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Abstract

Homodyne tomography provides an experimental technique for reconstructing the density matrix of the radiation field.
Here we analyze the tomographic precision in recovering observables like the photon number, the quadrature, and the phase.
We show that tomaographic reconsiruction, despite providing a complete characterization of the state of the field, is generally
much less efficient than conventional detection technigues.

1. Introduction

Quantum tomography provides the maximum achievable information on a given quantum radiation state, as,
in principle, the knowledge of the density matrix allows one to calculate all expectation values for any desired
observable. This means that quantum tomography is at the same time a phase detection, a quadrature detection,
a photon number detection, and so on. The possibility of experimentally reconstructing the density matrix of
a single mode of the radiation field has been firstly demonstrated by Raymer et al. in Ref. [1]. Very recently
we have obtained a greatly improved reconstruction algorithm, which also provides the experimental error bars
for all detected matrix elements [2]. Henee, it is now possible to evaluate the precision of this novel kind
of detection, and to compare it with those of conventional single-observable schemes: this problem will be
addressed in the present paper for a single mode of the radiation field.

The principle of quantum tomography relies on the possibility of obtaining the s-ordering Wigner function
W. (e, &) from an ensemble of repeated measurements of the quadrature dg = -é—( ae i 4ai %) at various
phases ¢ relative to the local oscillator. From the probability distributions p{x, ¢) of the outcomes x of &y the
Wigner function W, (e, &) is recovered through the formula [3]

W(a,a@) =& [ dn Inifdx/-%? plx.d) expiisn’ +inlx —Re (ac®)]} . (1
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In Eq. (1) the inner integrals over x and ¢ can be estimated as averages on a finite set of experimental
data only for strictly negative s, due (o divergence of the outer Fourier transform over 5. For s = 0, the
probability p(x, ¢} must be provided in analytic form, thus requiring a smoothing procedure on experimental
data. Such smoothing is the basis of the original reconstruction algorithm [ 1], where the symmetrical-ordering
Wigner function Wy(a, &) is evaluated from filtered back-projected data, whereas the density matrix itself
is subsequently obtained through further integral transforms?. Besides requiring much numerical effort in
performing smoothing and subsequent integration steps, this method needs a sort of @ priori assumption on the
detected state in order to tune the filtering parameter.

Contrarily to the case 5 = 0, for 5 < 0 it is possible to evaluate W (@, &) in the form of simple averages
on data, without any a priori assumption, and with the great advantage of obtaining reliable statistics for
experimental error bars. This second option is that adopted in our method [2]: it will be briefly recalled in the
next section,
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2. Non-filtered reconstruction algorithm

For s = —1 the Wigner function coincides with the Husimi O-function Q (e, &) (the probability distribution
for antinormally ordered operator products) which itself is the generating function of the density matrix elements
o in the number representation, namely

] (')l n (')j L
p?r.!:: i \/m (3]&" (?a""

After evaluating derivatives in Eq. (2) analytically, Eqs. (1) and (2) dircctly connect the matrix clements py
to simple averages on homodyne data, Let us denote by j,,, the experimental mean value of g, , obtained from
Eqgs. (1) and (2) when the integrals over x and ¢ are replaced with the corresponding experimental averages.
Typically the average on the phase ¢ is evaluated by summing over F equally spaced values ¢y = fur/F
(f=0,....,F —1). A lengthy but straightforward derivation leads to the following reconstruction formula,

!Q(w‘&} cxp(;a!z}”:r:&:‘[) ' (2]
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where d = 0, the brackets { )z denote averaging over the subensemble of data for fixed phase ¢ = ¢y (with

experimental outcome x), [z] is the integer part of z, and the averaged function H (x) is given by

nm

HD (x) = cxp(v—sz)xi"‘)zfﬁ (m = %d - "?.{a' + 132, :;- + {dz; 2.x2) ; (4)

} The density matrix in the quadrature representation is obtained from Wyl e, &) using the Fourier transform
o= \
{4 X plx =2y = [ dy A Wotx + iy, x—iy).
— 00
Then the change to the number representation requires the following two additional integrals,
oo =]
l
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where Hy,(x) is the Hermite polynomial of degree n.
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In Eq. (4) the notation {z}3 denotes the rest of the division z/2, whereas @ (e, B; z) is the confluent hyperge-
ometric function of z with parameters e, B [4]. The fixed matrix R¥Y () in Eq. (3) is given by
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Despite the apparent complexily of Eqs. (3)-(5) the average in Bg. (3) is particularly suited to on-line data
analysis: in fact, apart {rom the sum over data, the procedure requires just a single sum over s, whereas
hypergeometric functions @(«, B; z ) ar¢ connected to each other iteratively, and the matrix Rf,ifl) (¢hp) is stored
in the machine before beginning experiments®. In Ref. [2] the method has been tested on a set of Monte
Carlo simulated experiments: the resulting averages Jy,, are in excellent agreement with theoretical values,
with deviations 8p, ,, Gaussian distributed around the averages. Tn Fig, | a sample histogram of the normalized
deviations from theoretical values for the first 30% matrix elements is reported for a coherent state with (n) = 4:
the comparison with the standard Gaussian is striking, and shows that about 68% of deviations lie within one
standard deviation, corresponding to an optimal Sl (I;’Nl) Z::;] )_::J:_Ol S/ Enm: Where g, ,, is the
error bar on py,,) slightly greater than one,

3. Comparison with conventional detection

Quantities.as phase, field quadrature and photon number could be measured by detecting the density matrix,
but also in a direct way by double homodyne” | single homodyne, and direct photodstection respectively. Direct
measurements, however, give only partial information about the quanium state of the field: one-thus expects that
quantum tomography, providing the maximum available information, should require much: more measurements
in order to achieve the same precision as single-observable detection.

In this section we compare the precision of quantum tomography with those of common detection methods.
In making such a comparison we have to keep in mind that tomography always needs a set of many repeated
measurements on the same field: hence, when comparing (omography with single-observable schemes, the
same number of repeated measurements must be considered. In a scheme of N repeated measurements of the
quantity x, accuracy &x rescales as dx oc N =1/2, The proportionality constant generally depends on the kind of
detection ® , and for experimental Gaussian distributions around the average one has that x = \/(Ax?}/i\r’, {Ax)
being the variance of x. Tn practice, in order to evaluate x one can take advantage of the central limil theorem,
which assures that the partial average over a block of Ny, data is always Gaussian distributed around the global
average over many blocks (for large M), Thus, as usual, onc evaluates precision by dividing the ensembles
of data into subensembles (the “experiments”), and then calculates the r.m.s. deviation of the subensemble
averages with respect to the global one.

4 As an example, for a 322 truncated density matrix, and for 7 = 27 and 10 data for cach phase, the CPU time for o single matrix
element is 0,043 s in average, with our algorithm running on an AlphaVax machine.

5 Double homodyne detection | 5] is actually a density operator detection in the Husimi Q-function representation, however it does not
teivially provide all information on the ficld, because the antinormal form of generic functions of the ficld operators does not always exist.
6 1f the outcomes & are distributed around the true vilue v necording to the probability p(¥|x), the error for N repeated measurements
is always bounded by the Cramer-Rao rclation &x = (FN) 12, with I the Fisher information £ = J dx 1 dip(E|x) 3/ p(Xjx). For

Gaussian distributed data one has I/ = 1 /o, with o being the variance of distribution, and the lower bound of precision is achieved. (See
Ref. [6].)
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Fig. 1. Distribution of the normalized deviations from theoretical values (Apum = (Pugn — Prgn ) Enans B error bars on py ) for the first
307 matrix elements of the density mateix. The quantum state is a coherent one with {n) = 4. The histogram contains 1000 experiments
(subensembles of data), each performed with F = 27 scanning phases and 200 measurements for each phase. The standardized Gaussian
is superimposed.

Fig. 2. Reconstruction of the ideal phase probability distribution of o coherent state with (#) = 2 mean photon number, Each curve
corresponds 0 an experiment with 17 = 27 scanning phases and 100 measurements each. The solid line is the theoretical ideal distribution,

In the following we present results for different states of the radiation from simple Monte Carlo simulations
of homodyne data. We compare quantum tomography with double homodyne phase detection, single homodyne
quadrature detection, and photon number detection. In consideration that for customary shol noise one has the
precision rescaling 8x o I/\;'E versus the average number of photons {1} (the same power law as versus
the number of cxperiments N), all sensitivities will be given as a function of the total number of photons
Nt = N{n) impinged in the apparatus.

3.1, Detection of the phase of the field

The probability distribution of an ideal phase detection is given by [7]

1 & e :
P(';D) :g L EUH !)‘ppn.m ; (6)

1=t}

From the knowledge of the density matrix from tomographic detection one could evaluate the ideal phase
probability (6), that otherwise cannot be directly measured in any known feasible experiment. Ideal phase
probabilities have been reconstructed from tomographic data in Ref. [8], but the corresponding precision
has not been analysed. In a tomographic experiment the reconstructed density matrix leads to an ideal phase
distribution which, however, is still sensitive to errors on matrix elements, and thus is affected by fluctuations
on the mean value. In Fig. 2 a sample ol the ideal phase distributions resulting from five difterent tomographic
simulated experiments is given for an input coherent state: it is evident that each experiment leads to a differently
shifted distribution. The overall rms. error for afl experiments is 8¢ = 1.09 x 1072, which is much larger than
V(AP JSEN;, = 4.23 % 1073 with (A¢?) = 0.49 the r.m.s. variance of each ideal phase distribution evaluated
in the [ =77, 4] window (here each tomographic experiment has F = 27 phases, with Ny, = 100 data each). In
other words, even though the ideal phase distribution can be reconstructed from tomographic data, the variance
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Fig..3. Ratio (in dB) between phase precision from tomographic reconstruction and from a double homodyne detection as a function of
the tofal mean number of photons impinged into the apparatus Ny = N{n), with N the total number of experiments. (For tomography N
equals the number of phases 7 times the number data for cach phase. Data are grouped into subensembles of 1000 elements cach, In all
this paper = 27 is used.) Reésils for different coherent states are reported (circle: {n) = 2, cross: {n) =4, square: (1) = 6, triangle:
{n) =8, i o

Fig. 4. Ratio between quadrature precision from tomographic reconstruction and from a homodyne detection as a function of the total mean
number of photons impinged into the apparatus, Results for different coherent states are reported as in Fig, 3.

{A¢?) of the distribution does not correspond to the actual precision of the m(,thod and the resulting error ¢
on the average phase is much larger than f ALy [N,

As there is no feasible scheme for ideal phase detection (6), we compare (omographic results with those
from a double homodyne phase detection [9] We find that five double homodyne experiments, with the same
total impinged cnergy cach, lead to an overall rms. error 8¢p = 5.22 x 107 3, which is much lower than
the tomographic result, despite double homodyne being nonideal, .md thus corresponds to a larger variance
(A¢*) = 0.61. Hence the precision of double homodyne detection is better than the actual phase precision
resulting from tomographic reconstruction, even though double homodyne is itself nonideal.

In Fig. 3 the ratio between tomographic and double homodyne phase sensitivities is plotted for various
coherent states as a function of the total mean energy impinged into the apparatus, The noise added by
tomography is apparent: the ratio between sensitivities is of several decibels. This ratio is almost independent
of the total cnergy impinged in the apparatus, but depends on the mean photon number of the state. (Only
slight differences between coherent and squeezed states have been found for the same mean photon numbers.)

3.2, Field quadrature and photon number detection

The same analysis previously performed for the phase is now considered as regards the field quadrature
ap = %(a -+ a") and the photon number. For the quadrature added noise is easily expected. In fact a single
homodyne detection is already the direct field quadrature measurement and there is no need to detect also field
quadratures at different phases to reconstruct its probability distribution. Quantum tomography adds noise also
in the case of photon number detection. For the quadrature the ratio of sensitivities depends on the mean photon
number of the input state (see Fig. 4), whereas for number detection such a dependence becomes very weak
(see Fig. 5).
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Fig. 5. Ratio between photon number precision (rom tormographic reconstruction and from 4 direct detection as a function of the total mean
number of: photons impinged into the apparatus. Results for different coberent coherent states are reported as in Fig, 3.

Fig. 6. Ratio between tomographic and single-observable detection sensitivitics for all cases considered in Figs. 3-5, here as a function of
the mean photon number of the input coherent states and for a very large number of measurenents N (here Mg = {n} X63536:x 1000:27).

3.3 Asymptotic sensitivities for large number of experiments N

The ratio between tomographic and direct single-observable sensitivities is plotted in Fig. 6 for a very large
number of tepeated experiments N = 65536 3 1000 x 27 versus the number of photons of the input coherent
state. In summary, we estimate that for large numbers of photons and input coherent states tomography adds
more than 10 dB of noise in phase detection (with respect to double homodyne), 7 dB in photon number
detection, and more than 8 dB in quadrature detection,

4, Conclusions

Tomographic reconstruction provides a complete characterization of the state of the ficld, however it requires
a great number of repeated measures on the input state. By means of our reconstruction formula it is possible to
estimale the experimental error bars for all density matrix elements, and hence the precision of tomography for
all observables. We find that quantum tomography adds several dB of noise with respect to single-observable
measurements, and becomes particularly noisy when phase is detected. Single-observable detection provides
only partial information about the quantum state of the field, whereas gquantum tomography gives the maximum
knowable information: for this reason quantum tomography requires much more measures in order to achieve
the same precision of direct methods. 1t is then a matter of convenience to choose between tomographic
and single-observable techniques, also considering that tomography is not an efficient scheme when only one
observable is of interesl,
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