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1. Introduction

In quantum mechanics we call “ghservable” any physical quantity that can be represented
by numbers. An observable is associated in a one-to-one way with a selfadjoint operator X
acting on the Hilbert space Hg of the quaninm system 5, and the spectrum of X represents
the set of all possible readings from the measurement. Let us consider, for example, an
observable with spectrum equal to whole real line R, and with spectral decomposition

% fde(:z). (1)

If the operator X is non degenerate, the spectral measure dE(z) is simply the projector
on the eigenvector |z) of X, namely

dE(z) = dalz){z| , X|z) = z|z) , ety = oo —27) . (2)

Egs. (1) and (2) supply the physical observable with the minimal mathematical outfit that

is needed for stating the basic rule of quantum mechanics—the Born's rule—which at the
same time provides the probabilistic interpretation of physical “state”. The Born’s rule
can be enunciated as follows: “If we know in advance that the system is in a (pure) state
described by the vector |4) € Hg, we can predict a priort the probability dP(xx) that the
experimental reading will fall in the range [z, + da) by means of the formula

dP(z) = (Y|dE(z)]$) - (3)

The Born’s sltatistical formula (3) can be further generalized in two ways: i) considering
a prior nndetermined “mixed” state described by a density operator j; i) embracing also
the description of joint measurements of compatible observables. Compatible observables
correspond to commuting operators X; (i = 1,...,n) that share an orthogonal spectral
decomposition dE(x) = |x)(x|dx as follows

Xi= [:t:; dE(x), (4)
where x = (z1,...,2,) denotes the vector of simultaneous eigenvalues z; of X; with

common eigenvector |x). Including both generalizations, the statistical formula (3) now
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reads T B S S
dP(x) = (x|pix) = Tripd E(x)] . {9)

The Born's rule is very basic: it provides only the interpretation of “observables” and
“states” in quantum mechanics. It assumes that one knows,in advance what a measuring
instrument is and which observables are measured. However, despite any experimental ev-
idence, this assumption cannot be granted, from start, because the measuring instrmment
is a special physical system and, as such. it is itself submitted to the laws of quantum me-
chanics. In most cases the measuring apparatus is a very complicated system, and some
interpretation is already needed to understand what it is and how it works. The Born’s
rule makes no attempt to provide answers to more “operational” issues as: 1) Given a
physical parameter—on the basis of its classical definition, or of the procedure for mea-
_suring it*~which’selfadjoint operator describes the measurement? 2) How to'describe ‘the
“measirément of @ physical quantity that-apparently does mot match any sélfadjoint op-
Cerator? [this 157 the case of the phase of the electromagnotic field]; 3) How to describe
Jjoint measufements of non compatible observables? 4)i How to deseribe instrumental pre-
cision fresolution? 5) In which way the stateof the systém changes after the measurement?
The above issues urge a further generalization of the Born’s rule (5) in a way that can
be easily recognized at the mathematical level. If a gquantum mechanical instrument is to
provide information about a physical system S, the probability dP{x) must be governed
only. by the state of the system, which is m[;rnsenlul by a.density operator p. However
complex the system-apparatus interaction is, quantum mechanics must provide a prevision
of the result of the measurement in terms r}‘[ operators acting on the Hilbert space Hg
of the system § only. Depending on the measurement result x, an operator dII{x) will
turnish the reguired probability dP(x) through a rule of the general form

df’(x)m'frpdll(x}] S AP it 18)

In l_ll'dLl' to have dff\:} a8 a gemmu. [}TDb.LbI]it-}, tlw opertﬂora dTI(x) in Lq (6) must be
nonnegative {hence selfadjoint) . . 7

dii(x) >0 (7)

as a consequence of positivity of rlrenqn.v operators p. \urrnd,hzanon of pmhab: ity dP(x)
is gnaranteed hy the mmplt*lenvs» relation : iy

/amﬁ;} i s “(8)

The trace rule {6) is intimately connected with the probabilistic interpretation of physical
states and their description in terms of density operators. In fact, the linear functional
*Tr” guarantees propagation of convex linear combinations from deusity operators toward
prohabilities. In mathematical terms, the set of operators dIl(x} form a mapping that is a
. postiive operator measure—rmore precisely, a probability-operator measure (POM j—on R™.
Generally speaking, if A.A; € R*® denote possible experimental “events”, the following
map

iy =of, dfix) i ©)
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satisfies the abstract axioms of POM

e = 0, MAYz0, MR,
(10)
M(UA;)

S H(A)  for npA; =1,

Axioms (10) can be stated more generally for a probability space @ in place of R™, with
2 playing the role of the spectrum of a set of commuting selfadjoint operators in the old
Born's rule (5). For simplicity of notation in the following I will consider the case Q = R™,
whereas the integration set will be not explicitly written when integrals are extended to the
whole space, as in Eq. (8); it is implicit that integrals must be replaced by sums whenever
iz a discrete set.

Fq. (5) is only a particular case of Eq. (6) with dIl(x) = dB(x) orthogonal POM. In
the following we will be interested mostly in nonorthogonal POM’s dIi(x)dI(x') # 0 for
x # x'. How nonorthogonal POM’s enters the quantum description of a physical system?
As we will see shortly, this happens when a part P of the apparatus—so called “probe”or
“ancilla” —itself enters the quantum description of the measurement by its own Hilbert
space Hp. Then, if one considers the customary measurement of commuting observables
X; now acting on the extended Hilbert space Hg ® Hp in the uncorrelated joint state
ps @ pp, the Born's rule reads

dP(x) = Treppls ® prlx)(x|ldx . (11)
Tle trace in (11) can be evaluated in two successive steps as follows
dP(x) = TrsdpsTrp[pplx){x)]}dx . (12)

From the point of view of an observer who ignores (deliberately or not) the apparatus P,
the Born's rule (12) has to involve operators on the Hilbert space Hg of the system only,
and hence it is written in the form (6) as follows

dP(x) = Trg[psdT(x)] . (13)
‘Comparing Eq. (12) with Eq. (11) leads to the following POM
dil(x) = Trp[pp|x)(x]]. T (14)

The operator di1{x) in Eq. (14) is the partial trace Trp over Hp of an operator acting on
Hg & Hp, an hence it is an operator acting on Mg only. By definition, dIl(x) in Eq. (14)
is positive and normalized to identity, i.e. it satisfies the axioms of a POM. It is also clear
that for a given probé state pp the POM dIi(x) in Eq. (14) is generally not orthogonal.
This is the way in which nonorthogonal POM’'s enter the quantum mechanical de-
scription of a measurement, namely through the measuring apparatus. The POM dIl(x)
deperids on the considered experimental setup: for a fixed state pg of the system one can
have different probability distributions dP(x) by changing the detector and/for on the
detector preparation gp. As we will see in the following, the correspondence between de-
tectors and POM’s is not one-to-one, namely there are many detectors described by the
same POM. The notion of POM provides a new concept of physical observable that is
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more “operational” than the original one, because it is based on the definition of the pro-
cedure for performing the measurement. We will examine POM’s further in the following
sections.

We are now in position to nnderstand what is the meaning of the title of these lectures:

“Quantum estimation theory” [1]. Quantum estimation theory analyzes POM’s at a purely
abstract level. With the purpose of seeking the best strategy for estimating one or more
parameters of the system in a fixed state, the theory looks for the pertaining class of
POM’s, and then seeks the POM that is optimal according to some pre-chosen gooduess
criterion [for example: maximum likelihood, minimum r.m.s. noise, etc.] In this way the
theory allows one to find the best or “ideal” detector for such measurement. Quantun
optics is an ideal lab for Lhaﬁng"thé’ theory of quantum measurements: in these lectures
we will examine some examples of :L[Jpluu.tmn in this field. In the tool-box of quantum
optics we can find simple yel concrete devices for measuring a variety of observables of the
electromagnetic field: the homodyne detector, which measures any linear combination of
a couple of canonically conjugated observables of the field —the socalled quadratures; the
heterodyne detector, which jointly measures a conple of conjugated {hence non compatible)
quadratures; finally, high-sensitive interferometry, which poses the problem of measuring
the phase of the field, a gquantity with well defined physical meaning, however with no
corresponding selfadjoint operator.

After giving an introductory classification of different types of POM’s, in Sect. 2,
we will analyze the Nabnark’s theorem, which assures that every POM can be obtained
from conventional observables that involve the measuring apparatus itself. Applications to
guantum optics are analvzed in details in Sect. 3, with special emphasis on the heterodyne
detector, which achieves the joint.measurement of non-commuting observables. Joint mea-
surements are then analyzed in Sect. 4, where general measurements in the phase space are
studied, including the measurement of the phase of the field. Quantum estimation theory
is reviewed in Sect. 5: here, as a relevant application, a long subsection is devoted to the
method for finding the ideal measurement of the phase. The last section 6 analyzes the
notion of “instrument”, which is more powerful that the concept of POM, as it describes
also the back-action o the system after the measurement: the so called “state reduction”.
Here we will analyze in detail the general scheme for indirect measurements; with two
examples—the von Neumann and the Arthurs-Kelly measurements.

2. Probability operator measures (POM)

In this section [ briefly analvze the different classes of POM’s. The following classification
is only for didactic reasons, with the purpose of understanding step by step the new con-
ceptual issues in the generalization (rom orthogonal spectral resolutions to noncommuting
POM’s.

2.1. ORTHOGONAL POM’S

Within our general framework. conventional measurements correspond to orthogonal projes
valued measures _

diT(x)dTl(y) = dii(x)8(x — y)dy . (15)

with [ dIl(x) = i.:'I{_iuai] perfectly resolued measurements are non degenerate, namely
dli{x) = dx|x}{x] is a one-dimerisional projector on the Hilbert space. On the other hand,

:bion-
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non-ideal #nresolved measurements carry some degeneration: this is the case, for example,
of a set of orthogonal operators [1,, = [ A,) defined as in Bq. (9). with the subsets A,
exhaustive and disjoint.

Eeample
An obvious example of orthogonal POM is the speetral resolution of a selfadjoint operator
X with spectrum R. One lLas 3 :

A7) = dte — Nda = |2 e|de . : (16)

As & concrete examplesin Sect. 3.2 we will analyze the homodyne detecror. with X rep-
resenting a quadrature of the eleciromagnetic field.

22, COMMUTING POM'S

A trivial generalization to nonorthogonal POM’s is the case of conunuting measures,
namely

[l {x), dT{x)] = 0. (17)

As the operators dll(x) are selfadioint and commute at different x. an orthogonal hagis
|21 {z| exists that diagonalizes all of them simultaneously for all x [here | distinguish be
tween different sets of states oulv by changing their label. as, for example, |xy and |z}].
Hence. {Hﬂl(}{_} musl be of the form

dilix) = j dz mix

z)(z - (18)

z)

From the POM axioms it follows that the coefficients m(x|z) in Eq. (18) are probability
densities. namely

e x

z] = 1. j dx mix|z)= 1. (19)

More precisely, m(x|z} can be interpreted as the conditional probability density of getting
autcome x eiven that the eystem is known to be exactly in the state z){z|. Therefore, the
present kind of measnrement describes again a conventional measurement, however wilh
an additional imprecision (or extrinsic noige) Uhat makes the outcome x nnpredictable even
when it is known a priori that the systern is exactly in an eigenstate |z)

2} of the measured
observable.

Erample
As an example, consider the following function of the aperator X
2 1 (o — Xy
dll{s) = —=oxp s ———F— p x| (20}
Ve 2% :

1L is easy to see that dll{z) in Eqg. (20) is the Gaussian convolution of the orthogonal

3 L {+ & 5
projector |z){e|. A concrete example will be given in Sect. 3.2. where we will analyze the
homodyne detoctor with nowunit quantum efficiency.
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2.3. NONCOMMUTING POM’S

The truly nontrivial generalization of the projector spectral decomposition d £(z) is the
case of a non commuting POM dIl(x), namely

[dI(x),dITI(x)} # 0 . (21)

Here, there is no longer an orthogonal basis that diagonalizes all operators dIl(x) simul-
taneously: hence, no interpretation is possible in terms of compatible observables, nor the
noise can be considered as an additional instrumental imprecision that is added to an ide-
ally sharp measurement. Due to nonorthogonality, the resulting probability distribution is
always unsharp for any state ps of the system. Therefore, the only possible interpretation
of the noise from stich measurement is as an “intrinsic unavoidable quantum-mechanical
imprecision”. As we will see soon, this is the case of the noise arising when one jointly
measures two noncommuting observables, or, more generally, when the measuring proce-
dure involves a joint measurement, as in the case of the phase of the electromagnetic field.
However, there is no “canonical” measurement of noncommuting observables that corre-
sponds to a given POM, and for this reason the noncommuting POM is usually referred
to as generalized observable.

It is obvious that, similarly to the classification of commuting POM’s, also in the case
of noncommuting POM’s one could distinguish between: i) ideal resolved measurements—
when dfi(x) is a 1-dim projector, now ranging over a nonorthogonal (overcomplete) set; i)
unresolved measurements—when the POM is degenerate; iii) measurements with instru-
mental imprecision, when the POM is convolved with a conditional probability density.
However, in the present case, this classification is mostly academic.

Al this point one could notice that POM’s provide also new selfadjoint operators
available to the theory. Hence, why we do not use them! For example, the following
operator is manifestly selfadjoint '

X = /mdﬁ{:n}. (22)
Hence, X admits also an orthogonal spectral resolution in terms of eigen-vectors |a)(z|.
The operator X, however, does not describe the same measurement of dIi(z), apart from
giving the correct expectation value [z dP(x) = Tr(pX)—and, in fact, the corresponding

probability distribution (z|p|z) is different from the experimental one d P(z) = Tr[p dfi(z)].
Differences are evident already from the second moment, where one has

X2 = (/:rdﬁ(:c))z # l[zzr_iﬁ(:a) , (23)

as a consequence of non orthogonality of dfl(;;:]. From the following generalized Schwartz
inequality : .
i) . 2
]z*dn(m}:ﬁ Urdum) , (24)

Azl > (AXY), ' (25)

one has
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where the over-bar denotes the experimental average [ = J f(x)dP(x), whereas brackets
denote the ensemble average (f) = Tr[fp]. Tt follows that the “true” variance Az? is

larger than the one resulting from the selfadjoint operator X, despite X provides the
correct average ¥ = (X} for all states . In other words. nonorthogonal POM’s introduce
an additional noise that arises from violations of the operator function calculus, namely

Fe /f(rr:'_] dfi(e) sk fEY.  where X :f.c dliEay, - (26)

According to Eq. (26), in order to describe the experimental probability distribution
dP{x) = Tr[pdII{x)] for any p, one would need the infinite set of selfadjoint operators

X% = [f‘dfhx} T (27)

But, why do we use the POM dIl{z) instead of the selfadjoint operator X, cousidering
that the latter can have sharp probabilities? Simply because X does not describe the mea-
surement of the physical parameter that we meant. Moreover, notice that the selfadjoint
operators defined in Eq. {22) do nof solve the problem of joint measurements, because
they generally do not commute, namely

X = f,f:q-dﬂm: [A11¢c), dT(x")] # 0 = (X, X1 £ 0 (28)

Eraraple _ o

In the following « and al will represent the usual annihilation and creation operators of a

selected mode of the alectromagnetic field, with commutation relation [a. rz'k} = 1, and with

vacuum vector 10}, Le. |0} = 0. It is convenient to adopt the complex notation f = f(z,%)

to denote generic functions of 2 € C (2 and = are treated as independent variables).
Consider the following POM -

diifs, %) = —Zje)(s}, zeC. (29)

s

n Ey. (29) 12} denotes the customary coherent state

(z) = D{2)|0) = exp(zal — Za)j0} . (30)
which is obtained by displacing the vacnmmn [0Y by the operator D{z). [t is obvious that
dil{z,Z) is not commutative, just because {z|='} # ('12). In Sect. 3.3 we will see that
the POM (29) describes the ideal heterodyne detector, whicl provides the optimal joint

‘measurement of a couple of conjugated quadralures—the optical equivalent of position and
momentum of an harmonic oscillator. For the moment. just notice the following identities

Bt et Sk Lt e e e Y ‘
X = f{lll(.,,.,f} Rez = 5 (rr.~ i ) ) i _/fll"f'[*.n,}l?n,; = (r:. —rz.) : (31}

with X and ¥ having commutation (¥ =iz
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2.4, NAIMARK'S THEOREM

In the introductory section we have already seen how nonorthogonal /noncommuting POM’s
arise in a measurement description that involves the apparatus. In this case, the POM just
plays the role of the customary projector in the Born's rule used by an observer who ignores
the apparatus. Let us recall in formulas this Born’s rule

dP(x) = Treyp [_ﬁc, v Jﬂp|x) {}(H = 1"r5[ﬁ,5(1]1(x}] ; (3'2)

with pg and jp denoting the states of the system 5 and the probe P respectively, and X:
denoting the observables that are measured, with X; = j'u:glx)(x|dx acting on Hg & Hp.
The POM is given by

dil(x) = Trp{ls @ pplx)(xlldx (33)

namely, the POM is the partial trace over Hp of the probe preparation pp with the
projector of the § 4+ P observables. 1t is very remarkable that every POM can be always
represented as in Eq. (33): this is the statement of the Naimark’s theorem [2], namely
“Given a POM dfl{:x) in the system Hilbert space Hg, there is always an extension He®@Hp
of the Hilbert space, a pure state [p), and an orthogonal POM |x){x|dx, such that

dfi() = Tep(ls @ [0pYwel Ml .  (39)

As a consequence, using POM’s in quantnm mechanics is not in conflict with the dictum
that “only observables can be measured”, because every POM corresponds to a customary
ahservable in a larger Hilbert space. But such an observable is not unique, and may have
“ynpatural” physical meaning, because it involves the measuring apparatus itself. For the
proof of the Naimark theorem the reader is addressed to the original papers [2] or to Ref.
[3] (a sketch of the proof is also reported in the Helstrom’s book [1] and in the book of
A. Peres [4]). In the following, I will illustrate the theorem on the basis of two examples
{collected [rom the same Ref. [1]), which T think can be interesting for applications to
quantum optics. |

2.4.1. Example I: the quantum roulette wheel
Consider the following (generally non commutative) POM

A
Moy =9 ) | m=1,..,n, (35)
fo=l I
wlere
M e & o
Gty S Bat, EUESCE ER, B Elb=le (36)
54| =1

For fixed 7 the projectors B give an orthogonal resolution of the identity. The physical
meaning of [1,, is clear: the POM (35) describes a measuring apparatus where one of
M different observables is selected at random at every measurement step, with ¢; as the
prabability of the i-th observable.

The Naimark's extension of the POM (35) can be obtained as follows. Consider an
M-dimensional Hilbert space Hp. with {|w:)}iz1,...m as an orthonormal basis spanning
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Hp. A set of orthogonal projectors £, E,, = b, E,, in the extended Hilbert space is given
by

Jru z &'", @lwl ("'-'1 . (37)

=1

The Naimark extension of the POM (35) is given by the projectors in Eq. (37), with the
following state preparation of the probe

lipp) = Z & (38)

i |

In fact, one can immediately check that

Trp{l @ lvp{ve|En] = Z,f. EQ =1, . (39)
1=
In this example, the probe P plays the role of a random device corresponding to a sort of
fquantum roulette” wheel,

242, Ezample 2: commuting POAM s
Let us consider M elements I1;, of a finite commuting POM. Upon denoting by {|m)} their
common orthonormal set of eigenvectors, one has

TR A anb () | e (40)

e )
and, a,q tmirmuv mentioned, A* ) > 4 are interpreled as conditional probabilities, with
}H‘f"i' = 1. As in the previous example, let us consider a probe in an M-dimensional

Hl”)t’rt bi).-u ¢ Hp with {|wg) }e=1, . a1 denoting an orthonormal basis. The following linear
combinations

A
[Am) = X G 2 lr). (41)

k=1
can be written in terms of unitary transformations of a fixed probe vector |ip) = fuy) as
follows

) = Unm|ibp) | ' (42)

where [7,, are unilary operators. With the probe preparation [ip) = |wy}, the Naimark
extension ol the POM (40} is given by the orthogonal projectors

k.= Z [m{m| @ !'}'m]u.-k}(wkﬂj’,n-. (43)

T
ln Fact, it is easy to check the lollowing steps

"llj'p“wi‘)(;JH'E;,-J = Z Ln’;}(mrﬁ‘p[lw;){u”'f:j! lw;_-)(m;clfﬂ

m

Z [ree) (m' ll,a.[f e f1 ) ..J;|{ e Hwe]) = Z |l | |{ A |ewic) |2 (14)

n Wi

= 3 |my(m|al =1 .

W



148 G. M. DPARIANO

3. POM’'s in quantum optics

[n this section I illustrate some applications of POM’s to quantum optics, where we

have detectors for measnring observ-
ables of the electromagnetic field, with
spectrum either discrete—as for the
number of photons—or continuons—as
for the quadrature of the field. We a
will see that by homodyne detection
we can measiure any linear combination
of a couple of canonically conjugated
observables—the so called quadratures
of the field: this is a fortunate situation,
which does not occur in the quantum  Figure 1. Equivalence of a nonideal (n < 1} detector

mechanies of massive particles, and that  with an ideal one preceded by a beam splitter of trans-
missivity .

makes possible to detect even the state
itself of the field [for this topic see my
other set of lectures in this same book [5]]. A long subsection is devoted to the heterodyne
detector, which jointly measures two conjugated quadratures of the field. Joint measure
ments will be analvzed in more detail in Sect. 1.

4.1 DIRECT DETECTION

The photon-count distribution for a photodefector (with a photo-tube small with respect
to the colierence length of radiation) is given by the Mandel-Kelley-Kleiner formula [6, 7]

_ (-?IH'I.T(.' "

Py(n) = exp{—-a‘;rﬁa} dliina (43)

1!

where i denotes normal ordering, and n is the overall quantum efficiency of the detector
(0 < n < 1). For simplicity, I consider only monochromatic fields, with a denoting the
annihilator of the nonvacuum mode: however, Eq. (45]) can be written more generally in
the wideband case, where instead of the operator afa one has the Pointing flux operator
{with time-ordering and integration over the detector time). A simple derivation of Eq.
(45) can be found in Ref. [8]. For 5 = | Eq. (45) gives the POM of ideal photon-number
detection. In fact, from the identity

I

[0){0] = lim > 5—'“? (afyal = lim(1 - )22,
f— i

(46)

{=1)

and exploiting the recurrence

: ((_{?,1]” = rr.Tu.triTrf. - l)..,[r;jﬂ. —n+1}, (47}
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one obtains

Pn= Y Pm(i) (-t (48)
k=n
where
P(n) = Pi(n) = (|n){nl} . (49)

In Eqg. (49) |n) denotes the photon-number eigenstate afain) = n|n). In other words, the
POM for = 1 is given by

M(n) = |n){n] , (50)

whereas, more generally, for 7 < 1, using Eqs. (46) and (47) one can see that the probability
distribution resulting from Eq. (45) is a Bernoulli convolution of the ideal probability (49),
namely the detector POM is given by

My(n) =3 (k)ﬂ”(l — )* k) (K] . (51)

T
k=n

Eq. (51) provides an example of a

nonorthogonal commuting POM, with d
a form similar to Eq. {18) (here for

a discrete spectrum) with conditional

probability density m(x|z) given by a @ ¢
Bernoulli distribution.

Now [ show that a detector with
guantum efficiency n < 1 is equiva- 4
lent to an ideal detector preceded by a
beam splitter of transmissivity . Such a
“quantum-equivalence” between devices
is schematically depicted in Fig. 1, and
is relevant for detection theory in quan-
tum optics. We have just to remind that, apart from trivial phase changes, a beam splitter
of transmissivity n affects the unitary transformation of fields (see Fig. 2)

( Z) i ( b ) U= ( ~<1’?—U:J‘“ (1;1?2)”2 ) ( {5) ‘ o2)

where all field modes are considered at the same frequency. Hence, the output mode & in
Fig. 1 is given by the linear combination

Figure 2. Field modes at a beam splitter.

o = t?a4 (1-m)"%. (53)

The mode a is entangled with the vacuum mode u, which here plays the role of a “probe”
mode. The POM is obtained by partially tracing over the u mode as follows

fl,(n) = Tru[L ® [0)(0]uln)(nlu] = W(0]: exp(=a’Ta)(=a'Ta' )" nt: [0), . (54)
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Eq. (54) gives I, (n) in form of a normal-ordered expectation between coherent (vacunm]
states. Here we can use the following identity valid for any function of a linear combination
KNa+ b of two modes a and b

o8 F(Ka+ Hb (Kot HrJJT) A = f(Ka+ 3. Kal +T3) (55)
with |} denoting a coherent state for mode b only. Using Eq. (55) we immediately obtain

('!;ﬂtfl)n )

, (56]
.

fT{n) = exp(—naT:z)
which gives the probability (15).

3.2, BALANCED HOMODYMNE DETECTION

The scheme of a balanced homodyne de- .
tector is depicted in Fig. 3. The “signal” mode
a is combined by means of a 50-50 beam split-
ter with a “local oscillator™ (LO) mode b oper-
aling at the same frequency of a. and prepared C
in an “intense” coherent state |z). The signal
mode a here plays the role of the “system” 9, 3% d ™
whereas mode b is the “probe™ P. The field at v
the output of the beam splitter is described b (LO)
by a “sum” mode ¢ = (@ + b}/+/2 and a “dif-
ference™ mode d = (‘u % b}/vﬂl accnrdmg ) Figure 3. Scheme of the balanced homodyne de-
Eqs. (52) for n = 0.5. These output modes are yui4qr,
detected by two identical photodetectors, and
finally the difference of photocurrents (at zero frequency) is rescaled by 2|z|. Thus. the
output of the detector is given by the following operator

To efe—dld = aTb—|~bFu
P TR

(57)

Our intent is to evaluate the POM of the detector. or, in other words, to obtain the
probability distribution of the output photocurrent Ip for any generic state p of the signal
mode @. 11 is easier to evaluate the generating function of the moments of Ip

XV = (e (58)

4 ab

and then obtain the probability distribution of Ip as the Fourier transform of x(A), namely

T2 dXx g A i
= . el :._I_ ':, s} . :'_l-)
dP() = dl [--:u '-'33'1" (P >:u'.- o

Using the Backer-Campbell-Hausdorff (BCH) formula [9] for the SU(2) group, namely

7 A 1 e i —‘:Tu‘ e ]
exp (z—:u]b—ff;'u) = e“q’i" (l + |'£,'|")‘(b : ) r:_"“i’ = %Lan |€] , (60)
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orie can normal-order the exponential in Eq. (58) with respect to made b as follows

S Pt
j‘\ 5 1 23 1 K e O} Iy )ﬁ
v(A) = <:=:¢p {r 1;.-;.n1(2|:_|) b'rr.J |:{'UH (2\ )] exp [i fan (z._}z[) -:1.“;}>% o (B1)

The partial trace over b can be evaluated easily as follows

(¥ ]

i
X X i A
yiA) = /s-'x_ [i‘.;m —) ?u} ln:us (--—-— ] oxp |:'|" 1l (——) ;(?T]
Cili - -z|:|) gl

with the probe mode bis in the coherent state |z). Using now the customary BCH form ula
valid for [4,[4,B8]]=[B.[A, B]]=0 :

exp A exp B = exp 1(;1. + B+ =[A4, .’]) : (63)

b

one can recast Bq. (62) in normal-order with respect to a, namely [10]

XA = (64)

P e ; A | G ;I A 4
<: exp [f” sl (z—q—) rr,'} axp [—2 sin? <F> (a.Fu + |;r|*}} eXp [afsm ()l—z|—> u?} >

Fq. (64) simplifies greatly in the strong-LO limit 5 — oa, where only the lowest order

terms in A/|z| are retained, and alais neglected with respect to z{%. One has

) ,/\ Sopr R 1\2 r\ it b ] Lt 7
VU lim x(A) = <: exp [z;r‘-‘“’a’-] exp {— —\%—} oxXp [-r.;e td’ﬂ-rJ :> = {expliAdyl}, , (65)
O | 2 8 2 e
with ¢ = argy and d; = %(c'ﬁf-“‘” + ae~'®) denoting the so called “quadrature” of the

field mode a at phase ¢ with respect to the LO. The generating function in Eq. (65) is
equivalent to the POM

’ oo A
dll{z) = do /. ﬂe_'“ expltddg] = dz #{w — ay) . (66)
L, 2
Hence. in conelusion, the balanced homodyne detector in the strong LO limit achieves the
ideal measurement of the quadrature @,.
It is easy to take into account nonunit quantum efficiency at detectors. According to
Eq. (53) one performs the substitutions

&) . Ay P L
& = 'rg" bt (L= r“l‘un. s w, v vacmnn modes {b:)
‘" ; fn e
d = M4 (1= 5, (68)
and now the ontput current is rescaled by 2|z|n, thus obtaining

" (1—1n) :
Ip =@+ \/Q—(ad, — bg) + OJ=[™") (69)
0
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with O(|z|~") denoting terms vanishing as |z[~". Then, by tracing-out the vacuum modes
w and v, one oblains

S s i ks iy iy ; _ I S
dlly(a) = fl:rf 2 mihe g iXag il VA 00y = da:f‘;_’s‘ﬁ—mt:—mﬁ-ﬁ =
i

2
1 (:E: = fi,f,)z
] {i:j’:"""_"_'—'—_ B et — ) ?“
T [ 2487 il
i
where
; 1 =
Al = —1 1)
2 - (71)

Thus, in the nonideal case the POM is the convolution of the ideal POM with a Gaussian
conditional probability; as in the case of photodetection, again nonunit quantum efficiency
makes the POM nonorthogonal.

3.4, HETERODYNE DETECTOR

Heterodyne detection provides a methed to perform joint measurements of two conj ugated
quadratures of the field [11]. The detector and the relevant field modes imvolved in the
measurement are outlined in Fig. 4. The input field By, impinges into a beam splitter with
transmissivity 0, and has nonzero photon number only at frequency wy + wip. The LO
works at a different frequency wy, and the output photocurrent I, 15 measured at the
intermediate frequency wyp. In the time-domain the measured photocurrent is given by

-";uu.!(t:l = E;;t(f)ﬁj—u!“) ¥ (72)

where E% denote the usual positive and negative {requency compenents of the field, con-
tajning the annihilation and creation operators, respectively. The output photocurrent
analyzed at frequency wyp is given by

5 5 T | >
Lour{wir) = / B Dt e R / ;—:.EJ;Ltw+wrF}f?L:(w)- (73)

The only field modes that are nonvacuum are the signal mode a; at frequency w + wir
and the LO b at frequency wy. The integral in Eq. (73) involves modes at all frequencies:

the terms that survive in the strong-LO limit are those linear in b or h| , namely b:ra;; and
hgu-:[._ both having frequency difference equal to wyp (all other nonvacuum modes depicted
in Fig. 4 do not invelve the LO in Eq. (73)). The detector behaves ideally in the combined
limits of strong-LO = — oo and perfect transparency 8 — 1, with y = |2]3/8(1 — ) kept
as constant. In fact, the output rescaled photocurrent £

7 = lim v ot (WrE) (74)

i |
— 1yfz] =+ o

t-
= ok,

is given by

Z = |z Yalty 4+ b)) + Oz 7" (75)
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Figure {.  Schieme of the heterodyne detector and relevant field modes invelved in the measurement,
Dashed lines denote vacuum modes, Signal input modes are denoted by o, LO modes by b, The subindices
#, 4, and ¢ refer to the frequency of modes: s is for signal band around wy 4wy p, s for LO band aronnd
wo, and 1 s for image band around wy — wyr. The output photocurrent is detected at the intermediate
freaquency wyp,

and after re-phasing the field modes Z hecomes

- i g ) \
Z=gl +a;. _ (76)

The complex operator Z is equivalent 1o a couple of commuting selfadjoint operators
&= Zptal; (2,2 =Zp. 2] =0, (77)

and is described by a quantum mechanical probability density in the complex plane
plzr,21) = plz.7). The probability density is the Fourier transform of the generating
function of the moments of 2. and in complex notation is

.d',!}\ 1
v A I’J .-:‘I_—':l _-.'5-—,? Lo J &

where (...}, denotes the ensemble average on both modes a, and ;. In the present case the
signal mode @, represents the “system”, whereas the image-hand mode «; is the “probe”.
The partial trace over the probe is carried out as follows

(ﬁ,,\z“! _xz>

b}

A2

So
& i

[

BETE

st L

= T, [p s DA ;,],] : (79)

b f),g(,x)] (O1D(=)10): = Tr, [pa Do N)

where D(fr) = exp{rm.'l —aa) denotes the usual displacement operator, and sub-indices s,
pertain signal and image mades, respectively. Auti-normal ordering 4 in Eq. (79} follows
from the customary BCH formula (63) applied to the displacement operator. Comparing
Eqs. (78) and (78) the POM of the detector is obtained in the form

o0
=
S

SRR G
L )\. e = > o
dfi(z3) = | dA 537, by, die, (

e
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and with a little algebra one has!

d.r.

dll(z,7) = Ez}(1 (81)

Hence, the POM of the ideal heterodyne detector is the coherent-state projector.

[t 15 not difficult to take into account nonunit gquantum efficiency at photodetectors.
For simplicity we consider the case of 7 constant versus w within the considered frequency
hand. Similarly to the case of the homodyne detector, we add a vacuum mode to both a,
and a;

R GRE e Y, (82)
a; — M+ (1-n)', (83)

with © and v denoting the vacuum modes at fr'equencms wo 4w F and wy —wyp respectively.
Upon rescaling the output photocurrent by an additional factor n'/%, we obtain

A 1= ST
Z=a,+ T A a:-r - - el (84)
\/ 7

The two modes u and v enter the definition of the new enlarged “probe” of the detector,
and must be traced out. In this way one obtains the POM

d?\

d"r.l ck 0‘) = a/ 7% &\“m“ D ('}‘) A 1:?}{U|D 'u 'r;)l”)!w 5 {85)

where A, = ';;71,\. The POM (85) is the Gaussian convolution of the ideal POM

i § dz:\ o 5 Iz diz _:J-zg,:z \
: ") = pREA e A e T = : ZLaE 8
AT o] af - DN iy fm'-;;'j Eodfi(z,2),  (86)

where ,,_\l'.a = G

i
Before continuing further, it is instructive to see an alternative derivation of the het-
erodyne POM (81). We have seen that the heterodyne detector measures the complex

"Here is the proof:

d* A - dzf\ AR ‘a. —-.ia d|A = Tt m o non
f = DL‘JA:/TF Al it j | | M! Z } | EQ Z{n? ( T} '

n=10 ri=4

and using the identity (46) one has
d* A
f TX BN ia= [0)(0}
Using the last equation we ohtain

fﬂﬁﬁ-m . D[)‘} e / ﬂﬁ—l)\p(:aqnl_&ﬁt.—ﬂa—m) =t ﬁf(,,_“.}w”u”’j{__ﬁ} = o) {e]

T ™
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phatocurrent Z = a, + r::[. with a; playing the role of the probe. This assertion is trans-
iated into mathematical terms as follow

dl(z.2) = d%2 {0}y 2 — Z)]0); , (87)

where 4 is the Dirac delta in the complex plane

D T
e e / W_EF_,[.—.r._,:‘J.\..[,...-H)A . (88)
The form of Eq. (87) does not depend on the operator ordering, because {f::’ 21-] =iz
partieular, we can usé normal ordering with respect to a, corresponding to anti-normal
ordering with respect to a,. Then. the vacuum expectation is evaluated just upon setting
a; to zero, namely

ATz, 7) = A%z balz—a,) 54 (89)
By definition, one has
: St O R o RES T ’
thglz = ag) = | — alF—wali=(@—nalh . f e FEATEA AN (90)
i i

namely Eq. (81).

4. Joint measurements

I'rom the derivation of the POM of the heterodyne detector we can understand the basis of
a joint measurement of two non cornumuting observables, The heterodyne detector performs
a joint measnrement of any couple of conjugated guadratures, say for example

X = %(_r,r_.n_ + a:[] : Y o= %{:al - (5], (91)
wilh
s t
[.r\ y }f-‘ = .'_). ¥ (.{j2}

t

The method for jointly measuring X and Y consists of making a conventional measurement
of two commuting currenls Zp and Zjp that have the same expectation values of X and
Y, namely

(X)=(2ry., (Y)=(Z1). (93)
or, in complex notation

(as) = (Z) . (94)

Eq. (94} emphasizes the {act that measuring X and Y jointly is equivalent to “measuring
the complex aperator” a,. Now we will see that the price to pay for jointly measuring non
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commuting observables is an additional noise. In fact, let us evaluate the ran.s. fluctuations
for X, Y, and for Zg, Z;, and then compare the respective results. One has

(AR = (AR +(AKE) = (AKY) + 7, (95)
and, similarly
(AZ) = (AV) 4+ (AV2) = (AVF) + (96)

where X: and ¥, are the same quadratures as in. Bq. (91), but for the image-band mode
a;. It follows that the experimental probability distribution of the photocurrent Z has the
same average of the complex field a,, but with an additional noise. From Egs. (95) and
(96) we deduce the “experimental” Heisenberg relation [12, 13] '
1

(AZENAZ] 2 7, (97)

"

which should be compared with the customary inequality

(ARB(ATY 2 (X, VD (9)

L
=
Notice that the usnal Heisenberg relation pertains the intrinsic uncertainties of a couple of
conjugated observables, and thus can be used only to analyze conventional neasurements
of one of the two observables at a fime {the uncertainty of the other observable refers to a
“preparation” before the measurement ). On the other hand, the case of joint measurements
is described by the new Heisenberg inequality (98): here, the “experimental” noise is
double than the “thecretical” one, and their relative factor 21s usually referred to as “the
additional 3 decibels (3dB) noise due to the joint measure”. Such noise is of quantum origin,
and is unavoidable. This can be easily understood with the aid of the following argument.
The 3dB noise originates from the vacuum Auctuations of the image-band mode, which

is needed in order to have a commuting current 7. For this purpose one needs to add

u._}—not a;-—to the signal annihilator ¢, and this produces the anti-normal ordering for
the POM, which corresponds to the 3dB Gaussian convolution

dll(z,2) = d%(0]6fz - Z)\0Y; = d%z: 82— as) ca
P Kz :
2 / S e e tD,(). (99)

In the following we will see that the 3dB additional noise is equivalent to measuring each
gquadrature with effective quantum efficiency n = %

41, MARGINAL JOINT MEASUREMENTS

It is clear that once a method for measuring the complex field @ is given, then any function
of the field can be measured. Such measuring scheme resernbles a “classical” measurement
in the phase space, where one jointly measures the canonical pair and then evaluates
functions of it. Qperatively, the meastirenent works similarly to the classical case, namely,
after detecting the complex photocurrent 7 and obtaining the reading z € C, one evaluates
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the furction w = f(z,7). What is the POM that gives the probability distribution for w?
The answer is simple: the probability density for w is just the marginal probability of
p(z, Z), namely

plw) = /d?: plz, 21 6(w— f(z,2)) . (100)
Hence, the POM is the marginal POM of d (z,7)
dlf(w) = dwfd'[}(z,z) 8w — f(2.7)). (101)

The Dirac delta function in Eq. (101) must be defined carefully on the complex plane,
depending on the particular analytic form of the function f. Using Eq. (87) ane obtains

Afl(w) = dsduw (0} — £(Z, Z))[0) = dw s 8w — fla,al)) 14 (102)
In the following we will examine some relevant choices for the function f.

4.1.). HMield yuadrafure

[ield gquadrature corresponds to the function f(z,Z] = Re(ze™*?) of the field. In this way,
from a joint measurement of any couple of conjugated quadratures, one obtains a marginal
probability distribution for any desired single quadrature ag. In fact, from Eq. (102) one
has

= " . +ou (}/‘\ ¥ 1 3 Ly
dil{fa} = dz:0{m— &a)ia= rl:::f I_—.--:“\re_?ﬁm?r:“‘)"l'-“
feom BT
2 ; .
= drx —exp[-2{z — 4s)] , (103)
VT '
which is a Gaussian with variance A* = }, as expected from Eq. (95): this is just the

44D noise due to the joint measure. Comparing Eq. (103) with Eq. (71) we immediately

recognize that this noise corresponds to an effective quantum efficiency 1 = g
4.1.2. Freld tntensity
This case corresponds to the function f(2.Z) = |z|*. One has
- : - - dA L o
dil(w) = dw:o{w=ala)ia=dw [ —e¢ Tt Lo 18
1 i
t _
e . i i }
= dmf .-_"f_l'\'"“ - a)\)"h“L = e ¥ (L04)
2 [u,ru,]! ; |

The POM (104} i an unsharp version of the ideal POM lﬁ(}) Notice that the function in

Fq. (104} is not a Poisson. because here it is regarded as a function of w-—not versus ala.

4.1.3. Phase of the field i

This case is particularly interesting, as in practice it is the only way to define a quantum
mechanical measurement of the phase of the field, namely through the measurement of the
polar angle of a complex photocurrent. It is instructive to analyze briefly the experimental
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procedure for obtaining the marginal phase distribution, This is illustrated in Fig. 5, where,
as an example, a computer simulation of the experimental procedure is illustrated for a
squeezed state. Bach experimental event consists of a reading of the complex heterodyne
photocurrent, which is represented by a point plotted in the complex plane of the field
amplitude. The phase value inferred from the event is the polar angle of the point itseif. The
experimental histogram of the phase distributions is obtained upon dividing the plane into
“infinitesimal” angular bins of equal width d¢, from —r to &, then counting the number
of points which fall into each bin. In Iig. 5 the simulated experimental histogram (10
events) is compared with the theoretical probability as obtained [rom the marginal phase
POM of the heterodyne detector. Formally, the marginal phase POM is given by

dTi{(¢) = dep: 6(d — arga) 4 (105)

where the meaning of the 6 function is the marginal integral of the §y distribution over
the polar modulus on the complex plane, namely

: T o =i . o Flz.:\ e
8¢ — argz) = /} pdpba(pe™ —z) = ]U j;j ol e}{p V(e — Z)A — f_".l‘_‘.‘J L1155
(

One has

oo 2 T : -y ;
d ]nl((,.‘,ll} = dt‘.")/ f d__{f:,_v'r;{r:";')l—r:"‘d').}e—).aﬁ)m'I
L 2
tdeh d? A Lyy2 f)()\J
= : g = | — T
i /C ™ . [Im(Ae—*®) — i0t)2 (107)

Equivalently, evaluating the marginal POM of the coherent-state projector, one has

= dh ; e e F[lf'n +m) + 1],
di(¢) = _zfn /“ drjvre" }( re “|—Z L eimle J—VG??_:';T—

s Tigre=11
We will discuss this POM later and compare it with the ideal one coming from quantum
estimation theory.

in)(m| . (108)

5. Quantum estimation theory

Guantum estimation theory analyzes POM’s at a purely abstract level, with the purpose
of seeking the best strategy for estimating one or more parameters of a quanfum system.
The theory looks for the general class of POM’s that describe the specific measurement,
then optimizes the POM according to some prelixed goodness criterion. In general, one
can say that the problem resorts to seeking the best strategy for estimating a set of
parameters § = {#;,0,,...,0,} of the density operator p(#) of the system (for example the
position and momentum of a particle, the amplitude of a field mode, etc). The observational
stralegy for estimating # is expressed by a POM that pertains a generic apparatus along
with its “data processing rule”, i.e. the evaluation of a function of the experimental resulf.
Let us denote by d1i{#) the generic POM. Generally, the result of the measurement—i.e.
the estimated values—are different from the “true” ones, and we will denote the true
values by # and the estimated values by .. Then, the joint conditional probability density
p(0.]68) of estimating #, for true values @, is given by

p(0.]0)d™0 = Tr[p(0)d11(0,)] . (109)
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Figure 5. Computer simulation of it heterodyne phase detection experiment for a squeezed state with 4.53
squeezing photons and 20 photons in total, The histogram for 5000 events is compared with the theoretical
result from the POM {108).

The goodness of the POM is cousidered on the basis of a cost function C'(8,,8), which
asgesses the cost of errors in the estimates., Examples of cost functions are the delta-
funciion cost

C(6-.0) = = JJ 66 —6), (110)
Tl
and the guadratic cost
Cl0..8) = = (6re—0:)° . (111)
k=1

More generally. in Eqgs. (110) one could consider different weights for every component, or
one can introduce a positive cost matrix in the quadratic case {111). We must provide also
an o priopi probability density z(8) for the estimanda, Then, the average cost ineurred
when the strategy represented by dI1(#) is emploved, is given by

C= /rimff3(0)(.'{'-‘L.f)]p[f3‘,|ﬂj - ’{'r/}v(e.)di’lm..), (112)

where W(#) denotes the selfadjoint risk operator

Wib.) = /MH:('(A)C(E}., 8 5(8) . (113)

We want now to select the POM that minimizes the average cost ' under the constraints

dii(e) > o, /dﬂw} =1, (114)
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This can be done as follows. Both operators df[(ﬁ} and ﬁ’(-‘?] are limited from below: then
the minimum C is achieved when their product dT1(8)}(6) under trace and integration in
Fq. (112) is minimum. [t follows that the equations for the optimal POM can be written
as follows

[V(8) — P]dTTe(0) =0 | W) -Y >0, (115)
,Where Y denotes the minimum risk operator (also called Lagrange operator)
V= ngn{ri(a)}. (116)

[t )5 clear that the solution of Eqs. (115) minimizes the operator under trace in Eq. (112).
In fact, upon integrating the first of Eqs. (115), from the definition of Y it follows that

| fw{mdfr(e) > j;/am_{m 2 (117)
Henee, V is also the minimum integral under trace in Eq. (112}, i.e.

P fﬁf‘(r}){iﬂu(m, Conin = TrY (118)
Notice that the Lagrange operator is selfadjoint by definition, and hence

¥ = / W(8)dTT,(8) = /dﬁn(ﬂj}‘if(ﬁj . (119)
namely the optimal POM also salisfies the hermitian conjugated of equation (115).
_ In general, solving Eqs. (115) and (118) is a difficult task. In the following subsection

we will analyze in some detail a relevant example: the canonical measurement of the phase.

5.1, CANONICAL MEASUREMENT OF THE PHASE

The estimation problem is the following: to estimate the phase-shift ¢ of a fixed density
matrix pp undergoing the unitary transformation

J(’J((J) = e—{ztaéﬁnedatmﬁ : “2”)

First, we observe that ¢ is defined on a circle (a 27-window), because ala is an integer
operator. Then, we notice that the family of states {p(¢)} is “covariant”, namely it is of
the form

T el
pla) = Uwig{."dj : {121)

where f_ﬁ;",p are unitary operators representing a group—in the present case, the abelian
group /(1) of rotation along one axis. For a covariant estimation problem, the optimal
POM must be itself covariant. This should be true at least if we want a likelihood p(¢|¢)
which is independent on ¢ [for a general study of covariant estimation problems see Ref.
[14]] i.e.

p(8|8) = TrUpol1] dTi()] = comst. , (122)
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which, due to invariance of trace under cyclic permutations leads to

dli(9) = Udfi(0)01] (123)

Hence, the problem is restricted to find only the operator {iltl(f}) = d¢ Ey/(27). Consistently
with the assumption of likelihood constant vs ¢, we consider the case of a prioyi unknown
parameter ¢, with uniform probability density ) = -2]?. For the moment, we address
only the max-likelihood estimation problem, corresponding to the cost function

Clibes ) = —banlths —B) (124)

where §,, denotes the 2r-periodic delta function. With the above choices, the risk operator
is given by
db

- i A R £ Jlideras e e T :
W(g) = [ 5200002 Oapol] = =5 Tspoll-s. (125)

and the Lagrange operator becomes diagonal with ala, namely

86 3 o oa ot 9
e h/{:zn;'z“'ﬁf‘*f’ﬂb“qﬁv (126)
; fo T e | i

kP = - [ eI Eopoll) = bz {Kopolk) - (127)

Thanks to covartance, the estimation problem resorts o seeking the solution dII(0} of the
following equations only

W) — PJdli(o) =0, WO -Y20. (128)

Notice that from Eq. (125) one has W(0) = _E;I.Tr!a”: hence, Egs. (128) can be written as
follows

(ho+ 218 =0, . fot+2nV <0, (129)

‘The problem is still too difficult, and we restrict attention to the case of pure states
g = |){2p]. We seek solutions of Eqs. (129) in the form
dg

p e
5l (130)

dTI(0) =

where |¥) is a (generally non normalizable) vector in the Hilbert space. The Lagrange
operator has the following nonvanishing matrix elements

3 1
BV} = =5

[ L. ]
N b fa b iy = e ks .
s (RN IR) = == 7k% > Yatbw s (131)

=l

where ¥ = (k|7v) and 4y = (kjw). Completeness of dI1{¢) implies that

B =< /df{((p)[m} = fi_fﬁ-ia”ifwﬂi(-n|»f)<¢-|m; = by | {n7)]* (132)

()
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which requires |yx| = 1. Moreover, reality of 3 needs arg(7x) = arg(yn) for ¥y # 0. Hence,
we write

I Y Pr # 0 ;
Y = { s Y =0 (133)
leading to
(K|VIk) = ——-lwlz [al - (134)
n=0

Now, we only need to check Eqs. (129). The second equation means that for any vector
[v) in the Hilbert space, one has

0 > (vlpo + 27 Y|v) = | 2 v;drn, }: [vn}?|4n] Z e - (135)

n=( =)

This bound is satisfied according to the Schwartz inequality

= 9 (&} 9 o0 ! 3 2
|2 viaba |3 wilulnm] = | 3 vl 2valepul |

il

n=0 n=({) n=0
n=0 k=0

It remains to show that the first one of Egs. (129) is also satisfied. One has

(Kl[o + 27 Y]éalm) (|9} (1) (vlm) + 2m (k| DIk) (kly) (7Im)
[(El0) b} = () (L) (k) (ki) (yTm)
(RlEY (7L~ Iy lm) = 0 (137)

where we have considered that due to Eq. (119) also the following identity holds true

il

il

P = ~—dabo (138)

In summary, we have proved the following assertion: the POM for estimating a phase shift
of a pure state [$){¢| with max-likelihood cost-function is given by

o
dll(¢) = ‘p.*w “*‘)h)(-;{p""*ws j—i 3 emtlmemlétitin—xm) ) (n) | (139)

nm=0

where the phases x,, depend on ihe state as follows

L {arg(({;efvﬁ)), Enm iﬁ 0

In practice, it is not too restrictive to consider states with a well defined phase—i.e. with
Xn = nr—which are just rotated by an angle v of real positive states having all y, = 0.
In this case the optimal POM takes the canonical form

dil(¢) = :lqb Y e MR iniim| (141)
Y am=0
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We have find the optimal POM according to Lthe max-likelihood eriterion that corresponds
lo a #-like cost function. However, the same POM is optimal for any cost-function of the
form C{de, ) = Cd — ¢, } where C(¢) is an even 2x-periodic function on R satisfying

/' Cid) coshddd <0, k=190, (142)
Ju
In fact, any function C'(¢) satisfving Eq. (142) has Fourier series of the form
C(¢) =co— Y creoskp, x>0, (143)
k=0

Then, consider a general covariant POM
: 24

s da
AI(¢) = —
w 2
=1}

g WL lniiml (144)

with & = (nl&slm) and & a generic selfadjoint operator. The average cost is given by

58]
2l = ¢ —iw/ Lcoskd o TG (mlp)pln)  (145)
] =0
kg 3 (BlndEun{mip . (146)
#CTJ,J |?l-—7n[:.i.'

Positivity of dI1{¢) implies that |Enm| € VEmnbmm = 1, hence

Y. Win)eam{mig) < >0 [elmIiml¥}, (147)
[n=ml|=k [n—m|=k
and the equality is achieved only if € = 5 ¥, With |va] = L. It follows that the minimum

cost 1s

[{mls)] (148)

Zﬂ'(”\»m——-(‘n-— Z”‘Z 1

,lv-"_L nim=={

and this is attained by the POM (139).%
Notice that in the category (142) one also has the following cost functions

4sin® {g = 2—2cos5¢, {149)
; | T 4 o o= cos(2k 4+ 1) Ty
min{¢, 27 — ¢} = 5 ; Z Z W ; (150)
=0 k=0
@ 2 4.& coskd
Byt e A —— 5
| sin | = Tz‘d,kz—l : (151)
IR eE :
—tar(@) = =5 ——?;Enmh Lo 8 (152)

2This is another derivation of the optimal POM for the quantum estimation preblem of phase shift of
pure states, bui for more general cost functions. The second dertvation is due to Holeve [14], whereas the
previous one is an extended version of the Helstrom’s proof [1].
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Figure 6, Number and phase probability distribution of optimal phase states with () = 20 for ideal
and heterodyne phase detection. Optimal states minimize the r.m.s, phase fluctuations (the procedure for
deriving such states is explained in Ref. [15]).

Minimizing the cost is equivalent to minimize the corresponding periodicized fluctunations
(rom.s fluctuations in Eq. (149)), or to maximize the likelihood in Eq. (152). Notice that
the function min{¢?, (¢ —2r)?} does not belong to category (142). As the optimal POM is
rather insensitive to the choice of the cost function, it can deserve the name “ideal”™ POM
for the phase.

In Fig. 6 I report a numerical comparison hetween the ideal and the marginal hetero-
dyne phase detection. For both cases a state with 20 photons is considered that minimizes
the r.m.s. phase deviation A¢ = \/(E?;T) of the corresponding detection probability. It is
evident that the ideal POM leads to probability distribution sharper than the heterodyne
POM. Correspondingly, the number probability of optimal states for ideal detection are
slightly broader than the number probability of optimal states for heterodyne detection.
A more detailed analysis on marginal phase detection can be found in Ref. [15].

6. Beyond the POM: state reduction and “instrument”

Insofar we have considered only measurements that completely destroy the quantum me-
chanical description of the system after the interaction with a macrescopic detector: this
is the case, for example, of photodetection, where radiation is completely absorbed. We
are now interested in a different kind of measurements, which do not destroy the quantnum
mechanical deseription of the system, so that in principle a second measurement on the
system can be performed after the first one. We call this type of measurements “measure-
ments of the first kind”, generalizing 4 term introduced by W. Pauli [16}. Henceforth, the
customary measurement—i.e. those that destroy the state of the system—will be referred
to as “measurements of the second kind”.? More precisely, the definition of measnrements

*This nomenclature has been used by M, Ozawa in Ref. [17]
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of the first and second kind are as follows. For the second kind measurernents the quan-
vum mechanical description is provided just by the Born’s rule: hence, these measurements
are in one-to-one correspondence with POM's. For the first kind measurements, on the
other hand, the deseription provides also the “state reduction” g — fja, which gives the
state pa immediately after the measurement, for a given experimental event A and for
state p immediately before the measurement.? The “state reduction” is needed in order
to evaluate the statistics of repeated measurements. In the following, we will refer to as
“statistics of the measurements™ including both the Born's rule and the state reduction.’
The physical design and the preparation of the measuring apparatus determines the whole
statictics of the measurement. In the following we will analyze the mathematical notion
of “instrument”, which synthetically describes the statistics of a measurement of the first
lindd.

6.1, INDIRECT MEASUREMENTS

The first kind measurement can be defined as a special type of “indirect” measure-
ment of the second kind. An indirect measurement is a measurement that, instead of
being performed directly on the system of interest, is rarried out on a different system,
which may include also the original system itself. Observables are measured that sup-
port informations on the desired quantities {for example, they have the same expectation
values), but are different from them, and hence have different statistical distributions.
We have already considered this kind of
System Prole measurement in these lectures, when we
<~ analvzed joint measurements of comnju-
gated quadratures of the field by het-
erodyne detection. The general scheme
of this kind of measurements is sketched
in Fig. 7. There is a system S and a
probe P that interact (but not neces-
sarily) each other; a measurement of the
cecond kind is performed on compati-
ble observables corresponding to opera-
tors acting on the whole Hilbert space
He @ Hp. In this case the state of the
system itself is destroved, and overall
the measurement is of the second kind:
the probe P is needed only in order to
make observables compatible. For example, if § + P have orthogonal projection-valued
observables d Egp(x) and preparation p® pp (I drop the subindex-§ from the system den-

He P S He  pPrp

Detector

dEsp(x)

Figure 7. General scheme of indirect measurement of
the second kind.

sitv matrix) and the measurement is performed after the interaction U/, the Born's rule is
given by

dP(x) = Treppllp ® ppUTdEsp(x)) = Trspdli(x)] , {(153)

1y this way the nomenclature “first” and “cecond kind” can be put inte correspandence to the “levels
of description” of Holevo [18], Here level I of description is the pure probabilistic one provided by the
POMs, level 11 is the description of state reduction; finally, level M1 is the eomplete unitary description of
the micrnscopic apparatus. i

? Again this nomenclature s due to Ozawa [17)].
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corresponding to the POM
l(x) = Trp[ppUtdEsp(x)0] . (154)

There is a simple way to change the above scheme in order to make it suited to first kind
meastrements: just make a second kind measurement only on a probe observable d 15 r(x)
(it is clear that now the interaction [/ is strictly needed). The resulting measurement
scheme is sketched in Fig. 8. The Born's role is

dP(x) = Trgp(l ; Mo pp Mig@d .!T':Jr.-{x}] Tr c,{;ﬂ[,uLppUT g dl p{‘x)f}]} lias)

corresponding to the POM
dfl(x) = Trp[pellls ® dEp(x)T] . (156)

Now, in order to determine the state reduction, one assumes that immediately after this
rued'~111(‘TerI|1. the system 5 is subjec rpd to another measurement of an arbitrary observable
of &, say with spectral resolution « 1£4(y).° The joint probability for the two combined
measurements is

dP(x,y) = Trsp[lip ® ppUl dBs(y) @ dEp(x)] . (157)

It is clear that the result would be exactly the same if the measurement described by
dEs(y) is performed immediately before—instead of im mediately afler—the first mea-
surement (however after the interaction {7). Hence, there is no causal relation between

the “reading of the result x” and the result y of the second measurement. Now, let us
consider the experiment from the point of view of an cbserver who ignores the (Lppar.il 1s.
He asserts that the first measurement has produced result x according to the Born's rule

d P(x) = Tr{pdll(x)] . (158)

Then, he considers the second measurement as performed “immediately after” the first

System Probe Detector

g P Hp  pp dEp{x)

A

Figure 8. Scheme of an indirect measurement of the first kind.

one, described by the Born’s rule with POM dEg(y), but now the measurement is per-
formed on a different state, say px, that depends on the result x of the first measurement.

ffere 1 consider that the second measurement is of the second kind. The argument can be easily
extended to the case that the second measurement is itsell of the first kind: however, for the present
purpese, this would create a logical loop.
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In formulas, the conditional probability d P(x|y) of obtaining y given the result of the first
measurement was x, is given by

AP (xiy) = Trsipxd Bs(y)] . (159)
and hence the joint probability of obtaining x and y can be writlen as follows
dP(x.y) = dP(x]y)d P(x) = Trelpx d Es(y)) Trslp d{x)] . (160)

On the other hand, the probability (160) must be equal to the probability (157): in this
way the lollowing identity is obtained

Trap[ip srlTdEs(y) ® dEp(x)]
'[‘I',vjpl{"_-"f]' ~pp (1 ls@d f_:_:P(‘KH *

]

Trelpxd Esly)] = (161}

i

The arbitrariness of the choire of the second measurement yields the following relation for

any basis {In)}

*i'r,-;;':l-’.'r';‘i 2 ppl f [}l & d Ep(x)]
Tl'},‘p[!'__-" Jfﬂ) ] ,r]pf_:" T jt, £ df;';-[x}] ‘

{n|px|m) = (162)

narmely

e = 5 2@ 220 0 @ 4 B )
;e (o ppUtls © dEp(x)
S Trs{Trp(Up @ ppl! 'i_ki.f‘@icl dEp(x)fim{nl}
Trsp[Up® ppllis @ dEp(x)]
Tepllip e ppli 1, @ d Ep(x)]
Trspllp @ ppirtis ®dEp(x)]

(163)

Notice that the denominator in BEq. (163) is just the trace of the numerator over Hs.
Hence, we can write Eq. (163) as follows -

3 df(x)p :
et 164
PX = Ay s[d ()] )
whore the mapping dI(x) is defined as
dI(x)p = TrplUp @ pplilis ® dBp(x)] (165)

and is called “instrument™.”

Thus we have seen that the description of a first kind measurement in terms of Born’s
cule and state reduction p — px pertains an observer who ignores the microscopic descrip-
tion of the apparatns and focuses attention on the system S only. This also makes clear
that the state reduction is not a causal evolution: it is not the consequence of the first

TFor many anthors [18] the names “instrument” and APOAT are substituted by “operations” and
“elfocts”™, respectively.
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observation and of “knowing the result”, but just the statistical correlation between the
results of the two measurements due to the interaction of the system with the probe.8
Now, let us consider the properties of the map d/(x) more abstractly. The result of

the measurement is not just a point x: more generally, it is a Borel set, practically an
interval A €R. which the readout of the measurement is known to belong to. The above
derivation of the state reduction can be generalized to the following rule (hereafter we
drop the subindex § everywhere)

S o [(A)p = o

b pasmneis o HA)= at). (166)

6.2. REALIZABLE INSTRUMENTS

Mathematically, the map I(A) is a linear transformation of trace class operators with the
following rules

0< Tr[I(A)p] <1, Tr[I(R)j] = 1
(167)
Trf (U, A )p] = ZTr[f(&)ﬁ] ; {A,} conntable disjoint .

Notice that /(R # §, in general.® It is easy to check that the map defined in Eq. (165)
along with Eq. (166) satisfies the above axioms.'® On the other hand, an abstract map
I satislying Eqs. (167) fully describes the statistics of a measurement of the first kind. It
gives both the state reduction and the Born's rule as follows

RN ) b SN - :
DA sl R /Adi (x) = Tr[I(A)j]. (168)
Now we address the problem if an instrument that satisfies axioms (167) can be physically
realized in terms of an indirect measurement involving an interaction with some probe
P, and for a suitable preparation of the probe. In other words, we want to know if any
“mathematically given” instrument d7 is “physically realizable” with a unitary interaction
between S and P, as in Eq. (165). To this purpose, first notice that Eq. (165) leads to

In iy knowledge, this point was first clarified by. Ozawa [20).

"The map I(R) describes a4 “measurement without reading™: this is the evolution of an “open system”
S in interaction with an “environment” p.

"“In particular, let us check positivity of the map, namely

{v|dI(x)plv) =0 Yo &M ¥p traceclass .
One has
(oldI{x)plo) = Te[0p @ pelt|v) (o] @ d Bp(x)] .

Both density matrices can be writtern as convex linear combination of pure states, Hence, it 1s sufficient to
prove positivity for pure states ouly, say j = {0} and jp = |o){p]. One has

O @ )t ool @ dE ) = x| () w1 @ Jw{wnrﬁrvw(f 20,
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a property for df which is stronger than positivity: this is “complete positivity”. We say
that an instrument is completely positive if it satisfies the following requirement: for any
finite sequence of vectors |og) and lwg), &= 1,...,none hay
S (o[ () gy (Yo} 2 0 - (169)
k=1
From Eq. (165) with pp = [p){y] pure state we have
Tl i y
S~ {welldl (<)) {wnlllod = 32 (e O T ) (0] @ A ER(0)]0]i0) | wie)

k=1 k=1

TL
= 3 (ul{w
ki=1

Hence, a realizable instrument 1s completely positive. Remarkably, Ozawa [20] has proven
also the converse assertion, more precisely: Every completely positive instrument df{x) is
realizable, i.e. there is an extension H @& Hp of the Hilbert space, a pure state preparation
l) € Hp of the probe, a unitary operator {1 acting on H®Hp, and a selfadjoint operator
on ‘Hp with spectral resclution d B{x), such that

i 2
[ 11x'}|u-}f o] (x| | dx = E('sugH(,:-\U |'i)c)|-?.1;} dse 0. (170)
k=1

dI(x)p = Tepllp @ o)l 11 @ d E(x)] . (171)
For the proof of the theorem the reader is referred to the original work of Ozawa [20].
We have seen that every instrument df(x) is associated to a POM dIl(x) by trace-
duality as follows

Te[dIl(x)p] = Tr[d(x)f] - (172)

It is also true that for every POM dIL{x) there is always at least an instrument d/{x) that
satisfies Tq. (172). As.a consequence, every POM can be achieved by a measurement of
the first kind, and thus the Ozawa's theorem generalizes the Naimark’s theorem.

[ emphasize that an instrument d/(x) unambiguonsly determines a POM dIT(x),
whereas a POM dIl(x) can be generally obtained from many different instruments: in
other words, one has the same Born’s rule with different state reductions. The POM
does not contain suflicient details on the apparatus to describe the back action on the
system, whereas the instrument pravides a complete deseription of the statistics of the
measurement. On the other hand, there can be still many different apparatus—i.e. difler-
ent probes, probe preparations, and svstem-probe interactions—that are deseribed by the
same instrument df{x)."!

Now I wanf Lo make the relation between instrument and POM more explicit. Let us
congider, for simplicity, the case of continuous spectrum and pure state preparation |¢)

et (1o [, axi) x|
=[x [ dx G Ee) plelO TN~ )
S

g /{.1x(x|'ﬁ|-\,a)fJ(H;:H.'-’T\x) = [ dx Qx) p AT (x) . (173)
J LY

for the probe. One has

j dlx)p = Tep [r’-’(,a-::_a

-

U his ts the level 11 of description of Holevo [18],
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where ((x) is the (non-unitary) operator acting on the Hilbert space H of the system only

Q(x) = (x|Ue) (174)
which satisfies the completeness relation'®
fdxfﬂ(x}fl(x) =1. (175)

The POM associated with the instrument can be obtained upon substituting Eq. (174)
into (172), and using invariance of trace under cyclic permutations. One has

dfi(x) = dx Qf(x) Qux) (176)

namely

M(A) = ‘[& dx QT (x)0(x) . (177)

The generalization of Eq. (177) to the case of discrete spectrum is straightforward. Now
we can immediately see that a way to change the instrument without changing the POM
is the following “local” unitary transformation of eperators (x)

Ox) = V(x)Qx), VixVE)=i. (178)
The transformation (178) does not affect the complete positivity of the instrument df(x),
however it gives a different state reduction (or “back-action”) with the same POM.

6.2.1. Ezample 1: the standard von Neumann model
As a first example, we consider the von Neumann model [21] for a first kind measurement.
Originally the model was conceived for the measurement of the position ol a particle: here
I translate it in the language of quantum optics, and [ will describe an indirect unsharp
measurement of a field quadrature. The interaction Hamiltonian is given by

H = 2heXYp , (179)
where X = slal+a)and V= ,-i[up—a;.v) are quadratures of the field modes pertaining the
systern and the probe, respectively. The quadratures X and Yp are the optical equivalent
of position and momentum ¢ and p; of two different interacting particles, as it was
considered in the original von Nenmann model. Notice that the present optical model is
given only for the sake of exemplification, because is would be diflicult to achieve the
Hamiltonian (179) optically (but also mechanically!) In the impulsive case (i.e. for strong
coupling and short interaction time = = &7! — 0) the operator Q(x) in Eq. (174) is given
by

Q{LL‘) =

2 o~ *
5 o ik, Sk s A R AP DRR A R o) [ S e o X 18
exp( — 2iXYp)|e) = fd:r, (z|z") exp [ der] wlz) =ple - X), (180)
2] remind that in our sotation the domain of the integral, when not specified, is the spectrum of the
considered observable. Also one should keep in mind that vectors [x) and |@) in Bq. (174) belongs to the
Hilbert space He, so that the matrix element of {7 between them is an nperater acting on M only (7 is
an operator acting on H @ Hel, :
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and hence the instrument is

ATz (9] = de ple — X)) (9] ez - X) . (181)

To obtain the von Neumann state retluctim]-—i‘u. the projection over eigenvectors |2} of
X—let us consider the squeezed-vacuum preparation for P

| x*

l
wle)= Waxp (w—l-{—z) . | (182)

fn the limit of vanishingly small ¢ — 0 (e plays the role of the measurement precision)
the reduced state will localize on a narrower and narrower Gaussian centered around the
value x. Formally, we write the limit as follows

. dI(e)p ; ol
]g}ém = |z){a| . - (183)
6.2.2. Erample 2: the Arthurs-Kelly model for joint measurements
The previous example can be easily generalized to the case of a joint measurement of X
and Y. In this case we need {wo different probe modes that commute each other. Such
a measurement model was considered for the first time by Arthurs and Kelly [22]: here I
extend their analysis in order to derive also the state reduction of the model.

The impulsive interaction Hamiltonian can be chosen as follows

= bm XV - ¥ X3) (184)

where the choice of signs and constants is for later convenience, For simplicity of notation
we sot the interaction time v = 1. Let us analyze this model in the Heisenberg picture.
One has

X: 5 IT.'TT)(‘-|E.-'- = .}(] 4= 5&1 X - él—;}‘il}iz.x'; ¥ (185)
Y,; — i’,.u’ti’fz.’." =Y.+ %H-QY o gﬁlr{g}"] : (186)

[t is convenient to require that the indirect measurement of X and Y be “unbiased”,
namely that the time evolved expectation values of X, and Y, are equal to those of Y
and Y that we want to measure at t=0,ie. (X = (X) and {¥]) = {Y). This can be
accomplished by choosing 5y = s, = 2. and putting the probe 11'].[:(']#“1 into the vacuum
stato However, considering that the vacuum ﬁuLtle.l!Oll'-. for each quadrature is equal to
%, one has (A -\’”) c'x_\}”z‘-_: & which is 1= larger that the minimum noise for a joint
measurement. This suggests the further udery transformation

4 s i e
Xi—= —=X1. X;—v2X,,
1 \/2 $ B 2 2

) ot P N
Vi — 2V, . Yi— —Yo, 187
oty 1 G (187)

which minimizes the noise, and can be achieved by the unitary operator

[,y = eloe2(h¥i=Xa¥2) (188)
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Figure 8. Brownian-motion effect on the free evolution due to the state reduction of the joint first-kind
measurement in Fq. (193), This kind of measurement could account for the trajectory description of
measurements from cloud or bubble chamber tracks.

The operator (188) squeezes the vacuum state of the probe 'L’ by a factor two in the ¢
direction, and correspondingly unsqueezes the state of the probe '2° by the same factor.
The squeezing operator Uw acts before the interaction Hamiltonian H. Hence, in summary,
the model corresponds to the Hamiltonian (184) with probe preparation given by

pp = [15,]0,00(0, 0] (189)

&g

and with U/, defined in Eq. (188). In order to obtain the instrument corresponding Lo the
present measurement scheme, we evaluate the operators (x) as follows

W, y) = ,{LMMMPE— {Y_Yl VX‘; IUM|U 0}
= |<J"| JI\J|D z‘{ + i‘Y] Jbs{ |“ ) (1["])
where D{z + iy} = oxpT—Zrl(-J:};' — yX)] denotes the displacement operator acting on
[¥; and X, can be treated as c-numbers, because they commute each other and with any

system operator]. Using the resolutions of the identity in terms of eigenstates of Xy and
¥y we obtain

Qa,y) = /tlar’d?j’ sz |y alylehe (| ofe ’|D ()l,_a + iy, 0,0)
= ]d.r (iy o' =y DT (&' +iy') (yh |U .0)
da tl?.r o 1 St
= GE QY 2i(zy'—ya') /] A e B
/ = Dz +UJ\/F{' 2 : (191)
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and introducing the complex variables & = & + iy and A = 2’ + iy’ we recognize in Eq.
(191) the coherent state projector

1 - L dz;‘! = TR -
Qz,y)= Yo.@) = — f — L phFoda DTI'A] =
“ \/".'_:'- ﬁ‘ \ &

Hence, the state reduction is given by

TR 2
el (192)

_ leelplalal _ ;
Plaa) = Tl'“t'-t'){fﬂﬂ] i | }(ﬂ‘[ 4 (J ')j:}

In Fig. 9 the effect of the state reduction (193) is illustrated for a freely evolving field mode.
‘The instrument in Eq. {193) reduces the state to a coherent state |a)({a| that depends
only on the outcome o of the measurement, whatever the starting state g is. Such kind
of measuremeni—where the reduced state is independent on the input state—is referred
to as Gordon-Louisell' measurement [23). In general, a Gordon-Louisell measurement has
an © operator of the form ﬁf_x) = |¥x){ex|, where l4x} denotes a normalized state vector
that depends on the reading x, and {|¢x)} is a complete (generally not normalizable) set
of vectors in the Hilbert space.
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