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1. Introduction

The possibility of “measuring” quantum states has been already considered by W. Pauli
[1], who wrote in a footnote: “The mathematical problem, as to whether for given func-
tions W(x) and W(p), the wave function 4, if such function exists, is always uniquely
determined, has still not been investigated in all its generality” [by W (x) and W (p) Pauli
denoted the probability distributions W(x) = [(x]#)|*> and W(p) = |(x|¥)|?, whereas, for
“if such function exists” he meant that W(x) and W(p) are compatible]. The answer to
Pauli’s question is clearly negative [2]. In fact, it is quite obvious that the probabilities
W(x) and W(p) at least cannot determine the quantum correlation (¢|xp|e), which can
be obtained, for example, from a joint measurement of x and p. On the other hand, as
shown in my lectures on “Quantum estimation theory and optical detection” [3], a joint
measurement of two conjugated observables would exhibit an additional noise equivalent
to an effective quantum efficiency 5 = 1/2: as we will see in Sect. 7.5, this is exactly the
threshold below which the density matrix cannot be measured.

That more than two observables—actually a complete set of them—would be needed
in order to determine the density matrix was clear from the earlier theoretical studies of
Fano [4] and remarked in the book of d’Espagnat [5]. However, it is difficult to devise
concretely measurable translational observables—other than position, momentum and en-
ergy: for this reason a Schrédinger-picture point of view was adopted, in which, instead of
measuring varying operators, the state itself is changed in a controlled way, and eventually
the energy is measured [6] [for “spin” degrees of freedom a first study has been published
only very recently [7]]. Still, such a fundamental problem—measuring the quantum state—
has remained at the level of mere speculation for many years [8], and entered the realm of
experiments only less than three years ago, after the experiments by Raymer’s group [9],
in the domain of quantum optics.

What is so special with quantum optics? In quantum optics, differently from quantum
mechanics of particles, there is the unique opportunity of measuring all possible linear
combinations of position § and momentum p of a harmonic oscillator, here a mode of the
electromagnetic field. As explained in my previous set of lectures [3], such measurement
can be achieved by means of a balanced homodyne detector, which measures the quadra-

ture &) = —i- ([ﬂe’i‘-’!’ i ae“’:*"}) of the field at any desired phase ¢ with respect to the local
oscillator (LO) [as usual a denotes the annihilator of the field mode]. The first technique
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to reconstruct the demsity matrix from homodyne measurements-—so called homodyne-
tomography—originated from the idea of Vogel and Risken [10] that the collection of prob-
ability distributions {p(z, ¢)}4e[o,r) is just the Radon transform (or “tomography”) of the
Wigner function W{a,@). Then, by inverting the Radon transform, one obtains the Wigner
function, and from the knowledge of W(a, @) one can recover the matrix elements of the
density operator g. In short, this was the basis of the pioneer method used by Raymer’s
group.

The first experimental work [9]—which unequivocally demonstrated the feasibility of
the method—was, however, affected by some uncontrollable approximations that produce
serious systemnatic errors when the detected state g is truly “nonclassical”. In fact, as we
will see in Sect. 5, strictly speaking the Wigner function cannot be measured, because the
inversion of the Radon transform needs an analytic knowledge of the probability distribu-
tions p(z, ¢). In practice, the inverse Radon transform is achieved by “filtering” data—as
in the usual X-ray medical tomography—upon introducing a suitable cut-off parameter
that sets a coarse resolution on W(a, @). Such a cut-off does not correspond to any control-
lable approximation in terms of density matrix. Setting such resolution in advance makes
the measured state “more classical”, thus loosing the most interesting quantum features
that the experimentalist is looking for! Hence, the density matrix cannot be measured by
meastring W (e, &) as an intermediate step. However, the main idea—namely, homodyn-
ing the density matrix—still remains valid: the problem is only related to the method of
data-processing, i. e. the use of the inverse Radon transform. With Macchiavello and Paris
[11] T derived an exact technique that produces the number-state matrix elements only by
averaging functions of data. The rather involved original formulas were simplified later by
myself, Leonhardt, and Paul [12]. In the new form, the algorithm was so simple that it |
was possible also to recognize the feasibility of homodyning the density matrix even for
nonideal detector quantum efficiency 7 < 1, giving mathematically proved lower bounds
for n that depend on the chosen representation for the matrix. After these first results,
further theoretical progress has been made, understanding the mechanisms that underly
the generation of statistical errors [13] and limit the sensitivity of the method when used
for indirectly measuring a single generic observable [14]. The problem of determining the
Wigner function was revisited [15], and it was lately recognized [16] that W (e, @) can be
measured at some fixed resolution in polar coordinates, and that fixing such resolution
corresponds to truncating the dimension of the density matrix in the Hilbert space. It was
also realized that the new method can be profitably used as a novel imaging algorithm—
what I call the qguantum Radon transform—for conventional tomography [16], particularly
useful in the extreme situation of low signals and high experimental resolution. Recently,
new progress by Richter [17] and Leonhardt et al. [18] have made possible to factorize
the averaged functions (socalled “pattern functions” [19, 20]) speeding up the algorithm
greatly for n = 1 [an analogous factorization for 5 < 1 is still lacking: very recently the
factorization has been derived by algebraic methods [21], and we hope that this will even-
tually provide the ultimate technique]. Currently, the algorithm is so simple, fast, and
low-memory, that I believe that after reading these notes the reader will certainly try
to implement it on his PC! In the meanwhile there has been an explosion of interest on
the subject of measuring quantum states from both theoreticians and experimentalists (I
apologize for not quoting all the literature): the new exact method has been eventually
adopted for real experiments [22, 23], providing a very efficient way for measuring the
photon number distribution.

I will review the exact method for homodyning the state of radiation in Sections 6
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up to 9, after a premise in Sect. 2 on the central limit theorem, which is at the basis
of the method and is needed in order to understand what can be measured and what
cannot (for example, the Wigner function cannot be measured: see Sect. 5). A short
review on conventional tomographic imaging is given in Sect. 3, and the old homodyne-
tomographic method for measuring the state is revisited in Sect. 4. The possibility of using
the new method for conventional imaging and the coding of images into density matrices is
discussed in Sect. 11. In Sect. 10 a recent debate on the possibility of measuring the density
matrix of a single quantum system is reviewed. In fact, the notion of “measuring a state”
is meaningful only if it refers to many repeated measurements performed on an ensemble
of equally prepared systems: otherwise, the state of an individual system is unobservable,
whatever sequence of measurements is performed on the system.

Appendices contain some relevant proofs and derivations, along with the recently de-
rived factorization formulas. Notice: some parts of the present notes include material that
entered my knowledge (or was discovered) after the end of the set of lectures given at
Bilkent University. As the field is so rapidly growing, I decided to include this material
here in order to make these notes more complete and up to date. In particular the new
matter regards the factorization formulas (Refs. [17], [18], and [21]) , the new experi-
ments in Refs. [22] and [23], and finally my recent work with Yuen on the impossibility of
measuring the density matrix of a single quantum system [24].

2. Premise on the central limit theorem

The exact method for homodyning the density matrix of the radiation field is based on
the fact that the matrix element (1/]|]¢) can be written as the expectation of a function
fupe(I, @) of the random homodyne photocurrent I af random phase ¢ relative to the LO.
The analytic form of the function fy, is known in advance, and depends parametrically on
both vectors 1 and i of the matrix element: it will be explicitly given in Sect. 7 for some
relevant representations. Hence, the problem of measuring a matrix element resorts to the
estimation of a generalized moment of the homodyne probability p(I, ¢}, or, in other words,
to the estimation of what I call the “mathematical expectation” of a given function of [
and ¢. To make things easier, let us consider the case that the random variable is scalar
real-valued, denoted by z. Then, the generalized f-moment or mathematical expectation
E f(z) of the function f(z) is defined as follows

+co :
F=Ef@e)= [ dep(a)f(e). (1)
—rx3

! What we can say in advance on the possibility of “measuring” E f(z) experimentally? We
would be tempted of measuring F' by means of the “experimental average”

L ‘
Fﬂ\r:ﬁzf(mn)g fz)

n=]1

where {2,}/_; denote the outcomes of & in an experiment that consists of N repeated
measurements, Is this procedure correct? How reliable is such estimate Fy of F? The
answer to these questions are provided by the eentral limit theorem (the proof is reported
in Appendix 13.1. According to this theorem, for functions f(z) having moments bounded
up to the third order, the random variable Fy will exhibit Gaussian distribution asymp-
totically for large N, with average F' and variance £}, = E[Af?]/N. In such case, we can




178 G. M. D’ARIANO

10
T
3
A
E
3
il

1.6

T
E
A
=
4
4

4

4

3

A

a3

o-

Fo—

o=
i
o
o
[o-

4
gl
sl

4 ]

:{—D——-— E

1.4
T
L
i.1
T
—r—
e
I

-
+]
h

Fy
—1i0 Q
T
——
¥y
.
S S—
| VLA e
FH
1.2 A
Gl
T A
o5 T
—he
|
Fy
1
S T Y

(=} 1

(b} - i ()

=20
T
0.8 14
T
—a—
f ——a——

ol Aisick. ] | .| PR B | -]

ol 2oL A al ul o o SR ul 57
10 100 ooo fo* 10° 10 10 too 1000 10 10% 10 10 100 1000 10t 0% 1o
N N N

J il 4 g0

s e s J=——

(m) | (&) (=)

1400
T
B

1000

400
T
i

800

Number of experiments
200
T

Humber of experiments
800

. " L L | L
Number of experiments

Figure 1. Numerical simulation of experiments for estimating /' = Ef(z) in Eq. (1) by means of Fy in
Eqg. {Lf), -Her:-'zJ we have uniform probability p(z) = 1/2 for z € [~1,1], p(z) = 0 otherwise. Top figures give
Fy within the confidence interval x5 of Eq. (3) versus N. (a) f(z) = %: the function is not integrable; (b)
flz) = th the function is not square-integrable; (c) f(z) = %]xl”‘?: the function is square-integrable.
The three histograms on the bottom give the distribution of Fy for different experiments; every histogram

pertains the c,lr:rrrespond‘ing case oni the top. There are N=20000 measurement for each experiment. For the
case (¢) the histogram is compared with a Gaussian with the same average and variance.

safely rely on the estimate Fiy of F, knowing o priori that another similar experiment will
produce a result within the confidence interval [Fy — ey, Fiy + £x5] with probability 63%.
An estimate of the confidence interval £y itself is provided by the well known root mean
square deviation

. \/ Camilf(@n) = PP 3)
N(N-1)
What happens when the conditions of the central limit theorem are not fulfilled? For
example, if the function f is not integrable with respect to the probability measure p(z),
the estimate Fiy will not approach any definite value for large N. On the other hand, if f is
integrable but not square-integrable (i.e. it has unbounded second moment), then 8y will
not rescale correctly as N~'/2, and the confidence interval will be utter] y unreliable. We can
gain some feeling on such pathological situations with the aid of a computer experiment.
In the standard Fortran language the random number generator “ran” produces uniform
deviates between 0 and 1: by means of translation and rescaling one can generate uniform
deviates in any prechosen interval. Let us consider, for example, a uniform probability
density: p(z) = 1/2 for 2 € [-1, 1], p(z) = 0 otherwise. In Fig. 1 the result from numerical
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simulations of the estimate Fjy in Eq. (2) with error-bar 6y in Eq. (3) are given for three
kinds of functions: (a) non integrable f(z) = %; (b) non square-integrable Flali= ﬁﬂ?;

(c) square-integrable f(z) = 2|z|}/2. The behavior of Fy versus N is erratic in the non
integrable case, whereas it converges nicely to the expected value F in the other two cases.
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Figure 2. Behavior of the confidence interval bw in Eq. (3) versus the number of measurements N per
experiment. The squares refer to the case () in Fig. 1 [non integrable function], the circles to case (b) [non
square-integrable function] and the triangles to caze (c) [synare-integrable function].

On the other hand, from the same Fig. 1 it is evident that the histogram of the values of
Fiy from different experiments is Gaussian only in the square-integrable case, and from
Fig. 2 we can see that the this is the only case leading to a fy ~ N—1/2,

What we can say if the probability p(z) is completely unknown a priori—as it is the
case in practice? Then, in order to assure in advance that f(z) satisfies the conditions
imposed by the central limit theorem, the function f(z) must be square-integrable for any
possible probability measure P(z). It is easy to see that this requirement is fulfilled only if
f(z) is bounded by some constant |f(z)] < € < o0, In fact, if f(z) is unbounded, then it
15 always possible to find a probability measure p(z) for which f(z) is not even integrable.
On the other hand, if f(z) is bounded, then every moment of f is bounded—in particular
the first three ones—and the central limit theorem holds. Thus we conclude that for all
possible (a priori unknown) probabilities p(z), the generalized f-moment in Eq. (1) can
be estimated by means of the experimental average (2) if and only if the function f(z) is
hnunfied. In such case we will also say that I is statistically sampled by Fy, and Eqs. (1)
and (2) will be referred to as sampling formulas for F.

3. What is a tomography?

jl"he essential problem of tomographic imaging is to recover a distribution of mass m(ax,y)
' a 2-d slab from a finite collection of one dimensional projections r(s, @) at different
angles ¢, The situation is schematically sketched in Fig. 3, where m{z,y) describes two
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1mg®

Figure 3. Illustration of the tomographic reconstruction of a 2.d image (here two holes in a uniform
background) from its 1-d transmission profiles at different angles ¢.

circular holes in a uniform background. The tomographic machine—for example, an X-
ray equipment—collects many stripe photos of the sample from various directions ¢, and
then numerically performs a mathematical transform in order to reconstruct m(z,y) from
its radial profiles r(s, ¢) at different ¢'s. The word “tomography” is customary to denote
such imaging procedure starting from radial projections. Mathematically, the radial profiles
r(s, @) are just the integrals of the image m(x,y) along different directions ¢, namely

teo dt Sha;
(s, ¢) = / ?m(scosq’a—tsing‘a,ssmq&ﬁ—ttosgﬁ} ; (4)
-0

with s denoting the current coordinate along the direction orthogonal to the projection,
and ¢ the coordinate along the projection direction. The choice of constants in Eq. (4) gives
r(s, ®) normalized to unit versus s for m{z,y) also normalized to unit. In the following
I will adopt the complex notation m(z,y) — m(o,d), with @ = 2 + iy. Then Eq. (4) is
rewritten as follows

+o0 ! . y
T(T': [j') = f i__y m ((m = i?;r}ehﬁ'! (E o iy}ﬁ_zé) 1 (5J

The collection of all projections r(x,¢) at different ¢'s is called Radon transform.
The reconstruction of the “image” m(a, &) from its “projections” r(z, ¢)}—this recon-
struction is also called “back-projection”—is given by the inverse Radon transform [25]

: A tooidk 1kl rmd +oo .
m( o, &) :f —|——|f —éf dz r(z,¢)expik(z — az)] , (6)

— 4 o —0a
where oy = Re(ae*?), The derivation of (6) from (5) is given in Appendix 13.2. Upon

exchanging integrals aver & and ¢, the image m(a, &) is written in double integral form

T +oo e
mic. &l = f 49 f o e R G e SRy (T)
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with the kernel K(z) given by

IRl B L] 1 '
e e b e o

P denoting the Cauchy principal value. Integrating Eq. (7) by parts, one obtains the
familiar “filtering” procedure

; Tde, [T, Br(z,d)/ 0z
m(a@) = [T35P [ s A (9)

which is commonly used in conventional tomographic imaging [26]. Notice that because of
the principal value and of the z-derivative in Eq. (9) one can recover m(a, @) only when
r(z,¢) is given analytically. An analytical form for projections r(z,¢) can be achieved
from raw data either by “splining” the experimental profiles, or by filtering them with a
high-k cutoff in the Fourier transform (6}, or finally by setting a nonzero = in the kernel

(8)-
4. Why quantum homodyne tomography?

The homodyne-tomography technique originated from the simple idea [10] that the proba-
bility distributions p(x, @) of the outcomes z of the quadrature z4 at phase ¢ with respect
to the LO is just the marginal probability of the Wigner function W(a, &) along the line
a=re? 7e (-, +00) in the complex plane: in other words, the collection of probability
densities p(z, ¢) for 0 < ¢ < 7 is the Radon transform of W(a, @), Hence, W{a, @) can be
evaluated by tomographic imaging (inverse Radon transform) from p(z, @), namely

+oo
Wiier, o) = f dk ||

"dg [+ .
— / dz p(z, ¢) exp[ik(z — ay)] , (10)
—C 4 0 T Jemo
where o = Re(ae~*). Eq. (10) was the basis of the first tomographic method for detecting
‘E}.le density matrix of the radiation feld. By means of the filtering or splining procedures
discussed in Section 3, an analytic form for p(z, ¢) is recovered from histograms of marny
collected data, and the Wigner function is obtained. Then, the density matrix in the
number representation is evaluated using the following integral transforms [9]

5 o d .y : o) 5
(& +2'|glz - o) = f -fi 2TYW (4 + iy, @ — iy) (11)
o =

&5

1 2 2 O I B - 1
Vi 4o [0 e (o), (VB ety . (12)

:;h‘ir H;(ﬂ qenote Hermite polynomials. The choice of the k-catoff or of the maximum
bg%h _l;ﬂ': Fiphnlng should be done carefully as a fanction of the number of data. However,
ek ofe;;]ng pa,ra?meters do not ::u::nn:espmnd tc! any mea,n_ingful kin_d of approximation in
- he ma,tr.m eflan?ents {nj;._:ajm,:-: thus, th'lS method is quantitatively unreliable, and
n.éar]y ¥ g.;Ve qualitative l'rlfarma,tmns on thfe Wigner function for laljge numbers of data.and
& ;1111_ guan-tum efficiency. As noticed in Ref.[11], ouer—smoothm_mg produces systematic

equivalent to make the state “more classical”. thus preventine fram detartine tha

(12]@]m) =
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most interesting quantum features, such as, for example. the oscillations of the photon
number probability of a squeezed state [27]. Ou the other hand, under-smoothing would
lead to systematic niegative probabilities (i. e. diagonal matrix elements). In Section 6 [
will derive the exact sampling formnlas of Refs. [11] and [12] for measuring the density
matrix without filtering.

5. On the impossibility of measuring the Wigner function

Upon exchanging the “averaging” integrals over ¢ and z with respect to the outer integral
over k, Eq. (10) can be written in a form similar to Eq. (7) as expectation over the random
couple (z, #). One has

Wia, &) = f;

where, as in Eq. (8), the kernel K(z) is given by

; I 3 1
Kiz)=-—=P—=— lim =Re——, 14
St 2 z? s]j-r%l‘l' QRe[m+i£]2 (5

:3 _/+DO dz p(z, ¢) K(z—ay), (13)

From Eq. (14) it is apparent that the kernel K(z) is unbounded, and thus, as discussed
in Sect. 2, the Wigner function cannot be “measured” (i.e. statistically sampled ), unless
boundness is artificially introduced by fixing a nonzero value of ¢.

6. Exact method for measuring the density matrix

We want to obtain a general matrix element (1]5]¢) in form of expectation, namely as in
Eq. (13), but with (1|p|e) in place of W(a, &) and with a function foo(z, @) in place of the
kernel K (x — o). Then, if and only if the function f, is bounded, every moment of the
fanction will be bounded for all possible probability distributions p(z, ¢) and, according
to the central-limit theorem discussed in Sect. 2, the matrix element can be sampled over
a sufficiently large set of data. and the average values for different experiments will be
Gaussian distributed, allowing estimation of the confidence intervals (3).

In order to obtain the integral kernel fy,, for the matrix element (1)|3|¢), one can start
from the operator identity

d? T = :
é = f o Tl"{ @e-—aa-[—an') e—r:rcﬂ-}-cm (15}
T
which, by changing to polar variables a = (i/2)ke?, becomes

L L
6= f Ll @Tr(_ﬁe‘.k%)e_ik%. (16)
= 4 Rk

Equation (15) is nothing but the operator form of the Fourier-transform relation between
Wigner function and characteristic function: the reader can easily check it by himself,
The trace-average in Eq. (16) can be evaluated in terms of p(z, @), using the complete set
{lz)g} of eigenvectors of £,. After exchanging the integrals over z and ¢ with respect to
the outer integral over k, one obtains the quantum equivalent of Eq. (13), namely

T e | : .
5 =f ?f da p(z, $)K (x — 34), (17)
0 i -0

2 1

— e Y e et e

Y 4 -t <t
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where K is still given by Eq. (14), but now is a function of the quadrature operator Z;.

Taking matrix elements of both sides of Eq. (17) between vectors ¢ and @, we obtain the
desired sampling formula

T d +oo : i -
o) = [ 52 [ dapte, wli (o= dolle). (19)

Hence the averaged function is fyo(2, @) = (¢|K(z — £4)|¢). Now the reader could object
that Eq. (18) is useless, because K(z) is unbounded. But, he must carefully consider
that for some vectors ¥ and w the matrix element (| K(z ~ &4)|p) can be bounded,
although the function K (z) is not! As an example, one can consider the expectation value
{a]é(z — &4)la) of §(z = &4) between coherent states |a), which is just the Gaussian
[(z]e}|? = /2] exp[—2(z — :4)?], and hence is clearly bounded.

Before analyzing specific matrix representations, I generalize the sampling formula (18)
to the case of nonunit quantum efficiency. As shown in my lectures on “Quantum esti-
mation theory and optical detection” [3], low efficiency detectors in a homodyne scheme
simply produce a probability p,(z,¢) which is a Gaussian convolution of the ideal prob-
ability n(z,¢) for 5 = 1. In terms of the generating functions of the Zg-moments one
has

too , = 40 v
f dz py(z, $)e™ = exp (—1 nkg)] da p(z, $)e™ . (18)

= 8n i

Upon substituting Eq. (19) into Eq. (16) and following the same lines that lead us to Eq.
(17), one obtains the operator identity

. T d oo . ,
b= [ L[ depfed)Kofa - 25), (20)

where now the kernel is given by

> 1 e =y L -
K ()= —Ref dkk exp| ——%° +tkz | . (21)
2 0 8?}‘
Again the desired sampling formula for (19|g|w} is obtained by taking matrix elements of
both sides of Eq. (21). Notice that now the kernel K;(z) is generally not even a tempered
distribution: however, as we will see in the Sect. 7, the matrix elements of K (z — &4) are
bounded for some representations, depending on the value of 7.

7. Measurable representations and bounds for quantum efficiency

The matrix element (| K (z — &4)|¢) is bounded if (1hle™ " |) decays faster than

exp [—(1 — n)k?/87] in Eqgs. (20) and (21). We can determine the balancing of Gaussian
functions in Egs. (20) and (21) upon introducing the concept of “resolution”™ :i(qb) of the
vector 1 in the &;-representation. This is given by

582

2e5(¢)

|s(el)|? =~ exp [— } (leading term). (22)

The resolution e2,(¢) represents the Gaussian decay length of the probability o {z]}]?
versus z, with the rule that €} (¢) = 0 and }(¢) = oo for functions decaying faster and
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slower than the Gaussian one, respectively. Now, let us define the “reduced® resolution
averaged on the two vectors o and o

__2._ = _l,__ 4 .._1_ 23
29) ~ 5(9) T @) (2)

In terms of £2(¢) it is easy to state the balancing between the decay of {(le="%2|es) and
the growing of the anti-Gaussian in Eq. (21). Using the resolution of the identity in terms
of the eigenvectors {|z);} of &4 we obtain

- . 1 i T e e 1—7,, ’ '
(Pl (2 — 24)|) = ERE /D dkke /; dz’ e exp (—Sn—k ) (|2 es(2 )
+oo i i e
= ER&/ dk k e** exp {— —k? (Ez(qf:) — l—mﬂ)} (leading term) , (24)
2 0 2 4in |

namely, we can readily assert that the matrix element ($|K(z — £4)|e) is bounded if the
following inequality is satisfied for ¢ [0,7)

(25)

or. in terms of e(¢),
() > 5y/n71 = 1. (26)
Hence, we conclude that:

The mairiz element (||e) can be measured if the minimum reduced resolution of
vectors 1 and @ in the quadrature representations satisfies the bound

e= min {«()} > 3y/r 1 1. (27)

We now consider some particular representations of interest for applications.

7.1. QUADRATURE REPRESENTATION

The scalar product of two quadrature eigenvectors at the same phase ¢ is a delta-function,
and the square of the delta-function in Eq. (22) is not well defined. We can easily check
that the kernel is unbounded, even for 7 = 1, where it is given by

! ; Ty -1 F1—g 1 :
o(T1|K(z = £¢)|2y) = Lﬁ;—ﬁe}(p {——21—;—n~¢—2- [u: - 5(1-1 + 1) cos ei:-]} ; (28)

Hence, one concludes that it is not possible to measure the density matrix in the quadrature
representation, even for = 1.

7.2. COHERENT-STATE REPRESENTATION

The resolution is ¢ = 1: according to Eq. (27) the density matrix can be measured for
> % The integral kernel is given by

: : o i 1 :
(e Bo(@ — 24)|8) = 267 (ae™?| et ) 2nm-us)? g (ﬁ% 5 2z — wqe.}z) , (29)



Measuring Quantum States 155

with £ = /7/(Zn—1), ws = %[,ﬁe""‘ﬁ + @e~'?), and &(e, ; 2) denoting the degenerate
hypergeometric function.

7.3. NUMBER-STATE REPRESENTATION
The resolution is ¢ = J: the matrix element can be measured for n > 1. The integral

kernel is given by

; e ! 2.2 ;
Giliede = Bl i iRty e e (30)

i i ,n_E_d s T . a3
e (n— ,_,) (20 + d+ 1) Re {(~i)*D_(autap)(~2inz) } .
v=0

vl

[n Eq. (30) D,(z) denotes the parabolic cylinder function. Notice that the analytic ex-
pression of the kernel does not contain any dimensional truncation of the Hilbert space.

7.4. SQUEEZED-STATE REPRESENTATION

The leading term in Eq. (22) comes only from the squeezed vacuum (the coherent part
just shifts the quadrature). For a squeezed vacuum with squeezing parameler s, the prob-

o s APk ; 2s3 ;
ability of the quadrature £y is the Gaussian |4(¢|ab)|? = —-:;"i exp [—25%:53), where

7o e o e : Ay
S¢ = |s¥singd — is77 cos ¢ Hence, the smallest resolution is & = smin(s,s™!) and
the matrix element can be measured for 4 > [1 + min(s, s~1)]~1.

7.5. ABSOLUTE BOUND FOR QUANTUM EFFICIENCY

We have seen that for the coherent and number-state representations the density matrix
can be measured for quantum efficiency 7 > 1/2. On the other hand, for the squeezed state
representation one has 5 > [1 + min(s,s71)]~!, which is even greater than 1/2. Therefore,
one could wonder if 1/2 is an absolute bound for 7, as conjectured in Ref. [12]. This is
clearly true for all representations with minimum uncertainty product

De(d+m/2)> T, (31)

and either the number (complete) or the coherent /squeezed (over-complete) representa-
tions satisfy the Heisenberg inequality (31) with the equal sign. Now the question is if
it is possible to find (over)-complete basis for the Fock space having uncertainty product
larger than }: in my knowledge, there are no such “spread” basis. Notice that it is difficult
to obtain “spread” basis as unitary transformations of either the number or the coherent
basis. In fact, any unitary operator that is the exponential of a Hermitian bilinear poly-
nomial in ¢ and af preserves the uncertainty product: on the other hand, the exponential
of a Hermitian polynomial of degree higher than 2 is generally not analytical on the Fock
basis (apart from trivial functions of the number operator) [28].

8. Statistical errors

In this section we study in more detail the analytic form of the integral kernel, in order to
understand the mechanisms producing statistical errors in the measured matrix elements.
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We only analyze the case of the number representation, with the kernel given by Eq. (30):
the same arguments can be easily extended to other representations.

In Fig. 4 the kernel (n|E(z — &g)|n + d) for = 1 is plotted versus z for ¢ = 0
at different values of n, and d. One can see that for d = 0—along the diagonal of the

- R B
z | i 111=53p dEO
3 n=10, d=0
-t My | A = Hd Tt
T
r
3 n=0, d=10

=H : I k Sl TR - T i

-

i o : \/\,—

N t—

il | | nl’:ﬂ. d=0

| = L e b gt Ry [ O et A

Figure 4. The kernel (n|Kn(z — £4)|n + d) of Eq. (30) for 7 = 1 (the y-scale is fixed).

matrix—the range of the kernel is bounded between -2 and 2, and increases slowly versus
distance d from the diagonal. For increasing n and d the kernel oscillates fast, with an
increasing number of nodes. Fast oscillations make the average of the kernel—hence the
measured value (n|§|m)—more sensitive to fluctuations of the random outcomes z of the
quadrature, producing confidence intervals that increase versus n and d. On the other
hand, the bounded range makes errors themselves bounded, so they saturate at large n’s.

For 77 < 1 the behavior of the kernel changes dramatically, with the range increasing
versus n more and more rapidly as 5 approaches the lower bound 5 = 0.5 (see Fig.5). In
this case the resulting errors increase rapidly versus n, and more data will be needed to
“clean out” the additional noise due to nonunit quantum efficiency.

The above mechanisms for errors are well illustrated in Figs. 6 and 7, where the photon
number probability distribution is plotted from computer-simulated experiments. The be-
havior of the confidence intervals (represented by the gray-shaded thickness of horizontal
lines) is qualitatively very different for = 1 (Fig. 6) and for 7 = .8 (Figs. 7). Fig. 6 shows
the Wheeler-Schleich oscillations [27] of a squeezed state. Fig. Ta gives the probability for
a squeezed vacuum measured for = 0.8, whereas Fig. 7b gives the probability obtained
from the same data at n = .8, but using the kernel with 5 = 1: this shows the “smearing”
effect of improper accounting for quantum efficiency. From both Figs. 6 and 7 it is evi-
dent that homodyne detection of the density matrix allows to recover delicate interference
oscillations of nonelassical states.

The statistical reliability of both measured values and confidence intervals can be
checked by means of Monte Carlo simulations. A typical check histogram for the devia-
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Figure 6.  Tomographic reconstruction of the Wheeler-Schleich oscillations of a squeezed state with

{(f) = 13.5125 and 5.51 squeezing photons. Confidence intervals are represented by the gray-shaded thick-
ness of horizontal lines. Detection efficiency is # = 1. Homodyne data are computer-simulated. From the
left to the right we have N==2, 100 and 1000 blocks of data, respectively, with 5000 data each at totally
random phases. On the top of each fignre a normalization check is reported.

tions from theoretical values Ag, m = (QT{EEBT} = Qﬁigm) /8n,m normalized by confidence

intervals 6, ., is given in Fig. 8 for all matrix elements of a 65 x 65 density matrix: both
histograms for real and imaginary parts of g, ,, compare very well with a standard Gaus-
siamn.

Finally, in Fig. 9 a typical result for convergence of normalization and mixing is given
for a coherent state.

In conclusion of this section a remark is in order on homodyning the density matrix
as a tool for measuring any desired observable. In fact, from the measured density matrix
one can evaluate the expected value of any operator (which is sufficiently well behaved

as a function of a and tLT). However, nonzero confidence intervals for the matrix elements
correspond to additional noise for the indirectly detected single observable. In Ref. [14]
it has been estimated that homodyning the density matrix adds several dB’s of noise
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Figure 7. Homodyne detection with guantum efficiency § = .8 of the photon-numher probability of a
squeezed vacuum with (A) = 1. Homodyne data are computer-simulated. Here result are obiained from 200
blocks of 5x 10° data with 27 phases each. Confidence intervals are represented by the gray-shaded thickness
of horizontal lines. Fig, Ta: reconstruction using the kernel (30) with » = .8. Fig. Th: reconstruction from
the same data without taking into account quantum efficiency, namely using the kernel (30) with n = 1.
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Figure £, Distribution of the normalized deviations from the
theoretical values Apy, ., = (g';rf‘f,;”"} 1 g&j‘,:wj) /6n,m for the first 65 % 65 matrix elements. Detection

efficiency is # = 1. The quantum state is coherent with {n) = 4. The histograms pertain the deviations of
all matrix elements (real and imaginary parts separately) detecled during 32 experiments with 26 scanning
phases each, and 40 measurements for each phase. A standardized Gaussian curve is superimposed to each
histogram.

with respect to the ideal measurement of the single observable (it is particularly noisy
for detection of the phase of the field). Therefore, ideal detection of single observable—
which provides only a partial information on the quantum state—is always less noisy
than homodyning the density matrix—which, however, gives the most complete knowable
information.
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Figure 9. Normalization and mixing of the homodyne-detected density matrix versus the total number
of data of the experiment (i.e. nnmber of phases x number of data per phase) for a coherent state with
{n} = 4. Detection eficiency is = 1. The matrix is 22x22. Error bars are estimated by grouping data
into blocks of 20 data of 20 phases each. The experiments are computer-zimulated.

9. Reconstruction of the Wigner function at finite resolution

As explained in Sect. 5, the Wigner function cannot be measured directly from homo-
dyne data: however, it can be reconstructed from the measured density matrix in a
dimensionally-truncated Hilbert space. This is achieved using the formula

J 2 y Z(Dtrzjfv?&a) . :
W(e,a) = =Tr [ge e”’“i‘ : (32)
T
which in the number representation is rewritten as the Fourier transform

W(a, &) = Re ) 8 5" A(n, d; [a])onn+d » (33)

d=0 n=0

with g m = (n|8|m), and

’ 3 n! :
A(n,d; |of?) = (=)"2(2 — 6a0)l20%, (—nj—ﬂe”'*'*ﬂiuzaﬁ) ; (34)

L&(z) denoting Laguerre polynomials. The Hilbert space truncation of the sums in (33)
sets the resolution in polar coordinates for the reconstructed Wigner function: this will be
illustrated in more detail in Section 11. Laguerre polynomials in Eq. (34) produce radial
oscillations, with the result that despite the truncated dimension of the matrix is relatively
small, the natural guantum oscillations in the Wigner functions are easily recovered. In
Fig. 10 the Wigner function of Schrodinger cat states are given as recomstructed from
homodyne computer-simulated data. As compared to the exact method, the old filtered
lechnique (revisited in Sect. 4) would have required very small cutoffs to recover such
Wigner oscillations, hence needing much larger sets of data.
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Figure 10. Reconstructed Wigner function of a Schrodinger-cat superposition of two symmetrical coherent
states with (n} = b photons each. From the left to the right: 1, 10, 100 blocks of data each with 52 phases and
1000 data for each phase. The dimension of the density matrix is truncated at 16 photong max. Detection
efficiency is 1 = 1. Notice the oscillations near the origin (dashed lines represent negative values).

10. On the impossibility of measuring the density matrix of a single system

The notion of “measuring a state” is meaningful only if it refers to many repeated mea-
surements performed on an ensemble of equally prepared systems: otherwise, the state of
an individual system is unobservable, whatever sequence of measurements is performed on
the system. In fact, a single measurement cannot yield sufficient information to reconstruct
the state; on the other hand, it would uncontrollably disturb the state, thereby ruling out
the possibility of extracting the remaining information from successive measurements.

Recently, the possibility of determining the wave function of a single quantum system
has been reconsidered by several authors [29, 30, 31, 32, 33], exploring special measure-
ment schemes, based essentially on vanishingly weak quanium nondemolition measure-
ments [29, 30], or “reversible” measurements [31, 32, 33]. In each of these schemes the
conclusion is that it is practically impossible to measure the wave function of a single sys-
tem, either because the weakness of the measuring interaction prevents one from gaining
information on the wave function [29], or because the scheme essentially measures only
orthogonal states [30], or because quantum measurements can be physically reverted only
with probability of success equal to 1/2 [33]. Only very recently Yuen and I[24] proved
the general impossibility of determining the state of a single quantum system for arbitrary
measuring schemes, including any kind of succession of measurements, which we proved
to have the same probability distribution of a single joint measurement with output state
independent on the input. We have derived this proof because it seems that, despite its
fundamental relevance in the logical framework of quantum mechanics, it has been never
proved in general. Here, from Ref. [24] I simply report a scheme for making repeated ho-
modyne measurements on a single copy of the radiation field, in order to show in which
way the system state is perturbed however weak the system-apparatus interaction is. This
is due to the fact that in order to overcome the low effective quantum efliciency corre-
sponding to the weak interaction, the apparatus must be prepared in a highly squeezed
state, as also shown by Tombesi in his set of lectures [34] and in Rei. [35].

Insofar the tomographic scheme that we have considered is based on “second kind”
measurements, which completely destroy the quantum state of the system. Many mea-
surements are performed, but the system is prepared in the same state § before each
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measurement. We want now to consider a “first kind” version of the above scheme that in
principle allows to measure the density matrix without destroying it. Similarly to any first
kind measurement, this goal can be achieved uging an indirect-measurement, namely by
performing second-kind measurements on another “probe” mode b that interacts with e via
2 unitary operator [/: this was already explained in the previous set of lectures on Quantum
estimation theory and optical detection [3]. An easy way to achieve a first-kind measure-
ment of the quadrature &g = £, is by measuring the quadrature qug = %(bfe"d’ 4 be %)
of another mode b. Without loss of generality, we consider that before every single mea-
surement the probe is prepared in a pure state |u(¢)), which is generally optimized as a
function of the observable by that is measured. The generating function of the moments

of 5¢ after the interaction with @ is given by

X (M) = Tr (X058 (@) (o) IT)=Tr [exp (A0 15,0) 28 (@) (w(S)],  (35)

and is juet the Fourier transform of the probability distribution of the experimental out-
comes. We consider the following interaction

0 = exp [K- (ab? - aTb)] ; (36)
which describes the linear field transformation at a beam splitter [3]
OB = sinka + coskd = 91/ 2a+ (1-9)/%b, (37)

where ¥ is the mirror transmissivity, and b is the field mode of the unused port at the same
frequency of a. Thus, the present scheme physically corresponds to let the field mode a
shine over a long chain of low-transmissivity mirrors, detecting the quadrature of the weak
transmitted field at each mirror. Due to the linearity of Eq. (37), the moment generating
function factorizes in the following way

X (A ¢) = xa (87X, 0ha((1 - 9)'/%2, 9) (38)
where yo (A, #) = Trlexp(iXdy)g) is the generating function for the nominteracting mode

a only, and, analogously, xs(A,¢) for the mode b. Using the operator identity (15) the
density operator 4 is written in terms of the generating function xa(A,®)

7 +oo X e
g= f E’E f 2 18*1)‘&‘{’}(&[)‘1 ‘f)) ] (39)
i e 4

and using Eq. (38) one obtains
- ) dé +L'-"3 — =~
= [ _'f dz ps(z, P)=g (z—ag) , (4[])
J0 T — g

where pg(z, ¢) is the probability of the measured quadrature Elg, rescaled by ¥/2 (as for
customary homodyning, where the output photocurrent is rescaled by 7' /2[3])

oo sx gl /2
iz )= ﬂ”zf 9A iz oy () 4. (41)

e
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The kernel Zy(x) in Eq. (40) is given by

=y(z) = %Re f;md}\ e (A/(1 — 9)/9, $)])7, (42)

and generally depends on the coupling parameter ¥ (= sink) and on the probe state
|v(#)). One can easily see that when the probe mode b is in the vacuum state the kernel
(42) is identical to K,(z) in Eq. (21) with ¥ = p, namely, the transmissivity o plays the |
role of the overall quantum efficiency of the indirect measurement. However, as noticed in
Ref. [35], the effective quantum efficiency can be decreased at will by squeezing the probe
mode & in the direction of the quadrature E: More precisely, one prepares the probe in
the squeezed vacuum

3
f
I

lu(4)) = §4]0), (43)

where
i Ez‘bibégne—ibh.ﬁ- e [_H% (5?2 ot bz)] ’ (44)
r > 0 denoting the squeezing parameter. One has
Shdl oo Sy = By, (45)

with |¢) denoting the eigenvector of by for eigenvalue z: the rescaling (45) more generally

holds for the quadrature by and its eigenvectors ! ¥[z) when using the rotated squeezing

operator 5',3. in place of Sy. With the help of transformations (44) and (45) it is easy to
check that the kernel Zy(z) in Eq. (42) coincides with K, (z) in Eq. (21) with effective

efficiency

e?"
e 41—

" (46)
as also shown in Refs. [34] and [35]. Therefore, by increasing the squeezing parameter r
it is possible to enhance the effective quantum efficiency 7 beyond the allowed bound for
measuring the density matrix (n > 1/2 for number and coherent states). At this point
one may think that squeezing the vacuum of b allows one to consider weaker and weaker
interactions with ¥ — 0, with the possibility of performing repeated measurements on the
same system with vanishing perturbation at each measurement. However, as we will show
immediately, this cannot be attained, because the squeezing needed to keep 17 as constant
also amplifies the perturbation back to a finite extent. This can be seen upon analyzing the
limiting behavior of the transition operator ﬂ(r ¢), that gives the state reduction after
each measurement [3]

g _ Oz ¢)ei(a,4)
Tr[6 (z, 9)(z, &)

Here, the transition operator (&, ¢) is given by

(47)

fl(:c,q')j X ﬂ1f4{'§1;2$|ﬁ_€b¢béeﬂ{ﬂbi_ﬂtb]§¢|ﬂ) - (48]
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where the powers of & account for gquadrature rescaling, and one should keep in mind that
ihe matrix element is evaluated between vectors |91/2z) and |0) in the Hilbert space of
mode b only, so that {(z, ¢} is an operator on the Hilbert space of mode a. One has

Oz, ¢) = (12| o b nlart] -<9j0y (49)

where

a, = coshra + e sinhr al . (50)

Using Eq. (45) and normal ordering the interaction operator with respect to b (by the
BOH formula for the SU(2) group [36]), one obtains

Q($= ﬁf’) W (EZr,ﬂ)];’4((EZr,ﬁ)UZx|€-a;b‘|‘b¢€tanr:g.,.h1. |0>L cos Hlmiaf ) (51)
Eq. (51) can be arranged in the following way
Qz,d) = exp \ita.nﬁ a.,.;—)\ ] e%)‘z(ez"#)”‘i{(ez*ﬁ)lﬁm|}le‘“'“5}] cos ,w:|’1i S (52)
A=0

where A is a real running parameter, and IAe™*®) is a coherent state. Upon evaluating the
derivative with respect to ) one obtains the explicit operator form of Oz, ¢)

A 9 pir 14 ¢ 4 2
Q(x, :;15) = (2': 1}) exp [— (92‘"15'1: — tan .-s:e_“"sa,.) ]

1 ; i
X exp ['-j tan” ﬁ:e:_z“’ﬁa,f] | cos &]* % . (53)

We can now finallv evaluate the asymptotic form of the transition operator in Eq. (53) in
the simultaneous limits of vanishing transmission coefficient ¢ — 0 and infinite squeezilg
parameter 7 — oo keeping the effective quantum efficiency 7 as constant according to Eq.

(46). In Eq. (53), for ¥ — 0 using Eq. (37) one obtains e*" 9 — A2, where
Al 20 (54)
o ;
)
Moreover, one has e "e"**a, — &4, and |cos x;l"l“" ~ exp[—a} /(2A3)]. Therefore, the
asymptotic form of the transition vperator is simply given by
1/4 s
: (z —g)
o= () o -5 i

Equation (55) is the typical form of a von Neumann “reduction” of the state (see my other
set of lectures in this volume [3]). Therefore, one concludes that despite the interaction
has been tuned as vanishingly small, the state is in fact “reduced” at each measuring step.

In conclusion of this section I want to emphasize that the need of a lower bound for
quantum efficiency 7 is of fundamental relevance. In fact, if the density matrix could be
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homodyne detected for vanishingly small quantum efficien cy, then there would be no need
for squeezing the vacuum of the measuring apparatus in order to enhance the efficiency be-
yond the bound, and the density matrix of a single system could be detected by vanishingly
weak measurements.

11. Quantum and classical Radon transform

In this section [ show how the new exact algorithm for homodyning the density matrix
can be used also for ordinary imaging. The situation of interest is when the radial profiles
are not well resolved digitalized functions, but actually represent the density distribution
of random points—as if in our X-ray machine the beam is so weak that radial photos are
Jjust the collection of many small spots, each from a single X-ray photon (this situation is
sketched in Fig, 11. It is obvious that this case can be reduced to the one of conventional
imaging by counting all points falling in a predetermined 1-d mesh, and giving radial
profiles in form of histograms (this is what actually happens in a real machine that uses
arrays of photodetectors). However, we want to utilize the whole available information
from each "event”—i.e. the exact 1-d location of each spot—in a way that is independent
on any predetermined mesh. In practice, this extreme situation happens when the signal
is 50 weak and the machine resolution is so high (i.e. the mesh-step is so tiny) that only
zero or one photon at most can be collected in each channel.

Figure 11. Tllustration of imaging in presence of very weak signals. The image is the same as in Fig. 3,
but here the transmission profiles are given in terms of random points on a photographic plate.

The above low-signal /high-resolution case naturally brings the imaging problem into
the quantum domain. Here, we have at disposal our technique for measuring the density
matrix of the field in terms of homodyne outcomes (the equivalent of our radial spots) for
different phases of the local oscillator (the equivalent of our ¢ angle). In general an image
W(a, &) does not correspond to a Wigner function of a physical state, due to the fact that
the Heisenberg relations unavoidably produce only smooth Wigner functions, whereas a
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conventional image can have very sharp edges. However, if one allows the density matrix
to be no longer positive definite (but still trace class), a correspondence between density
matrices and images is obtained that holds in general, and a convenient truncation of
the matrix dimension dy can be chosen to set the imaging resolution. In summary, the
connection between images and density matrix p, m—what I call either the quantum Radon
transform or the quantum imaging—is given by Egs. (18), (30), (33) and (34) with the
sums truncated at maximum photon number dy — L. 1 emphasize again that the density
matrix does not correspond to any physical state of radiation, and this is why the method
is named Fictitious Photons Tomography [16].

For suitably chosen dimension dy the quantum Radon transform also provides a pro-
cedure for image compression, with dy setting the resolution of imaging. The kind of
cesolution can be understood by studying the behavior of the kernels (n|K(z — &4)|n + d)
in Eq. (30) which are averaged over the experimental data in order to obtain the matrix
elements gn ntd- As shown in Fig. 4, outside a region that is increasing versus the indices
n and n + d, the functions (n|K(z — &4)|n + d) decrease as 27972, whereas inside they
oscillate with a number of nodes that increases with 2n + d. This behavior produces the
effects illustrated in Fig. 12 where for increasing dimension dy I report the tomographic
reconstruction of an image that describes a chess-board shaped step-function W(a, &) in
the plane. The plot is obtained by numerically integrating Eq. (18) with the kernel (30)
from analytically given transmission profiles p(z,¢) and then using Egs. (33) and (34).
From Fig. 12 one can see that both radial and angular resolutions improve versus dy,
making the details of the image sharper and sharper.

In Fig. 13 a Monte Carlo simulation is reported of the quantum imaging of the font
"4 for weak signals. The reconstruction is quite accurate already for 5+ 10% data with
resolution d = 32. The situation occurring for small numbers of data is given in the first
plot, where the highly resolved image exhibits the natural statistical fluctuations due to
the limited number of data. For larger samples the image starts appearing sharper from
the random background. For comparison the analytical imaging (as in Fig. 12)is also given
for resolution dy = 128.

12. Concluding remarks on experimental applications

I conclude these notes with some remarks on experimental applications of the method of
homodyning the density matrix. It is important to realize that although photodetectors
themselves in principle seem to provide the easiest way for measuring the photon number
distribution, it is very difficult to achieve a photon counting that is ideal for a large range
of photon numbers starting from the vacuum. In fact, it is well known that if the detector
ideally has no threshold (as for an avalanche photo-diode) then it has a low quantum
efficiency, or vice versa, if it has a good quantum efficiency, then it has a high sensitivity
threshold (as for a linear photo-diode). Homodyning has the advantage of amplification
from the LO, which is highly excited and coherent, such that the difference photocurrent at
the output is very intense and can be detected by high-efficiency linear photo-diodes (the
overall quantum efficiency of the homodyne is originated by incomplete mode-matching
between the signal and the LO). In this way, homodyning the density matrix becomes a
perfect method for measuring the photon statistics. In addition, as for the diagonal matrix
elements the phase of the LO is averaged out [the kernel in Eq. (30) does not depend on
¢ for d = 0], it is sufficient to collect data without worrying for the phase, with the only
caution of having negligible phase-correlation between signal and LO: this simplifies the
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Figure 12. Tomographic reconstruction of & chess board shaped step function W(x, @) for increasing
dimension of the truncated matrix, dy = 2,8,32,128 from the top-left to the bottom-right. The plots
are obtained by integrating numerically Eq. (18) with kernel (30), from analytically assigned transrnission
profiles p(z, ¢), and then using Egs. (33) and (34).

experimental method greatly. However, by no means such “homodyne photodetector” can
be used to detect single events, but only statistics. That homodyning is a good tool to
monitor delicate oscillations in photon statistics was already suggested in Refs. [12, 19, 20].
More recently, the new exact method has been adopted in real experiments: in Refs. [22, 23]
it has been applied to measure ultrafast (subpicosecond) time-resolved photon statistics
of weak fields.
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Figure 1%. Monte Carlo simulaticn of 2 quantum imaging for weak signals of the font ®4”, The truncation
dimension i fixed at d»y = 32, The first plot on the left is the reconstruction from only 50000 data (50
phases and 1000 data each); the second plot is for 5 10° data (100 blocks as before). The last plot is
a reconstruction obtained by integrating numerically Bq. (18) with kernel {30) from analytically assigned
transmission profiles p(z,¢), as in Fig. 12 (here dy = 128).

13. Appendices
13.1. PROOF OF THE CENTRAL LIMIT THEQOREM

Generally speaking, the central limit theorem says that the probability distribution of the
sum of a large number N of random variables {z,}}_, approaches a Gaussian function.
For application to the scheme of repeated measurements, we only need a simplified version
of the theorem, with all variables ©, having the same probability distribution. In this case
the proof of the theorem is relatively straightforward and is next given in detail.

Theorem: Let {z,}2_; be statistically independent random variables having the same
probability distribution, with average T, variance o® and bounded third moment

Elz, ~%° < B < 400. ' (56)

Then the random variable Xy = 3 SN |z, has average T and variance e = —;{;,
and has a probability distribution approaching a Gaussian function asymplotically for

N — oo,
Proof: The first part of the theorem is straightforward. One has that

XN-—ZEmn_ NE=%. | (57)

n=1

Moreover, as a consequence of statistical independence of z, one has

I Hoie
n=1m=1 n#m=1 n=1
4 Nﬂ: IE?‘—f— E(Jz+§2) = %02 L7, (58)

namely E[AXZ] = -i';;— The second part of the proof consists of showing that for N — co

- - - e =S - -
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mean /unit-variance Gaussian distribution, namely

. . 1 2
Am Eexp(ikxn) = exp (—-2%2) . (59)

In fact, the standardized Gaussian probability distribution is the Fourier transform of the
characteristic function (59), and the Fourier transform is unique, and this will prove the
last part of the theorem. From the statistical independence and equivalence of the random
variables {z,}_; we have

Y N N

ik K
Eexp(isyy) = Eex (2, —T ={E’:‘:X [f- (T —'f}}

p(inxny) = Bexp L’Wa ;( }} B |f ey ~ 8
N
" [ s ST S T
J {E {1 e D g () -2 NSff]}
N
2 ERpy ;

_ {.I_ z _2‘{\‘7 ¥ ):_"raf'g } 1 (6[].}

where by Taylor’s formula [ERy| < C%;Ei:::l ~ |* for some constant C. Forming the
natural logarithm we have

3 2

log Eexp(ikyy) = Nlog (1 — %— & E%EERN) = —f;— + O(N—lfz) ] (61)
and hence Eq. (59). The theorem can be easily extended to more general situations, for
example when the random variables {z,}_; are not statistically equivalent, but all of
them have finite average and variance and satisfy the bound (56) for some common con-
stant B. In this case for large N X has still Gaussian distribution, with mean value
EXy = £ 5 | Ez, and variance EAXZ = & 2N E[Az2]. Tt is also easy to see that
the theorem can be proven using, in place of the bound (56), the more general Lyapunov
condition

N Elz, - Ez,|?
M}jm =] |$ 1:3’]2 = U ] (62}
AL Elas)

In fact, in this case the same asymptotic expansion (61) holds (see Ref. [37], pag. 78).
Finally, the central limit theorem is known to apply to some cases of statistically dependent
variables [38].

Necessary conditions for the theorem’s validity are difficult to state: however, it is
cbvious that the result of the theorem does not hold true at least when the first two
moments of the random variables {z,}/, are not bounded.

13.2. DERIVATION OF THE INVERSE RADON TRANSFORM FORMULA

The Radon transform of a function m(z, y) in the complex plane is given by the collection of
functions r(z, ¢) ¢ € [0, 7], which are the marginal integrals of m(z, y) along the direction
with polar angle ¢, namely

r(2,¢) = /_er _Iir_y m ({:z: + iy)e'®, (z - iy}e_”""’) : (63)

oo
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In order to derive the inverse formula of (63), we start from the definition of the Dirac’s
delta in the complex plane

(2 diy = :
5 (a) = f e, (64)
and change to polar coordinates y = —1e7%k, obtaining
. cwdkk (dp _;
5@ () = f QP -ikay :
(Q) 0 4 o -‘T'ZP (63}
where oy =Re(ae~™). Using the symmetry ag4r = —0g We can rewrite (65) as follows
todk k| [ dd .
‘5{2} =i f f pr i l-ik(.‘!¢, _
cEli (66)

The last formula is in nuce the inverse Radon transform. In fact, it is just sufficient to
write m(a, @) identically as follows

m{a, &) = fd'ﬂﬂ 50 (a — 8)m(B,B) . (67)

Then, using the polar representation (66) of the Dirac delta and exchanging the integral
over 3 with those defining 6(*'() we obtain

+oo il ;
mla, &) =j %ﬁﬂﬁ i—f/dgﬂ e~ *(os=Bp) (3, ) . (68)

-0

Finally, upon rewriting g = (2 + iy)e'® and using Eq. (63), we obtain the inverse Radon
fransform

4+ dk wd 400
miad)= [ L [ e oz, ¢ explib e - o) (69)

— G

13.3. FACTORIZATION FORMULA FOR THE INTEGRAL KERNEL

The numerical evaluation of the integral kernel as is written in Eq. (30) involves the cal-
culation of parabolic cylinder functions, which ean be connected to each other iteratively.
However, for sufficiently large n and d (around 10) the iteration becomes numerically un-
stable, and the cylinder functions must be evaluated by series summation, slowing down
the numerical calculation considerably. On the other hand, the series over v in Eq. (30)
has terms with oscillating signs and absolute value that increases dramatically with n and
d. Again for sufficiently large n and d (20) the calculation becomes unstable, and in order
to reach values as n = 40 one is forced to use extended precision. Recently, elegant factor-
ization formulas have been found by Richter [17], Leonhardt et al [18], and more recently
derived by D’Ariano et al. in a completely algebraic way [21]. Such formulas provide an
algorithm that is fast, low-memory, and stable for large n and d. Here I only report the
recipe for numerical calculation: for the derivation of formulas the reader is addressed to
the above quoted references.



200 G. M. D’ARIANO

The kernel functions—also called “pattern functions” in Refs. [17, 19, 20] or “sampling
functions™ in Ref. [18]—can be factorized as follows

(vl K (@ = 2)}m) = (m| (e - 3)|n)
= 220, (&) vm(z) — vV + lon i1 (2)om(z) — vVim F 1 (2 )V g (2) (70)

for m > n. In Eq. (70) only the case of ¢ = 0 (£ = #4) has been considered, as for
¢ # 0 the trivial rotation factor exp(—id¢g) is just needed [see Eq. (30)]. The functions
tn(z) (energy eigenfunctions of the harmonic oscillator) are connected each other by the
(stable) iteration

Uly= ——l—{Qmuﬂ,_l(:ﬂ} = V1 — lug_5(z)], (71)

o)
with starting values
r_g{2) =0, ug(z) = exp ("3:2) ; (72)
The functions v, (z) (“irregular” harmonic oscillator eigenfunctions [18]) also satisfy re-
cursion (71), but now this would he unstable, because it depends too critically on accuracy

of vg(2 ), which would involve an imaginary error function. Instead, Ref, [18] suggests using
the backward recursion

Um—2(2) = 280 1(2) — Vv (2)] /v — 1, (73)

starting from the semiclassical approximation for large numbers

e
aZ, sin

1/4
Vilm) = (——%_) sin {%afm [sin(26,.) — 26, + -}} 4 (74)

where

O = /m+1/2, Rep = arccos; ; (75)

For a demsity matrix with maximal number of photons N it is suggested to start the

iteration (73) from m = 4N and m = 4N — 1. The clagsically allowed region for such

: —1/3 : : :
quantum number is |:r] < 4N — %a4wf , otherwise one can use the asyrmptotic expression

for vy, () which are provided by the forward recursion

/m

vl 3) = lz?z—vm_l[:c) : (76)
with the starting condition
vo(2) = exp (932} Ja (77)

All tomographic reconstructions in the present paper for n = 1 have been obtained using
the above numerical recipe. For n < 1 a factorization formula is not yet known, and the
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results here presented have been obtained by summing the series (30). In Ref. [39] the
following Bernoulli transformation has been suggested

(nlgfm) = 740 S+ gl o+ ) [(" ) (T "")T“ , (73)

k=0 i

to connect the desired density matrix elements (n|glm} to the “smeared” ones (n|g|m}("
measured by inefficient homodyne detection with the kernel for unit efficiency (such
demeared’” matrix elements are Bernoulli convolutions of the true matrix elements: an
example has been given in Fig. 7). However, in practice the deconvolution (78) can be
used omly for efficiency n very near to one, and for small indices n and m, because the
convergence of the series in Eq. (78) is very slow {geometric convergence with finite con-
vergence radius). Moreover, this method is not Immerlcajlv efficient, because one needs to
sample many smeared matrix elements {n|3m)(™ in order to obtain only few true elements

{n|o|m,).
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