ^ um& ~49!

for bipartite pure states. In terms of the positive operatorRE ,
the identity~3! becomes TrK@RE#5K.

Denoting byiAi25ATr@A†A# the Hilbert-Schmidt norm
of the operatorA, we have the following theorem.

Theorem 3. Let E be a QO fromT~H! to T~K! with ca-
nonical Kraus decomposition given byE(r)5( j 51

c EjrEj
†

with Tr@Ei
†Ej #5iEi i2

2d i j . Then all the possible unitary in
teracting dilations forE obtained by Theorem 2 must satis
the majorization constraint

~ i^s i uUufR&i2
2!a~ iEi i2

2!, ~50!

where$us i&%,L form an orthonormal basis forRng~S! ~see
Theorem 2!.

Proof. When representing the CP mapE with the positive
operatorRE as in Eq. ~48!, a Kraus decompositionE(r)
04211
ity

e

5( iEi8rEi8
† for E can be regarded as the ‘‘ensemble’’ rea

ization RE5( i uEi8&&^̂ Ei8u for the ‘‘density operator’’RE .
Hence, different Kraus decompositions$E18 ,...,Em8 % for E
correspond to different ensembles, with probability vec
(iEi8i2

2) given by the Hilbert-Schmidt norms of the operato
Ei8 . On the other hand, the probability vector (iEi i2

2) of the
canonical Kraus decomposition corresponds to the vecto
eigenvalues ofRE , whence Eq.~47! in the present contex
becomes

~ iEi8i2
2!a~ iEi i2

2!, ~51!

and Eq.~3! guarantees that the two vectors have the sa
length. Then the statement of the theorem follows from
identificationEi85(^s i u ^ I K)U(ufR& ^ I H). j

The above theorem provides another bound on the dim
sion of the ancilla spaceL. Since in Eq.~50! one hasi
51,...,rank(S), and j 51,...,c5rank(RE) ~c is the cardinality
of the canonical Kraus decomposition!, then

dim~L!>rank~S!>c. ~52!

This bound can be compared with the tighter one in Eq.~16!.
Equation~50! can also be used to introduce a partial o

dering@26# between all possible unitary interacting dilation
~26! for the same QOE. In fact, Eq. ~50! states that the
unitary interactions from a canonical Kraus decomposit
majorize in the sense of Eq.~50! all those derived from a
generic Kraus decomposition. In other words, the more
Kraus decomposition$Ei8% is ‘‘mixed,’’ i.e., is an isometric
combination of the canonical oneEi85( j 51

c Yi j Ej for Y†Y
5I c , the more the unitary interaction constructed with t
$Ei8% will be ‘‘flat’’ in the Hilbert-Schmidt norms of its par-
tial matrix elementsi^s i uUufR&i2

2. This means that the par
tial ordering would also reflect a minimization of the anc
lary resource in terms of its Hilbert space dimension.

V. CONCLUSIONS

Given a QO, generally trace nonincreasing and with d
ferent input and output spaces, we have seen how to ob
its unitary realizations in terms of both free and interacti
dilations. These different forms of dilation require differe
amounts of resources in order to achieve the unitary inte
tion, and the minimum resource in terms of the Hilbert spa
dimension is obtained with the free dilation, where the inp
state is embedded in a larger Hilbert space and a kind
superselection rule forces the choice of the input state
proper subspace before the free unitary evolution. For
case we derived bounds for the physical resources neede
achieve a QO in terms of the dimension of the measurem
ancilla space. The interacting dilations, on the other ha
correspond to the customary realization in terms of
ancilla-system interaction. Then we have seen how the c
struction can be generalized in order to include also unit
power dilations of a given QO, namely, unitary interacti
realizations that also provide thekth power of the map. Fi-
nally, we have seen how all possible interactions can be
selected by means of a majorization inequality, involving t
unitary operator, the ancilla preparation state, and the m
sured observable.
3-6
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