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We consider quantum-memory assisted protocols for discriminating quantum channels. We show that

for optimal discrimination of memory channels, memory assisted protocols are needed. This leads to a

new notion of distance for channels with memory, based on the general theory of quantum testers. For

discrimination and estimation of sets of independent unitary channels, we prove optimality of parallel

protocols among all possible architectures.
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The problem of discrimination between quantum chan-
nels has been recently considered in quantum information
[1–7]. For example, in Ref. [6] an application of discrimi-
nation of unitary channels as oracles in quantum algo-
rithms is suggested. The optimal discrimination is
achieved by applying the unknown channel locally on
some bipartite input state of the system with an ancilla,
and then performing some measurement at the output. A
natural extension to multiple uses is obtained by applying
the uses in parallel to a global input state. However, more
generally, one can apply the uses partly in parallel and
partly in series, even intercalated with other fixed trans-
formations, as in Ref. [8]. Moreover, when the multiple
uses are correlated—i.e., for memory channels—the uses
can be applied either in parallel or in a causal fashion (see
Fig. 1). In this Letter we show that this causal scheme is
necessary, whereas it is not needed for independent uses of
unitary channels (the case of nonunitary channels remains
an open problem).

Memory channels [9–13] attracted increasing attention
in the last years. They are quantum channels whose action
on the input state at the n-th use can depend on the previous
n� 1 uses through a quantum ancilla. Optimal discrimi-
nation of two memory channels is crucial to assess whether
a cryptographic protocol is concealing [14], to discriminate
among different strategies of an opponent in a quantum
game [15], for minimization of oracle calls in quantum
algorithms, and for applications such as quantum illumi-
nation [7].

We will provide an example showing that a pair of
memory channels can be perfectly discriminable, even
though they never provide orthogonal output states when
applied to the same global input state. This new causal
setup provides the most general discrimination scheme for
multiple quantum channels, and this fact leads to a new
notion of distance between channels.

In the case of two unitary channels, optimal parallel
discrimination with N uses was derived in Refs. [1,2],
and in Ref. [5] a causal scheme without entanglement

was proved to be equivalently optimal. In the following,
we will prove the optimality of both schemes for discrimi-
nation of unitaries. We will generalize this result to dis-
crimination of sequences of unitaries, and to estimation
with multiple copies. Differently from the case of memory
channels, we will prove that for all these examples causal
schemes are not necessary.
It is convenient to represent a channel C by means of its

Choi operator C defined as follows

C :¼ ðC � IÞðjIiihhIjÞ; (1)

for a channel C with input or output states in H in=out,

respectively, where jIii :¼ P
njnijni 2 H �2

in , fjnig being
an orthonormal basis for H in. In this representation com-
plete positivity of C is simply C � 0) and the trace-
preserving constraint is Trout½C� ¼ Iin.
In a memory channel with N inputs and N outputs

labeled as in Fig. 1, the causal independence of output
2nþ 1 on input 2m with m> n is translated to the follow-

ing recursive property [8] of the Choi operator C ¼: CðNÞ

Tr 2n�1½CðnÞ� ¼ I2n�2 � Cðn�1Þ; 8 1 � n � N; (2)

where conventionally Cð0Þ ¼ 1. A memory channel can be
measured by a causal scheme as in Fig. 2, which is
described by a tester [8], i.e., a set of positive operators
Pi � 0 such that the probability of outcome i while testing
the channel C is provided by the generalized Born rule
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FIG. 1. Different usage schemes of a general memory channel,
where the boxes U, V, W, T denote interactions of systems with
ancillae. (a) Parallel scheme (a multipartite input state is evolved
through the channel). (b) A particular case of causal scheme (the
output of some use of the channel is fed into a successive use).
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pðijCÞ :¼ Tr½PiC�: (3)

The notion of a tester is an extension of that of POVM,
which describes the statistics of customary measurements
on quantum states. The normalization of probabilities for
testers on memory channels withN input-output systems is
equivalent to the following recursive property, analogous
to that in Eq. (2)

X
i

Pi ¼ I2N�1 ��ðNÞ;

Tr2n�2½�ðnÞ� ¼ I2n�3 ��ðn�1Þ; 8 2 � n � N;

Tr½�ð1Þ� ¼ 1;

(4)

One can prove [8] that any tester can be realized by a
concrete measurement scheme of the class represented in
Fig. 2.

Mathematical structures analogous to Eqs. (2) and (4)
have been introduced in Ref. [15] to describe strategies in a
quantum game.

Every tester fPig can be written in terms of a usual

POVM f ~Pig and the normalization operator �ðNÞ as

Pi ¼ ðI ��ðNÞð1=2ÞÞ ~PiðI ��ðNÞð1=2ÞÞ; (5)

and for every memory channel C the generalized Born rule
rewrites as the usual one in terms of the state

~C :¼ ðI ��ðNÞð1=2ÞÞCðI ��ðNÞð1=2ÞÞ: (6)

The state ~C corresponds to the output system-ancilla state
in Fig. 2 after the evolution through all boxes of both the
tester and the memory channel, on which the final POVM
f ~Pig is performed [16].

The standard discriminability criterion for channels is
the following. Two channels C0 and C1 on a d-dimensional
system are perfectly discriminable if there exists a pure
state j�ii in dimension d2 such that �0

i ¼ Ci � Iðj�ii�
hh�jÞ with i ¼ 0, 1 are orthogonal (every joint mixed state
with an ancilla of any dimension can be purified with an
ancilla of dimension d). Here we use the notation j�ii :¼

P
m;n�mnjmijni which associates an operator � to a bi-

partite vector. It is easy to show [17] that orthogonality
between �0

0 and �0
1 is equivalent to

C0ðI � �ÞC1 ¼ 0; (7)

where � :¼ ���T , where �� and�T denote the complex
conjugate and transpose of � in the canonical basis fjnig,
respectively. The criterion in Eq. (7), however, is too
restrictive for memory channels. Indeed, the correct con-
dition for perfect discriminability of two memory channels
Ci with i ¼ 0, 1 is equivalent to the existence of a tester
fPig with i ¼ 0, 1, such that

Tr ½PiCj� ¼ �ij; (8)

which means that the two channels can be perfectly dis-
criminated by a measurement scheme as that of Fig. 2.

Using Eqs. (5) and (6), Eq. (8) becomes Tr½ ~Pi
~Cj� ¼ �ij,

whence the states ~Ci with i ¼ 0, 1 are orthogonal, and the
same derivation as for Eq. (7) leads to

C0ðI ��ðNÞÞC1 ¼ 0; (9)

with�ðNÞ as in Eq. (4). In Eq. (9) the identity operator acts
only on space 2N � 1, differently from Eq. (7) where it
acts on all output spaces.
It is interesting to analyze the special case of memory

channels made of sequences of independent channels
ðCijÞ1�j�N and i ¼ 0, 1 (in Fig. 2 the memory channel is

replaced by an array of channels without the ancillae A1

and A2). The condition for perfect discriminability is the
same as Eq. (9) with C0 and C1 replaced by

N
jCij for i ¼

0, 1, respectively. In terms of a Kraus form Ci ¼P
mKimK

y
im Eq. (9) becomes the orthogonality condition

hhK0mjðI ��ðNÞÞjK1nii ¼ 0, which for the sequences of
maps becomes

ON
j¼1

hhKj
0mj

jðI ��ðNÞÞO
N

j0¼1

jKj0
1nj0

ii ¼ 0 (10)

for all choices of indices (mj), (nj0), where Kj
im are the

Kraus operators for the channel Cij. For sets composed by

single channels Ci with i ¼ 0, 1, the condition becomes
simply the existence of a state � such that

Tr ½�Ky
0jK1k� ¼ 0; 8 j; k; (11)

and the minimum rank of such state � determines the
amount of entanglement required for discrimination.
We now provide an example of memory channels C0 and

C1 that cannot be discriminated by a parallel scheme, but
can be discriminated with a tester. Their action on the joint
state � onH 0 �H 1 provides the output onH 1 �H 3 as
follows
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FIG. 2. The most general scheme for the connection of a
memory channel to a quantum circuit corresponding to a tester.
The memory channel is represented by its isometric gates (white
boxes) which denote interaction of quantum systems (inputs are
labeled by even integers and outputs by odd integers) with the
ancillae A1 and A2. The tester is represented by dashed boxes,
including the preparation phase (joint input state of system 0 and
ancilla B1) and the final measurement stage represented by the
POVM f ~Pig.
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C 0ð�Þ ¼ 1

d2
Xd�1

p;q¼0

jp; qihp; qj �Wp;qTr0½��Wy
p;q; (12)

C 1ð�Þ ¼ I

d2
� j0ih0j: (13)

jp; qi being an orthonormal basis in a d2 dimensional
Hilbert space, and the unitaries Wp;q :¼ ZpUq are the

customary shift-and-multiply operators, with Zjni ¼ jnþ
1i and Ujni ¼ eð2�i=dÞnjni. We will now show that the two
channels are discriminable with a causal setup and not with
a parallel one. Their Choi operators are

C0 ¼ 1

d2
Xd�1

p;q¼1

jWp;qiihhWp;qj32 � jp; qihp; qj1 � I0;

C1 ¼ 1

d2
j0ih0j3 � I210;

(14)

where the output spaces 1,3 have dimension d2 and d,
respectively. It is clear that the output states in Eqs. (12)
and (13) are never orthogonal; hence, the channels are not
discriminable by a parallel scheme. This is actually the
same conclusion that can be drawn from the criterion in
Eq. (7). Indeed, suppose that the channels are perfectly
discriminable in parallel, then there exists � such that

C0ðI13 � �02ÞC1 ¼ C0C1ðI13 � �02Þ ¼ 0; (15)

where the second equality comes from the expression ofC1

in Eq. (14). Tracing both sides on the output spaces 1 and 3
one has Tr13½C0C1�� ¼ 0. However,

Tr 13½C0C1� ¼ I

d2
(16)

whence � ¼ 0, which is absurd. We now show a simple
causal scheme which allows perfect discrimination of the
same channels. The first use of the channel is applied to any
state jc ihc j, then the measurement with POVM fjp; qi�
hp; qjg is performed at the output on system 1. Depending
on the outcome �p, �q, the second use of the channel is

applied to the state Wy
�p; �qj1ih1jW �p; �q. It is clear that the

second output of channel C0 is the state j1ih1j, whereas
the second output of channel C1 is j0ih0j. Indeed, this
agrees with the criterion in Eq. (9), which is satisfied with

�ð2Þ ¼ X
p;q

WT
p;qj1ih1jW�

p;q � jp; qihp; qj � j0ih0j: (17)

This example highlights the need of using a causal
scheme in order to discriminate between memory chan-
nels. In general, optimal causal discrimination implies a
notion of distance between memory channels different
from the usual distance between channels. Indeed, discrim-
inability by parallel schemes is assessed by the usual cb-
norm distance [18–20], which can be rewritten as follows
(see, e.g., Ref. [3])

DcbðC0; C1Þ ¼ max
�

jjðI � �ð1=2ÞÞ�ðI � �ð1=2ÞÞjj1;
� :¼ C0 � C1;

(18)

where the maximum is over all states �, and jjXjj1 :¼
Tr½

ffiffiffiffiffiffiffiffiffiffi
XyX

p
� denotes the trace-norm. One has DcbðC0; C1Þ �

2, with the equality holding for perfectly discriminable
channels, satisfying the criterion in Eq. (7). For memory
channels the discriminability is equivalent to discrimina-
bility of states in Eq. (6), leading to the following definition

DðC0; C1Þ :¼ max
�ðNÞ

jjðI ��ðNÞð1=2ÞÞ�ðI ��ðNÞð1=2ÞÞjj1;
(19)

where the maximum is over all �ðNÞ satisfying conditions
(4). Clearly DðC0; C1Þ � 2, with equality holding if and
only if Eq. (9) is satisfied. For N ¼ 1 Eq. (19) reduces to
(18), yielding DðC0; C1Þ ¼ DcbðC0; C1Þ.
The easiest application of testers is the discrimination of

sequences of unitary channels (Tj) and (Vj), with j ¼
1; . . . ; N. Without loss of generality we can always reduce

to the discrimination of the sequence ðUjÞ :¼ ðTy
j VjÞ from

the constant sequence (I). Let us first consider the case of
sequences of two unitaries. By referring to the scheme in
Fig. 2 we can restate the problem as the discrimination of
WyðU1 � IÞWðU2 � IÞ from I on a bipartite system, where
W describes the interaction with an ancillary system. It is
well known that optimal discriminability of a unitary X
from the identity is related to the angular spread �ðXÞ,
defined as the maximum relative phase between two eigen-
values of X [1,2]. Apart from the degenerate case in which
X has only two different eigenvalues, the discriminability
of X from I is given by the quantity maxf0; cos�ðXÞ=2g �
0, which is zero for �ðXÞ � �, corresponding to perfect
discriminability [21]. Since unitary conjugation preseves
�ðXÞ and the angular spread of the product of two unitaries
X, Y satisfies the following bound [22]

�ðXYÞ � �ðXÞ þ�ðYÞ; (20)

and finally �ðX � YÞ ¼ �ðXÞ þ�ðYÞ, one has that
�½WyðU1 � IÞWðU2 � IÞ� � �ðU1 �U2Þ, then no causal
scheme can outperform the parallel one. By induction, one
can prove that this is true for sequences of any length N.
Indeed, defining XN�1 as the product of the tester unitaries
alternated with Uj � I for 1 � j < N, if �ðXN�1Þ �
�ðNN�1

j¼1 UjÞ holds true, then it holds also for N, due to

Eq. (20). By the same argument, one can also prove that the
sequential scheme of Ref. [5] equals the performances of
the parallel scheme, since there always exists T such that
�ðUTVTyÞ ¼ �ðU � VÞ (indeed it is sufficient that T
transforms the eigenbasis of V into that of U, suitably
matching the eigenvalues). Therefore, the schemes of
Refs. [1,2,5] are optimal also for discriminating sequences
of unitaries. Notice that this also includes the case of
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discrimination of two different permutations of a sequence
of unitary transformations.

Another situation in which a parallel scheme already
performs optimally is the case of estimation of unitary
transformations Ug, g 2 G which make a unitary repre-

sentation of the group G. For N uses of the unitary Ug the

Choi operator is

RðNÞ
g ¼ R�N

g ; Rg ¼ ðUg � IÞjIiihhIjðUy
g � IÞ: (21)

The probability density of estimating h for actual element
g is pðhjgÞ ¼ Tr½PhR

�N
g �. As a figure of merit for estima-

tion one typically considers a cost function cðh; gÞ aver-
aged on h, with cðh; gÞ ¼ cðfh; fgÞ 8 f 2 G (the cost
depends only on distance, not on specific location)

CgðpÞ ¼
Z
G
�ðdhÞcðh; gÞpðhjgÞ; (22)

where �ðdgÞ is the invariant Haar measure on G. The

optimal density p is the one minimizing ĈðpÞ :¼
maxg2GCgðpÞ. For every density pðhjgÞ there exists a

covariant one pcðhjgÞ ¼ pcðfhjfgÞ 8 f 2 G which can

be obtained as the average pcðhjgÞ :¼ pðfhjfgÞ over f 2
G (practically this corresponds to randomly transforming
the input before measuring and processing the output

accordingly). Since ĈðpcÞ ¼ �CðpÞ � ĈðpÞ, then the opti-

mal density minimizing both costs Ĉ and �C can be chosen
as covariant. Now, since pcðhjgÞ ¼ pcðejgh�1Þ (e denot-
ing the identity element in G), this means that the optimal
tester must be of the covariant form

Ph ¼ ðUh � IÞ�NPeðUy
h � IÞ�N: (23)

For such Ph, the normalization
R
G �ðdhÞPh ¼ I ��ðNÞ

implies the commutation ½I ��ðNÞ; ðUh � IÞ�N� ¼ 0,
whence the POVM ~Ph in Eq. (5) is itself covariant.
The optimal tester problem is then equivalent to the opti-

mal state estimation in the orbit ðI ��ðNÞð1=2ÞÞR�N
g ðI �

�ðNÞð1=2ÞÞ. This proves that the optimal estimation of Ug

with g 2 G compact group can be reduced to a covariant
state estimation problem, and the optimal parallel scheme
of Ref. [23] is optimal among all possible architectures.

In conclusion, we considered the role of memory effects
in the discrimination of memory channels and of custom-
ary channels with multiple uses. We used the new notion of
tester [8], which describes any possible scheme with par-
allel, sequential, and combined setup of the tested chan-
nels. We provided an example of discrimination of
memory channels which cannot be optimized by a parallel
scheme, and for which the optimal discrimination is
achieved by a sequential scheme. The new testing of
memory channels corresponds to a new notion of distance
between channels. Finally, using the theory of testers we
showed that for the purpose of unitary channel discrimi-

nation and estimation with multiple uses, the optimal
schemes are parallel.
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