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We provide a simple analytic relation that connects the density operator p of the electromagnetic field with
the tomographic homodyne probabilities for generic quantum efficiency 7 of detectors. The problem of ex-
perimentally “sampling” a general matrix element {¢|p|¢) is addressed in the statistically rigorous sense of
the central-limit theorem. We show that experimental sampling is possible also for nonunit efficiency, provided
that 7 satisfies a lower bound related to the “resolutions” of vectors | ) and |¢) in the quadrature represen-
tations. For coherent and number states the bound is 7> % On the basis of computer-simulated experiments we
show the feasibility of detecting delicate quantum probability oscillations, which otherwise would be smeared

out by inefficient detection.

PACS number(s): 03.65.Bz, 42.50.Dv, 42.65.Ky

The possibility of “measuring” the density matrix of a
quantum state entered the realm of experiments only recently
[1], in the domain of quantum optics. Here, it was recognized
[2] that a complete characterization of the state of a field
mode a ([a,a’]=1) is achieved by measuring the quadra-
tures £ 4= 3(ae'?+de'?) of the field at all phases ¢, with
the help of balanced homodyne detection.

The experimental determination of density matrix ele-
ments of the radiation state opens new interesting perspec-
tives. In principle, for example, it becomes possible to mea-
sure the probability distribution of any physical quantity.
Here, it should be emphasized that, even in the case in which
a method for directly observing a field observable is avail-
able, the reconstruction of the probability distribution from
its moments is a delicate matter, mostly due to low quantum
efficiency of the detectors. This is the case, for example, of
the photon number, where nonclassical effects, such as the
probability oscillations due to squeezing [3], are difficult to
detect in practice and have not, to our knowledge, been re-
ported yet. For the same reason, other interesting quantum
features, such as oscillation of the Wigner function of a
Schrodinger cat [2], remain experimentally precluded [4].
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Hence, the problem is twofold: on the one hand, a direct
method to measure density matrix elements is needed [5]; on
the other hand, the same method should allow us to system-
atically overcome the smearing effect due to nonunit quan-
tum efficiency by properly averaging over a larger set of
experimental data. In this Rapid Communication we provide
a way of achieving both goals: we give analytic relations for
“sampling” a general matrix element, which hold even for
quantum efficiency 7<1, depending on the chosen vector set
of the matrix representation. Here, by “sampling” we simply
mean retrieving the experimental datum just as the result of
averaging a given function over a finite set of instrumental
results; the analytic form of the averaged function will de-
pend on which quantum matrix element of the density matrix
is desired.

The homodyne-tomography technique originated from the
simple idea that the probability distributions p(x,®) of the
outcomes x of X 4 (for 0= ¢=< 77) is just the Radon transform
(or “back-projection”) of the Wigner function W(«,a); in
other words, every function p(x,¢) at different values of
¢ is the marginal probability—or ‘‘projection”—of
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W(a,&@) along the line a=re'?, re(—,+») in the
complex plane. Hence, W(a, &) can be evaluated as the in-
verse Radon transform (or “back projection”) of p(x,¢),
namely [2]

W(a,c‘r)=f_+:d:ir| f;é—? j: dx p(x,d)

Xexplir(x—ay)] , ¢))

where a¢=Re(ae_i"’). Equation (1) can be written in a
form suited to statistical sampling upon exchanging the av-
eraging integrals over ¢ and x with respect to the outer in-
tegral over r. One thus obtains

wd +o
W(a,5)=f0 74) f_w dx p(x,¢) K(x—ayg), (2)

where the kernel K(x) is given by

Pl_ li lR ! 3
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K(x)=—

In Eq. (3) the symbol P denotes the Cauchy principal value.
From Egs. (2) and (3) it is clear that W(a,a) cannot be
sampled statistically, because the kernel K(x — a) is an un-
bounded function of x and ¢. In the currently adopted ex-
perimental techniques [1] the back projection (2) is obtained
by “filtering” data—as in the wusual x-ray medical
tomography—namely upon introducing a cutoff that sets the
resolution for W(a,a). The density matrix in the number
representation is then obtained through further Fourier trans-
forms and integrations with Hermite polynomials.

As noticed in Ref. [5], a filtering of Eq. (2) amounts to
tampering with the quantum state (it makes the state ““more
classical”). In the same Ref. [5] a technique is presented,
which provides the matrix elements in the number represen-
tation in terms of averages on data, avoiding the evaluation
of W(a,a) as an intermediate step (see also Ref. [6]). In the
following the problem of experimentally sampling a density
matrix element will be addressed in the rigorous sense of the
central-limit theorem.

For a general matrix element (| p| ¢)—between arbitrary
vectors ¢ and ¢ in the Hilbert space—a sampling formula
should have a form similar to Eq. (2), with the matrix ele-
ment in place of W(a,a) and a suited integral kernel per-
taining to the matrix element. Then, if (and only if) the ker-
nel is bounded, every moment of the kernel is bounded for
all possible distributions p(x,¢), and according to the
central-limit theorem [7], the matrix element can be sampled
on sufficiently large sets of data. Moreover, the average val-
ues for different experiments are normal-Gaussian distrib-
uted, allowing estimation of confidence intervals, or “er-
rors.”

In order to obtain the integral kernel for the matrix ele-
ment we start from the operator identity

A d2a A —aajaat —aat aa
p=| —— Tr(pe™*%e™) e” % e, 4)

which, by the change of variables a=(i/2)re'?, becomes

G. M. D’ARIANO, U. LEONHARDT, AND H. PAUL 52

A 1 e md¢ A irk —irx
=7 dr|r| . — Ti(p,e™e)e” e (5)

—o00

Equation (4) is just the operator form of the Fourier-
transform relation between Wigner functions and character-
istic functions for a general density matrix. Upon evaluating
the trace average in Eq. (5) in terms of p(x,$)—using the
complete set {|x4)} of eigenvectors of X —and then ex-
changing the integrals over x and ¢ with respect to the outer
integral over r, one obtains the operator equivalent of (2),
namely

wd +o
I T PG

where K is still given by Eq. (3). From Eq. (6) one im-
mediately recognizes that a matrix element (|p|¢) can be
experimentally sampled if the corresponding matrix element
of the operator kernel K(x—x,4) is bounded. The case of
nonunit quantum efficiency 7 requires only a slight generali-
zation. In fact, low efficiency detectors in a homodyne
scheme simply produce a probability p,(x,$) that is a
Gaussian convolution of the ideal probability p(x,¢). In
terms of the generating functions for the X, moments, one
has [8]

+

dx p(x,p)e’™ .

— o0

+o . 1-9 ,
[ pywren=e |

—0o0

)

Upon substituting Eq. (7) into Eq. (5) [along the same lines
that lead us to Eq. (6)] one has the sampling formula for
low-efficiency detection

’rrd -+ o0
f)=f0 "7? f_m dx p,(x,$)K, (x—%y) , 8)

where the kernel is given by

1 +to n
K,,(x)=5Re J;) dr r exp Y

r2+irx) .09

One should stress that, although the kernel in Eq. (9) is an
unbounded function of x for y=<1, when considered as a
function of x—x 4 it has matrix elements (Y|K ,(x—% 4)|®)
that are bounded if (i|e "*¢|¢) decays faster than
exp[—(1— 7)r*/87]. Hence, taking into account that the Fou-
rier transform is just equivalent to a unitary rotation by /2
(i.e., X4—X 44 Z), one can readily assert that the matrix ele-
ment ($|K,(x—%4)|¢) is bounded if the following inequal-
ity is satisfied for all phases O<¢=m:

1
77 154559’ (10)

where

2 _ 1 1
eX (@) ey(d)  £u(e)

(11)
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and 851( ¢). is the “resolution” of the vector |¢) in the X4
representation, namely,

| ox| )] *=exp

x2

In Eq. (12) the symbol = stands for the leading term as a

function of x, and |x) 4= e"“T“"’]x) denotes eigenkets of the
quadrature X 4. Upon maximizing Eq. (10) with respect to ¢,
one obtains the overall bound

1

> a2 g°= ming<g4<-{e%(4)}. (13)

‘We now consider some examples of interest for applications.

Quadrature representation

Here the resolution is € =0, and hence it is not possible
to “sample” experimentally the density matrix in this rep-
resentation, even for 7=1. Here, for the reader’s conve-
nience, we give the representation of the integral kernel for
7=1[9],

HKx1|K(x—% 5)|x2)

‘xl—le X1—X2

~sinZg P —2 sing

[x—%(x;+x5)cosp]} . (14)

Coherent-state representation

The resolution is £=1/2, and sampling is possible for
7>1/2 [see Eq. (13)]. Explicitly one has

<a‘K17(X"£¢)|,3>= 2K2<aei¢|ﬂei¢>e—2(Kx—w¢)2
X®[—5,5:2(kx—wy)?], (15

with k= 7/(27—1), ws=3(Be'?+ ae'?), and ®(a,B;z)

denoting the degenerate hypergeometric function.

Number-state representation

Again the resolution is €=1/2, and sampling is possible
for 7>1/2. One has

(n|K (x—%g)|n+N\)

. [ n! 2,2
— oAy  A+2 —K“x
€ 2 (n+)\)!e

(=) [n+N .
Xzo 1 ln—v Qr+r+1)1k>

XRe {(—=i)*D _ 2, +x+2)(—2ikx) }. (16)
In Eq. (16) D ,(z) denotes the parabolic cylinder function.

Squeezed-state representation

The leading term in Eq. (12) comes solely from the
squeezed vacuum (the coherent part just shifts the quadra-
ture). If one considers a squeezed vacuum with squeezing
parameter s, the probability of the quadrature %, is
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FIG. 1. Tomographic reconstruction of the photon-number prob-
ability of a squeezed vacuum ({n)=1) with detection efficiency
7=0.8. Homodyne data are computer simulated. (Here we averaged
over 27 phases using 200 blocks of 5% 10° data for each phase.)
Experimental errors (confidence intervals) are represented by the
gray-shaded thickness of horizontal lines. (a) Exact reconstruction
based on Eq. (16). (b) Reconstruction from the same data without
taking into account quantum efficiency [namely using Eq. (16) for
7=1]. The last would be the best experimentally achievable result
using the current tomographic techniques of Refs. [1,5,6].

the Gaussian | 4(x|¢)|>=+2s4/7 e 26 where S¢
=|s!2sing—is~2cos#| 2. Hence, if we fix s<1, for sim-
plicity, the smallest resolution is € =s/2 and the matrix ele-
ment can be experimentally sampled for »>(1+s2)"1.
From this and the above examples one is led to conjecture
that =1/2 is actually an absolute bound.

Particularly interesting is the possibility of recovering the
density matrix in the number-state representation even for
quantum efficiency 0.5<7<1. From Eq. (16) a numerical
algorithm for reconstructing the matrix elements is immedi-
ately devised. Here, on the basis of computer simulated ho-
modyne data, we show how some interesting nonclassical
effects can be experimentally detected using the new tomo-
graphic reconstruction.

In Fig. 1(a) the oscillations of the photon number prob-
ability distribution of a squeezed vacuum with (n)=1 are
reconstructed from data for 7=0.8; the agreement with the
theoretical distribution is striking. Figure 1(b) shows the re-
sult that would be obtained without properly accounting for
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nonunit efficiency 7 (as in Ref. [1]). It is evident how the
new method allows us to recover very delicate quantum os-
cillations, which would be almost completely smeared out by
low efficiency at detectors.

In conclusion, we have presented a simple analytic rela-
tion that connects the density operator of the field with the
homodyne tomographic probability densities. A statistically
rigorous study based on the central-limit theorem shows that
it is possible to sample experimentally a general matrix ele-
ment (Y{p|¢) even for nonunit quantum efficiency, provided
n satisfies the lower bound (13) determined by the resolution
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of the vectors |) and |¢) in the quadrature representations.
For coherent and number states the lower bound is 7>1/2.
On the basis of computer-simulated experiments we have
seen how it is possible to detect experimentally delicate in-
terference oscillations in the probabilities of nonclassical
states, overcoming the destroying effect of nonunit detection
efficiency.
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