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SUMMARY

In this paper the need for @ more thorough
statistical characterization of creep fracture in
polymers than is usually made is stressed.
Then an automatic recording apparatus that
can test a hundred specimens simultaneously
is described. An example of data acquisition
and handling is given for notched poly(methyl
methacrylate). The results show a high
degree of experimental scatler even for
propagation-controlled creep fracture.

1, INTRODUCTION

Since polymers are used more and more in
demanding engineering applications involving
load-bearing, weather-resisting or deformable
components, there is a need for more exten-

.sive data on these materials as well as for
reliable design criteria and methodologies
applicable to this class of materials.

1t has been said that ‘‘the highest expres-
sion of engineering is in the use of incom-
plete information in designing and making
useful, economical, safe and reliable struc-
tures™ [1]. As regards materials, informa-
tion is lacking on their in-service performance,
and this is due to both the many uncertainties
or variability of the service conditions and the
inadequacy of the characterization custom-
arily made. {The many standard test data
available from handbooks and the suppiier’s
technical bulletins have a limited or no pre-
dictive value of the probable performance in
service.) While there cannot be any general
remedy for the lack of information on in-
service pertormance, there is no reason why
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more adequate and complete methods of
characterization of the behaviour of materials
should not have been developed and applied,
at least under laboratory conditions.

This paper originates from such a prag-
matic engineering motivation which applies
to both the deformation and the failure
behaviour of polymeric materials. There is
one important difference between deforma-
tional properties and failure properties, how-
ever, which is relevant to their characteriza-
tion, i.e. the statistical variability of failure
properties. Experimentally determined
characteristics such as the strength, the time
to failure and the concentration of free radi-
cals always show a wide scatter of values; they
are stochastic variables [2]. This attribute
stems from the highly localized nature of the
failure phenomenon; the variability of the
experimental results is thus inherent in this
class of mechanical properties.

Since the variability of the measured values
is an inherent characteristic of failure proper-

ties, proper characterization of failure be-

haviour should take it into account and
accommodate its statistical aspects rather
than circumvent them, as has already been
pointed out [3]. The usual creep fracture test-
ing of polymers is generally inadequate in this
respect for two reasons: (i) the attention of
the experimenter is almost always directed
towards average values of the measured
properties and (ii) statistical sample sizes are
almost always tco small for any statistical
analysis.

The aim of this paper is to stress the need
for a more thorough statistical characteriza-
tion of creep fracture in polymers. An auto-
matic recording apparatus that can test a
hundred specimens simultaneously has been
developed, and methods of data acquisition
and handling are described.
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2. STATISTICAL ANNOTATIONS

The dynamic variables that we have to deal
with are essentially time-dependent prob-
abilities. The collection, organization and
analysis of data or data “‘samples’ on the
basis of the laws of probability form the body
of statistics. Even a brief recollection of the
basic concepts of statistics would be outside
the scope of this paper; reference is made to
standard texts, e.g. refs. 4 and 5. Specific
application of the statistical methodology to
the design of fatigue experiments is treated in
ref, 6. We shall therefore limit ourselves to a
few remarks pertaining to the discussion to
follow.

We shall regard the time t, to fracture after
loading as a real continuous random variable
[4], and the probability #(t) of the fracture
after a lapse of time t since Joading as a non-
increasing monotonic function of ¢, normal-
ized so as to have the limiting values #(0) = 1
and # () = 0. It is also advisable to consider
the probability p(t) dt of fracture between t
and t + dt and the unbroken-broken speci-
men transition probability K(t) which are
related to 2(t) by the following simple
equalities:

d
p(t) = —5{5’(:}} 1)

d
K(t) AT [In{2(t)}] (2)

According to egn. (2), the phenomenon is
described as a decay process, with K repre-
senting the “instantaneous’ decay rate. 2(1)
and p(t) are also commonly referred to as the
cumulative probability distribution and the
probability density function respectively.

The main task of the statistical character-
ization of creep fracture is the evaluation of
the above probabilities by means of a limited
number of experimental determinations on a
finite number of specimens, i.e. a statistical
sample, If N is the number of statistically
equal specimens forming the sample, which
are separately loaded under identical test
conditions and are such that all rupture events
are independent, the probability P, n(f) that
m out of N specimens are unbroken at ¢ will
follow the binomial distribution

K
P, n(t) =(m)@(r)m{1— PN (3)

Hence the fraction n(t)/N of specimens
actually unbroken at an instant ¢ will fluctuate
around the mean value 2({) with a standard
deviation [4, 5]

y(n{ifsa(m]”z
N

All the quantities introduced above are sche-
matically represented in Fig. 1. It should be
noted that the binomial distribution is non-
uniform along the time axis. It is approxi-
mately symmetrical around its mean 2 (1)
when £ (t) is not too close either to zero or
to unity and if N is fairly large; as P(t) ap-
proaches either zero or unity at the extremes
of the time scale, the two bounds 2(t) 20
and 2(t) < 1 make the binomial distribution
highly skewed.

AP(t)= (4)

probability

probabilily |

0

(b)

Fig. 1. (2) Probability # () vs. time ¢ and time evolu-
tion of the probability P, n(t); (b) probability #(t)
and actual fraction n(¢)/N of unbroken specimens vs.
time £. (All drawings are schematic.)
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2.1. Sample size

The size of a statistical sample determines
of course the precision with which any
particular characteristic or property can be
statistically estimated; the larger the sample
size used, the more precise is the statistical
estimate obtainable. In the planning of experi-
ments the sample size has thus to be chosen,
in general, as a compromise between the
desired minimum variance estimation and the
cost and trouble of testing a high number of
specimens.

If the quantity that we are interested in is
the probability function #(t), the precision
of its statistical estimate can be measured by
its standard deviation A#(t) which is given by
eqn. (4). This is a function of time which
passes through a maximum as it ensues from
the general properties of the function # (t)
previously mentioned. While the position of
this maximum on the time scale depends on
the particular form of the function 2 (t), its
extreme value A%, ., does not the deriva-
tion of AP with respect to # in egn. (4)
gives

AR, = (2NYH (5)

The maximum absolute error A %, in the
experimental determination of the probability
#(t) is thus dependent on the sample size N
only. Equation (5) enables us to calculate the
size of the statistical sample required to
obtain the desired value of A%, .. For ex-
ample, if the maximum tolerance on the
estimate of 22(t) is 0.05, i.e. if the probability
2(t) is to be determined with a precision

A Z(t) of less than or equal to 0.05 over the
entire time scale, a sample of N = 100 speci-
mens is needed. This condition is clearly
conservative,

2.2. Form of the distribution function P(t)
Whenever we can write an expression for
the function #(t), i.e. whenever a parametric

mathematical model can be assumed or pro-
posed, a best-fit analysis of the data can be
performed*. The primary product of such an
analysis is of course the estimated values of
the parameters of the distribution. As a by-
product of the best-fit analysis, an estimate of

*This practice can be criticized on the grounds of
the complexity of the mechanisms underlying the
fatigue phenomena; the observable lifetime is an
integral result of this (ref. 6, p. 222).

the error A#(t) can also be obtained via
egn. (4). This then makes it possible to test
the goodness of the fit and so to judge quan-
titatively the validity of the trial function
examined,

As a test of the best fit, it is often con-
venient to use the x? test, as x is a direct
measure of the deviations of the experimental
data from the fitting curve; in our notation,

1 i H(If!) \
E w Pty

in whlch t¢, is the set of measured values of
the time to fracture and n(ty) is the actual
number of specimens surviving in the experi-
ment at the instant ¢ = {;;. According to its
definition, the smaller the value of x, the
better is the fit.

/{M(rfjn” (6)

3. TEST APPARATUS AND PROCEDURE

A satisfactory statistical characterization
of creep fracture is not a trivial task, as it calls
for testing a large number of specimens over
long time intervals for each set of test con-
ditions (deformation mode, stress level,
temperature and environment). In designing
our apparatus we set the following target:

(i) a 1arge number of testing stations within a
single compact instrument; (ii) automatic
recording of the breaking events; (iii) reten-
tion of the failed specimen; (iv) temperature
control above room temperature; (v) reason-
ably practical, simple and economical manu-
facture.

3.1. Apparatus

The instrument that we have set up can
contain and simultaneously test up to 104
specimens in a cabinet 100 em X 70 cm X
80 cm in size. The test stations are distributed
over two »lanes (Fig. 2(a)), and on each plane
they are arranged in a centre-faced pattern
(Fig. 2(b)), so as to minimize the encum-
brance of the loading weights. Figure 2(c}
shows the three-point bend fixture used in
this study, but other variants of specimen
shape and loading configuration could easily
be accommodated. When a specimen breaks,
its load falls and hits a stopper that operates
a lever switch. This activates an impulse
generator, which monitors the event; its out-
put signals are recorded on a constant-speed
chart recorder (Fig. 2(d)).
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Fig. 2. Automatic recording apparatus for the measurement of times to fracture in creep: (a) arrangement of test
stations in the thermostatically controlled cabinet, showing the two-floor hoist for lifting the loads (front view);
(b) centre-faced load pattern (top view); (c) three-point bend fixture; (d) layout of the testing instrument and

ancillary equipment.

To prevent any transmission of shocks or
vibrations to the surviving specimens, the two
frameworks supporting the specimens and the
stoppers are independent and rest on suitable
dampers.

Temperature control in the cabinet is to
within +1°C; this is provided by a regulated
electrical heater and forced ventilation.

The structure of the impulse generator
monitor makes it possible to calibrate each
signal. Each rupture event and time can thus
be related to the corresponding individual
specimen. This enables us to examine each
fractured specimen after completion of the
test and to relate its appearance to the corre-
sponding time to fracture. There are two aims
in doing this. Firstly, spurious ruptures such
as those due to holes or other macroscopic
defects in the specimen may be recognized by
subsequent optical examination and, con-
sequently, the corresponding data points
can be censored. Secondly, the appearance of
the fracture surfaces can provide valuable
supplementary information on the type of
fracture and modes of crack propagation. For
example, the proportion of oblique fracture

surface area to flat fracture surface area on
each specimen could be measured and
whether it bears any relationship to the
dynamics of the creep fracture phenomenon
as characterized by the observed time to
fracture could be investigated.

3.2, Procedure

The loading operation is very simple,
although it requires some accuracy. First the
weights are placed precisely in their positions
on the plates of the hoist. This is held at a
height such that the loading pins are slightly
above their in-service position. Next each
specimen is inserted between the loading pin
and supports and is set in place with the
notched centre-line exactly midway belween
the supports and square to their axes by
means of a special tool.

The thermostatically contralled cabinet is
then closed and, when thermal equilibrium
is reached, the test can be started. The hoist is
gently lowered (from outside by pulleys)
until the weights hang freely. At this instant
the clock and the impulse generator monitor-
ing unit are activated.



4, EXAMPLE AND COMMENTS

As an example of the statistical character-
ization of creep fracture in polymers with
data obtained in a single experiment by means
of the apparatus just described, we shall
report here the results of a test carried out on
a sample of poly(methyl methacrylate)
(PMMA). In this experiment the number of
specimens loaded simultaneously was 97.

4.1. Material and preparation of specimens

The material used in this experiment was
commercial Vedril 9D, a heat-resistant grade
PMMA manufactured by Montedison SpA and
characterized by a tensile strength of 75 MPa
[7], a heat distortion temperature (1.85 MPa)
of 105°C {8] and a Vicat softening point
(0.1 kPa) of 120 °C [9]. The polymer which
was supplied in the form of pellets was
compression moulded at 190 °C under a pres-
sure of 5 MPa into plates 12.7 mm thick,
from which 127 mm X 12.7 mm X 6.5 mm bars
were cut. A flat sharp notch was produced in
the narrower edge of each bar by means of an

_automatic cutting machine equipped with a
razor blade. The notch tip radius was not
measurable.

The specimens were not subjected to any
particular thermal treatment prior to testing;
they were stored at 22 °C and 50% relative
humidity for a few days.

4.2, Test conditions

The single-edge-notched specimens were
tested in flexure (three-point bending) and
loaded to a nominal applied stress of 0.713
MPa, giving an initial stress intensity factor
K, of 0.171 MPa m "2, The stress intensity
factor K, is defined as Ky = 0 Ya'/? where
o is the nominal applied stress, Y a geometrical
factor and a the crack length. The subscript I
refers to the crack-opening mode of failure.
The value of Y for three-point bending is
given by a fourth-degree polynomial [10].
For the chosen conditions (span S = 100 mm;
specimen depth W = 12.7 mm; notch length
a; = 7.00 mm), Y = 2.875.

The measurement was made in air at 90 °C.

4.3. Results and statistical analysis

The distribution of measured lifetimes is
plotted in Fig. 3 (full circles) as the fraction
n(tgj)]N of specimens surviving at each time
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Fig. 3. Cumulative distribution of the measured
times Lo fracture (@) and the fitting curves of the
functions (curves a, function (a); curves b, function
(h); curves c, function (c)) given in Table 1 (see text).
The inset shows an enlargement of the initial part of
the distribution.
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Fig. 4. Density distribution of measured times to
fracture (histogram) and density function corre-
sponding to the fitted Jog-normal distribution (full
curve).

ty; at which a specimen j broke. In Fig. 4 the
same data are replotted in the form of a histo-
gram as An(t}/(N At) where An(t) is the
number of specimens broken at times between
tand t + At and At is a constant suitable time
interval, In other words it could be said that
Figs. 3 and 4 show the experimental cumula-
tive distribution 2 (¢) and density function
p(t) respectively.

It is worth noting the width of the distribu-
tion of these experimental data. It has often
been assumed that a considerable scatter in
the times to fracture for glassy polymers is
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associated with control of the crack initiation
stage of the fracture phenomenon by a
nucleation process. It is known that an incu-
bation period is needed for crazes to nucleate
and grow. The variability of the times to
fracture would thus reflect the variability of
the incubation period. (The time t, to frac-
ture is usually considered to be the sum of
two contributions: the time ¢; to initiate a
crack and the time ¢, to propagate it to some
critical size.) In precracked specimens the
incubation period and time to initiate a
crack should be drastically reduced, even to
zero. As well as reducing the overall times to
fracture, notches are thus expected to reduce
the scatter in the times to fracture (ref. 3,

p. 142). In fact, from a comparative study on
the time-dependent fracture of PMMA carried
out on both notched and unnotched speci-
mens, Young and coworkers [11, 12] con-
cluded that in notched PMMA specimens the
fracture stress is controlled principally by
propagation. For such specimens held under
creep loading conditions the time ¢; to
fracture was thus equated to the time t,
taken to propagate the crack. The limited
time-to-failure data for precracked PMMA
specimens presented in ref. 11 still show a
considerable scatter, however (two to three
decades at 20°C and Ky; = 1.1 MPa m"?). The
present results definitely confirm this vari-
ability. The width of the measured lifetime
distribution is characterized by a standard

TABLE 1

deviation of 483 min around a mean lifetime
of 501 min. The dispersion is expected to
increase even further with decreasing tempera-
ture and increasing stress intensity factor. A
consideration of these facts clearly raises the
question of the statistical significance of
single-point testing. Even an indication of the
average time to fracture alone would, in prac-
tice, provide a little information. The need for
a thorough probabilistic characterization is
evident.

Some estimated distributions obtained by
fitting some trial functions to the experi-
mental points are also shown in Figs. 3 and 4
(full curves). Three mathematical models
were examined: (a) an exponential distribu-
tion, with a constant decay rate beyond a
threshold time (one parameter with a
threshold); (b) a log-normal distribution
(two parameters with no threshold); (c) a
three-parameter Weibull distribution (two
parameters with a threshold). The analytical
expressions for (a)~(c) are given in Table 1,
together with the best-fit estimates of their
parameters. (It should be noted that the
parameters have the same meanings in the
different functions: 7, represents a threshold
or minimum lifetime (the “fail-safe” time), 7
is a characteristic lifetime in the distribution
and 3 is a shape parameter.)

The best-fit analysis was performed by a
least-squares procedure based on a x* para-
bolic extrapolation and by weighting the data

Fitted probability distribution functions and best-fit estimates

Distribution function Analytical expression To T i x2
(min)  (min)
{a) Exponential with threshold Puy=1 for 1 < 7q 168 236 = 132
—(t—To)
y(f]:BXD:——} fort > 19
7 : . f11 o\ dt’ 368 0.75 64
{b) log-normal Pty=—=1 = exp[— — n(-—) ] t sk -
: pnii2) ¢ \g \7/l
t
(¢) Three-parameter Weibull Py=1 forit<Tg 113 447 1.56 514
t —70\P|
P(t) = exp— for t > 7y
719/ |




with a constant absolute error. As a test of
the goodness of the three best fits, in Table 1,
last column, we show the corresponding x*
values computed according to eqn. (6). The
complete expression (6) was used here, in-
cluding a varying error A 2(t); it was possible
to determine this a posteriori as a deviation
with respect to the value of the best-fitted
function #(t) via eqn. (5). To avoid singulari-
ties, eight out of the 97 experimental points
(at the two tails of the distribution) had to be
excluded in this last analysis. According to
the x? test the log-normal distribution model
turns out to give the best statistical fit of the
set of data presented here merely as an
example.
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