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We propose a general method for reconstructing directly the density matrix of a single light mode in optical
homodyne tomography. In our scheme the density matrix (a|p|a’) is obtained by averaging a set of pattern
functions F,,/(x4,6) with respect to the homodyne data x4. The functions show the typical features of the
quadrature distributions for the corresponding density-matrix elements. It is also possible to compensate the
effect of detection losses which requires, however, extra effort in both experimental and numerical precision.
We calculate the pattern functions for the coherent-state and Fock representations and study their properties.
We believe that our method is the most efficient way for reconstructing the density matrix from homodyne

measurements.

PACS number(s): 42.50.Dv, 42.65.Ky, 03.65.Bz

I. INTRODUCTION

One of the deep lessons we learned from quantum me-
chanics is that we cannot observe physical objects in their
full complexity. In a single experiment we may see only
particular aspects of a quantum object but not all of them
simultaneously since some are complementary and hence
mutually exclusive. The quantum state, however, comprises
all facets of a physical object. Since von Neumann’s classic
book [1] and Fano’s review [2], we are used to describing it
by a density operator p, while expectation values of observ-
able quantities are traces Tr{ﬁl:" } of p and Hermitian opera-
tors F. This formal difference reflects the general dualism of
quantum mechanics—the distinction between physical states
and observable quantities.

Although we cannot measure precisely the quantum state
in a single experiment, we can perform different experiments
on equally prepared objects and measure the various aspects
separately. Then we may infer the quantum state from the
recorded statistical distributions of the measured quantities.
This general idea [3—6] was experimentally realized for the
first time [7—10] in a quantum-optical scheme proposed by
Vogel and Risken [11]. Quadrature distributions of equally
prepared light pulses were measured by homodyne detection.
The quadratures X ,= xcosf+psiné characterize the various
quantum aspects of a single light mode modeled by a har-
monic oscillator. Here x and p denote the appropriately nor-
malized in-phase and out-of-phase components of the optical
field. They represent the position and the momentum of a
harmonic oscillator. The quadrature distributions w 4(x4) are
Radon transforms of the Wigner function W(x,p) [12],

+ o
wo(xg)= f_ W(x gcos0— p ¢sinf,x gsinf@+ p ycos0)dp 4.
6]

From the set of histograms w y(x,) the Wigner function can
be tomographically reconstructed [7]. The Wigner function
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[12] contains the complete information about the light mode.
It can be used for calculating not precisely measurable quan-
tities, such as the properties of the quantum-optical phase
[13—15] or quantities that are otherwise difficult to observe.
So it is a highly nontrivial experimental problem to measure
precisely the photon-number distribution of nonclassical
light fields. The Schleich-Wheeler oscillations [16] of a
squeezed state, for instance, have not been observed yet.

The ultimate goal of the quantum-state detection is, how-
ever, the determination of the density matrix rather than the
reconstruction of the Wigner function. Can we reconstruct
the density matrix directly? Recently, D’Ariano, Macchia-
vello, and Paris [17] proposed a method for calculating the
density matrix in Fock basis directly from the measured
quadrature distributions. In numerical simulations [18] they
tested the precision of their scheme for calculating photon-
number and quantum-optical-phase properties. Munroe et al.
[19] showed both theoretically and experimentally how to
calculate the diagonal elements of the density matrix in Fock
basis from phase-averaged quadrature histograms. These
quantities contain all the information about the photon statis-
tics of the field. Kithn, Welsch, and Vogel [20,21] derived
formulas for reconstructing the density matrix in the position
representation. In this paper we unify, generalize, and clarify
these methods [22,23]. We demonstrate that the density ma-
trix can be reconstructed in an arbitrary basis |a), using a set
of pattern functions F,,/(xg;6). The functions show the
typical features of the density-matrix elements {a|p|a’) in
quadrature distributions. These features and hence the matrix
elements are detected by averaging the pattern functions with
respect to the measured quadrature histograms. Moreover,
losses in detection efficiency [24] can be compensated for up
to certain limits [22,25,26]. For this, the pattern functions
must be more pronounced. The compensation of losses, how-
ever, requires extra effort in both experimental and numerical
precision, as one would expect.

We begin in Sec. II with a brief technical survey on the
relation of quadrature histograms to the density operator.

4899 © 1995 The American Physical Society



4900 U. LEONHARDT, H. PAUL, AND G. M. D’ARIANO 52

Some of the material can be found in the enormous amount
of literature on quasiprobability distributions, which is the
common property of the quantum-optics community nowa-
days. We apologize for not quoting the discoveries of par-
ticular formal relations. Section III contains the central re-
sults of our paper. The pattern functions F,,:(x,;6) are
introduced and analyzed for the coherent-state and Fock rep-
resentation, respectively. Numerical simulations illustrate the
reconstruction of the Schleich-Wheeler oscillations [16] for
highly squeezed states.

II. RELATING THE DENSITY OPERATOR TO
QUADRATURE DISTRIBUTIONS

Let us consider some formal relations among the density
operator, the characteristic function, and marginal distribu-
tions of s-parametrized quasiprobability distributions [27].
The last are the quadrature histograms measured in realistic
experiments [24,10]. We are going to relate these distribu-
tions to the density operator in various ways that are conve-
nient for later explicit calculations. We start with the defini-
tion of the characteristic function

W(L1,0)=Tr{p exp(—i{1 = ilrp} @
and its relation to the density operator

1 [+ [+ -
p=s=| | emticitrich Wi tazias,.

(©)

This expression is sometimes called the Weyl formula since
it is associated with Weyl’s quantization method [28]. We
define  s-parametrized  quasiprobability  distributions
W(x,p;s) as Fourier transforms of the corresponding char-
acteristic functions

W(§1,§2§S)EW(§1,§2)€XP

f;(ﬁ%b], @
so that
1 e e . .
W(X,P;S)Ewﬁw f_w exp(if;x+id,p)

XW(Ly,Lpi8)dEd e, . (5)

Marginal distributions w4(x,;s) are obtained by the Radon
transforms of the s-parametrized quasiprobability distribu-
tions in the same way as the marginals of the Wigner func-
tion [see Eq. (1)]. Comparing the Fourier-transformed mar-
ginal distribution

R 1 [+= 1+s
K(x—xg;s)=ﬁ expl ——

— o0

+

weXp(—i§x9)w5(xg;s)dxa 6)

We(l;S)Ef

with the characteristic function W(¢ 1,¢238), we reproduce
the central formula for optical homodyne tomography [11,9],

W0(§;5)=W(§ cosh,{ sinb;s). (7)
The set of Fourier-transformed marginal distributions is

equal to the characteristic function in polar coordinates. Sub-
stituting this in the Weyl formula (3) gives us

ﬁ=2—17;f:f_+:exp< L%y~ 252) Wo(&s)lelds do (8)
with the quadrature operator
£p=% cosf+p sind=UT(0)2U(0) )
and the phase shifter
U(6)=exp(—iba’a). (10)
As usual, a=2""2(£+ip) denotes the annihilation operator.
Utilizing the definition (6) of the w4({; @) function, we ob-

tain our first formula relating the density operator p to mar-
ginals of s-parametrized quasiprobability distributions

T + o0
ﬁ:f f Wo(xg38)K(Xg—xg55)dxy d (1
0 J-x

with the kernel
K(£p—x4:8)=UN(0)K(Z—x,:5)U(0) (12)
and

+ e

1 s
A= cen 22
K(%;5) 277]_90 exp<zgx ¢ )|g|dg. (13)
We express the kernel by using the Baker-Hausdorff formula

£ (a+ah

7

L, 4. IS
=exp<z$af)exp<z$a)exp(—?) (14)

exp(i{x)=exp

and obtain

§2—i§xa) exp( i%cﬂ) exp(z’%ﬁ) |¢lde

B 1 +00 1+s 5 . A
—ﬁj exp| — ¢ T idx, rexp(igx):|¢ldd. (15)
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As usual : : is the normal-ordering symbol. This expression
will be helpful in deriving explicit formulas for the density
operator in the Fock basis. We solve the integral in Eq. (15),

1 s 0 g
hl(x)-:ﬁ-( Jl) —Jm)exp( ~—Z+ix§

= %[1 — ' 2xexp(—x?)erfi(x)], (16)

gdg

with the imaginary error function erfi(x)
=27 2[texp(*)dt, and obtain a compact expression for

the kernel

1
K(Xg—xg38)= ﬂ—s:hl((l +5) 7 (Rg—x0)):. (17)

In the special case s=0 (when we consider marginals of
the Wigner function) we obtain from Eq. (13) another simple
expression for the kernel,

1 [ 1 P
K(f)EK()’C\;O):;J'O COS(gf)g d§=— ;)2'—2 (18)

In this case the kernel is a generalized function of the posi-
tion operator x [29]. It is well defined only with respect to
integrations in which the kernel occurs, and the symbol P
means that Cauchy’s principle value should be taken from
such integrals. Finally we note that the s-parametrized ker-
nels are related to each other by

Sp— 81 2

4 2

K(x;s,)=exp

)K(f;sl), (19)

as is easily obtained from Eq. (13). Now we are prepared to
derive explicit formulas for reconstructing the density matrix
in a given basis.

III. RECONSTRUCTING THE DENSITY MATRIX

The abstract density operator p is a useful construction for
performing basis-independent calculations in quantum
theory. Here we are interested in the reconstruction of the
quantum state from measurements, which requires the speci-
fication of the density matrix in a given basis {|a)}. We
obtain from our general reconstruction formula (11)

T [+
(alpla’y= [ [ wocis)Fu (. 0:5)dx0 40
(20)
with
Foui(xg,0;5)={(a|lK(Xg—xg)|a’). (21)

This means that a set of F,,/(xg,6;s) functions should be
averaged with respect to the recorded distributions to yield
the density matrix {a|p|a’). The statistical distributions
wy(xg;s) measured in realistic homodyne experiments [24]
are characterized in terms of the overall detection efficiency
7 by the simple formula

s=1—n5"". (22)

Before we derive explicit expressions for the
F,.(x4,0;s) functions in the coherent-state and Fock rep-
resentations, respectively, we note that the F,,, depend in a
simple way on the quadrature wave functions when s=0,
i.e., when the detection efficiency is unity. In fact, we obtain
from Egs. (12) and (18)

x;0){x;6la")

P (+=(a
Faa’(XO’a)EFaa'(x976;0): - ;T_f_m W—dx’
(23)

with |x; #) being the quadrature eigenstates

|x;0)=lA]T(0)|x). (24)

As already noted in Sec. II, P means that Cauchy’s principle
value is to be taken from the integral in Eq. (23). Since the
kernel —P(x—x,) 2 is concentrated around xX=Xxg, the
F .. (xg4,6) functions should be similar to the product of the
quadrature wave functions {a|x;6) and (x; 8|a’). They show
the typical features of the quadrature distributions of the pro-
jectors |a’){a|. In view of this we call the F,, functions the
pattern functions for the density-matrix elements (a|pla’).
When the detection efficiency is less than unity, the pattern
functions must compensate for the smoothing of the quadra-
ture distributions by enhancing the patterns for the elements
{a|pla’). In fact, we obtain from Eq. (19)

2

s
Faar(x9,0)=exp(—— )Faa,(x(,,a;s), (25)

4 9x%
which means that the pattern functions for perfect detection
are smoothed pattern functions for the imperfect case where
s is negative. Consequently, the F,,/(xg,6;s) show sharper
features than the F,,:(x4,6) functions. We note however
that the compensation of detection losses is possible only up
to certain limits, which depend on the particular representa-
tion (see Ref. [22]). Then the pattern functions become sin-
gular. It has been conjectured [22] that the limit efficiency is
always greater than or equal to 3.

A. Coherent-state representation

Coherent states {| @)} form a convenient yet not orthonor-
mal basis for the density operator of a harmonic oscillator.
An infinite set of coherent states {|@)} with an accumulation
point in the complex plane [30] or a lattice of coherent states
[31] is sufficient to represent the quantum state. The
coherent-state representation may be useful for detecting
macroscopic quantum-interference phenomena in phase
space [32]. To calculate the required pattern functions, we
utilize some basic properties of coherent states,

ila)=a|a) (26)
and
(ala"y=exp(—zla—a’|?) 27

and obtain immediately from Eq. (17)
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FIG. 1. Diagonal pattern function F,,(x,4,6) (a) versus quadra-
ture distribution |¢,(xg,6)|* (b) of the coherent state |a) with
a=4. As is well known, the quadrature wave functions
are  Yo(xq,0)=m" Yexp[—(xg—Xg)/2+ipgxo—iXepel2], with
=2 ""(a*e?+ae” % and pe=i2" Y(a*e!'—ae'?%. The
pattern function shows the typical features of the quadrature distri-
bution.

Faa(0.0:8)= T i1 +5) "2 x0)
Xexp(—3|a—a'l?) (28)
with
Fo=2"V(a*e!+ a’'e”Y). (29)
The 4, function is defined in Eq. (16).
Figure 1 illustrates that the diagonal pattern functions

F ,.(x4,0) are, in fact, very similar to the quadrature distri-
butions of the coherent states |a). They follow the track of
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(a)

(b)

FIG. 2. Real part of the off-diagonal pattern function
F 4 —o(x4,0) (a) versus the real part of the wave-function product
PE(xg,0) P 4(x4,6) (b) for a=4. The figures are almost indistin-
guishable.

the harmonic evolution. So by averaging these functions with
respect to the measured quadrature distribution, the coherent-
state components with the right amplitudes and phases are
picked out. Figure 2 shows clearly that the off-diagonal pat-
tern functions exhibit typical oscillations. They correspond to
the well-known Schrodinger-cat oscillations. This confirms
that such oscillations are the most important features to de-
tect when we are looking for quantum-coherence effects rep-
resented in the off-diagonal elements of the density matrix
{a|pla’). When the detection efficiency is less than unity,
the parameter s is less than zero. As is easily seen from Eq.
(28), the pattern functions are pronounced until s reaches
—1, i.e., until 7 reaches the critical value 1. Then the h,
function is no longer bounded and cannot be used in general
for averaging with respect to quadrature distributions.
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B. Fock representation

The favorite basis in the quantum-optics community is
still the Fock basis {|n)}. We are going to calculate explicit
expressions for the Fock pattern functions, which appear as
significantly simplified versions of the earlier results by
D’ Ariano, Macchiavello, and Paris [17]. First, we see from
Eq. (12) that the phase dependence of the pattern functions is
trivial,

]

1 [+ 1+s , .
fnn/(x9§s)='2—wf_wexp ~ 72 F—ilxg|\n

We use the property

a’lny=

of the Fock states and get

<n exp(i%ﬁ)exp(i%&)

v)!

n
(n—

4903

an’(xasa;s)=exp[i(n_n,)0]fnn’(x0;s)' (30)

We obtain from Eq. (15) that the f,,,/(x4;s) are given by the
expression

exp(i%a*)exp(i%é) n> |¢lde. (31

12
[n—v) (32)

n'n’!

’ n n' ‘ ¢ v+’ 1 172 , ’
" >=V§=:o 2, (ZTE) V!V'!{(n—v)!(n’—v’)!} (n=wln'=2"). (3

Since the Fock states are orthonormal, we have v'=v+n’—n and obtain for n’'=n

n
Funi(xg38)=(nln'1) 22—

h2v+n’~n+l(x0;s)

=0 2"vi(n—v)!(n'—n+v)!’ (34)
The h, functions are defined by
L 1 f+°° J‘O m I+s ,
sy =gl || G0 el = == itk
1 i 1+s
=— ImU (ig)"exp( - ————gz—igx)dg}. (35)
v 0 4
I
Since the h, functions are real, the f,,, are real as well and By (x)—2xh,(x)+2nh,_(x)=0 (40)

we can simply use the relation
fnn'(xe;s):fn’n(xe;s) (36)

for n' <n.

We are going to show some properties of the 4, functions.
First, they exist if s> —1 (if the detection efficiency exceeds
1). We obtain from the integral representation (35) the scal-

ing property
ho(x;8)=(1+s)" D2 ((1+5)"12) (37)
with
hy(x)=h,(x;0). (38)

We can express the #,, in terms of parabolic cylinder func-
tions, using Ref. [33] (Vol. I, Eq. 2.3.15.3),

n! x?
h,(x)= ?2("“)/zexp( - 7) Im[i"D _,_(—ix~2)].
(39)

We derive

from the recurrence relation of the parabolic cylinder func-
tions [34], Eq. 8.2.(14). This means that the 4, functions
obey the recurrence relation of the Hermite polynomials.
They are, however, expressions in terms of the imaginary
error function erfi(x) =27~ 2[3exp(?)dt and of polynomi-

als since the initial functions are given by
ho(x)=— 7~ Y2exp(—x?)erfi(x) 41)

and by Eq. (16) for 4;(x). Note that the recurrence relation
(40) may be used for calculating the f,,, functions numeri-
cally. From the asymptotic expansion of the parabolic cylin-
der functions, Eq. 8.4.(1) of Ref. [34], we obtain the asymp-
totic behavior of the %, functions

1

hn(x)~ - ,n,xn+1 . (42)

The h,, functions decay algebraically. Hence the leading term
in the expression (34) for the f,,+ function is

Font(xg38)~(1+5)@ =nF DR (x0), (43)
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FIG. 3. Some f,, (x4) functions (lines) versus the products of the wave functions 7*(x,) and ¢, (x,) (dashed lines) of the Fock states
for (a) n=0, n'=0; (b) n=0,n"=1; (c) n=1, n'=1; (d) n=0, n'=2; () n=1, n'=2; and (f) n=2, n’ =2. The Schrodinger wave
functions are given by z/ln(xg)=(2"n!\/—'r_r)_l/zexp(—x%,/Z)H,,(xe) with the Hermite polynomials H, . As in Figs. 1 and 2, the pattern
functions pronounce the typical features of the corresponding quadrature wave functions.
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n'!

1\ 12 1
fnn'(x)~—( | ) (n'=n+1)27"2 ———0. (44)
n: X

n

The pattern functions decay like x~ T with n'=n.

Thus the integral in the basic relation (20) exists for physical
states having normalizable quadrature distributions.

Some of the f,, functions are depicted in Fig. 3 and
compared with the product of the Schrodinger wave func-
tions ¢¥(x) and ¢,,(x) of the corresponding Fock states
(n| and |n'). Tt is evident that they show just the typical
features of ¢*(x) ¢, (x). In this way they guarantee that the
right matrix elements are picked out when the pattern func-
tions are averaged with respect to the measured quadrature
distributions.

C. Simulations

The Schleich-Wheeler oscillations in the photon distribu-
tions of squeezed states are manifestations of interference in
phase space [16]. They are extremely difficult to measure
directly, but they can be inferred from quadrature distribu-
tions by using our method. We performed numerical simula-
tions to test our scheme as well as to estimate the experimen-
tal effort needed. The photon-number distribution for a
squeezed state with the Wigner function

W(x,p)=m"'exp[ —s(x—a\2)2—s"'p?]  (45)

is given by [16]

A\ 2=\ n e c+1 ctl
<n|p|n>— C2 ony it \/—Z_Za exXp a
(46)
with
_s+l 47
=17 (47)

Figure 4(a) shows this distribution for the parameters s =20
and a=3.

We did computer experiments simulating 100 quadrature
measurements for each phase 6. The photon-number distri-
bution was obtained by averaging the pattern functions
F,,.(x4,60) with respect to the “‘experimental data.” We did
this ten times to estimate the error bars, and produced the
photon distribution depicted in Fig. 4(b). It turns out that
quite a few quadrature phases are required to reproduce the
theoretical distribution (46). Figure 4(b), for instance, was
obtained by using 260 phases. Perfect agreement with theory
[Fig. 4(a)] was achieved with 2600 phases. So experimental-
ists should perform homodyne measurements with a large
number of quadrature phases for reconstructing the Schleich-
Wheeler oscillations or, alternatively, use a local oscillator
with random phase [19].

We had some problems with the numerical precision in
calculating the pattern functions F,,(x,,0) for large quan-
tum numbers n,m>20. In this case our expressions involve
the cancellation of large numbers, which is a major source of
numerical inaccuracy. We solved this problem by calculating
the functions with extremely high precision before doing the

(a)

P(N)

(b)

P(N)

FIG. 4. (a) Photon-number distribution of the squeezed state
(45) with the parameters s =20 and a@=3. It shows the Schleich-
Wheeler oscillations. (b) Reconstruction of this distribution from
computer experiments using 260 quadrature phases with 100 mea-
surements for each phase. The error bars have been obtained by
comparing ten simulations.

simulations, and then did interpolations between the stored
values. We believe, however, that this difficulty can be fi-
nally circumvented by using asymptotic methods in the case
of large quantum numbers.

IV. SUMMARY

We propose a general method for reconstructing directly
the density matrix of a single light mode in optical homo-
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dyne tomography. For this a set of pattern functions should
be averaged with respect to the homodyne data. The pattern
functions show the typical features of the quadrature distri-
butions for the density-matrix elements. We calculated ex-
plicit expressions for the coherent state and the Fock repre-
sentation. In our scheme it is also possible to compensate for
the effect of detection losses, provided the detection effi-
ciency exceeds certain limits [22]. The pattern functions
should be changed in such a way that they show more pro-
nounced features to compensate for the smoothing of the
quadrature distributions. This requires, however, extra effort
in both experimental and numerical precision. Some simula-
tions illustrate the feasibility of our method, as well as the
numerical limitations. We believe that our method is the
most efficient way for reconstructing the density matrix from
homodyne measurements. In particular, we would like to
stress that our scheme compares favorably with conventional
optical homodyne tomography [7] since in determining the

density operator it avoids the detour via the Wigner function,
which requires at least one or, in general, two additional
integral transformations. Moreover, our procedure is superior
from the mathematical point of view, as there is no need for
back-projection filtering that limits the resolution for the re-
construction of the Wigner function, as has been emphasized
already in Ref. [17].

Note added in proof. Recently, a much more elegant and
numerically stable formula for the Fock pattern functions has
been discovered by Th. Richter (unpublished) and U. Leon-
hardt, M. Munroe, T. Kiss, M. G. Raymer, and Th. Richter
(unpublished).
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(a)

FIG. 1. Diagonal pattern function F (x4, ) (a) versus quadra-
ture distribution |¢,(x4,8)|* (b) of the coherent state |a) with
a=4. As is well known, the quadrature wave functions
are i (xg.0) =1 "exp[—(xy;— %) 2+ipgx,—i%,pyi2], with
$=2""a%e"+ae” " and py,=i2" "(a*e'’—ae'?). The
pattern function shows the typical features of the quadrature distri-
bution.



(a)

(b)

FIG. 2. Real part of the off-diagonal pattern function
F, - a(xy,0) (a) versus the real part of the wave-function product
Wi (xg, - (xg,0) (b) for @=4. The figures are almost indistin-
guishable.



