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After proving a general no-cloning theorem for black boxes, we derive the optimal universal cloning of

unitary transformations, from one to two copies. The optimal cloner is realized by quantum channels with

memory, and greatly outperforms the optimal measure-and-reprepare cloning strategy. Applications are

outlined, including two-way quantum cryptographic protocols.
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The no-cloning theorem [1] is one of the cornerstones of
quantum information, at the basis of the security of quan-
tum cryptography [2], and challenging various protocols,
from optimal estimation to error correction. Despite the
long-dated attention to cloning of quantum states, cloning
of quantum transformations is still a completely unex-
plored topic. Cloning a transformationT means exploiting
a single use of T inside a quantum circuit, which thus
performs the transformation T �T on bipartite states.
This elementary copying task is particularly relevant to
the recent trend in quantum information, with the role of
the information carrier played more and more by trans-
formations instead of states, e.g., in gate discrimination
[3,4], programming [5], teleportation [6–8], and tomogra-
phy [9,10], along with multiround games [11] and crypto-
graphic protocols like bit commitment with anonymous-
state encoding [12,13]. Here cloning is the great absent of
the list, partly due to the intrinsic difficulty in treating
manipulations of transformations instead of states. Such a
difficulty has been overcome by the method of Ref. [14],
which allows one to optimize tasks where the input and
output are transformations.

Cloning quantum transformations can be used for copy-
ing quantum software with a limited number of uses, and in
other informational contexts. An interesting application is
in the security analysis of multiround cryptographic pro-
tocols with encoding on secret transformations. Consider,
for example, the following alternative version of the BB84
cryptographic protocol [15], where Alice uses two or-
thogonal bases of unitary transformations instead of states,
B1 ¼ f��g and B2 ¼ fU��g, where � ¼ 0, 1, 2, 3, �0 is

the identity, �1;2;3 are the three Pauli matrices, and U ¼
ðI þ i

P
3
k¼1 �kÞ=2 is a rotation of 2�=3 around the axis

n ¼ ð1; 1; 1Þ= ffiffiffi
3

p
. The protocol works as follows: Bob

prepares an arbitrary maximally entangled state jBi of
two qubits and sends half of it to Alice, who applies one
of the unitaries and sends the output to Bob, as in dense
coding [16]. Afterwards, Bob measures the two qubits
either on the Bell basis fð�� � IÞjBig or on the rotated

basis fðU�� � IÞjBig, which are mutually unbiased for any

maximally entangled state jBi. After publicly announcing
their choice of bases, and discarding cases where the bases
were different, Alice and Bob use the values of index � to

establish a secret key. In this protocol, a naı̈ve eavesdrop-
ping strategy would be for Eve trying to estimate the
unitaries, by swapping the qubit sent by Bob with a qubit
prepared by her—e.g., in a known maximally entangled
state jEi, half of which she keeps for herself—and then
intercepting the qubit sent back by Alice. To prevent this
attack Alice can randomly ask Bob to send his half of the
entangled state, and to later reveal jBi, so that she can
check whether the received state was actually from Bob.
However, Eve can perform coherent attacks that are much
more efficient than naı̈ve estimation. Among coherent
attacks, the first and most natural to investigate is quantum
cloning.
Differently from pure states, cloning of transformations

is impossible even classically. This is a consequence of a
general no-cloning theorem, holding not only for states,
but also for transformations and any other kind of black
boxes (e.g., measuring devices). Denoting by p the
minimum of the worst case error probability in dis-
criminating between two black boxes O1 and O2, we
have the following theorem, containing as a special case
the no-cloning of quantum states [1]: two black boxes
cannot be perfectly cloned by a single use unless p ¼ 0
(perfect discrimination) or p ¼ 1=2 (random guess, no
discrimination at all). The proof is simple: If perfect
cloning is possible, we can get three copies, perform three
times the minimum error discrimination, and use majority
voting to decide the most likely between O1 and O2 with
worst case error probability p0 ¼ p2ð3� 2pÞ. Since p is
the minimum error probability, it must be p � p0, whose
acceptable solutions are only p ¼ 0 and p ¼ 1=2 [17].
Application of the theorem to many black boxes
fOigi¼1;...;k yields the following cloning-discrimination

equivalence: if for any i, j the error probability pij is not

1=2, then perfect cloning is possible iff perfect discrimi-
nation is possible [18]. As a consequence, classical trans-
formations, e.g., permutations of a classical register,
cannot be cloned by a single use (there is no way to
discriminate arbitrary permutations of the letters fa; b; cg
by evaluation on a single letter). Likewise, quantum trans-
formations, e.g., unitary gates, cannot be cloned by a single
use (there is no way to discriminate arbitrary gates by a
single use [3]).
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The existence of a no-cloning theorem immediately
raises the question about the performances of optimal
cloners. In addition to possible cryptographic applications,
the problem has a fundamental interest in itself, as the
relation (if any) between optimal cloning of transforma-
tions and cloning of states is not a priori obvious.

In this Letter we derive the optimal universal cloner,
which produces two approximate copies of a completely
unknown unitary gate in dimension d <1, showing that
entanglement with a quantum memory allows one to out-
perform any classical cloning strategy. For qubits the
global channel fidelity of the clones is Fclon ¼ 46:65%,
significantly larger than the fidelity of the optimal
measure-and-prepare scheme Fest ¼ 31%, and of the ran-
dom guess (using the given unitary on the first system, and
performing a random unitary on the second) Fran ¼ 25%.
Surprisingly, cloning of unitary gates has no relation with
cloning of maximally entangled states, in spite of the two
sets being commonly considered as equivalent. Not only
cloning maximally entangled states is always a suboptimal
step for cloning unitary gates, but also any other scheme
involving application of the unknown gate to a maximally
entangled state (or any other fixed state) is necessarily
suboptimal. As it will be shown, this also highlights a
fundamental difference between the two tasks of cloning
and learning quantum transformations.

The derivation of the optimal cloner exploits the recent
toolbox of quantum circuit architecture theory [14], which
allows optimization of quantum networks for any possible
manipulation of quantum channels, including cloning and
estimation. In this framework any channel C from SðH inÞ
to SðH outÞ [SðH Þ denoting states on H ] is described by
its Choi operator C ¼ C � IðjIihIjÞ, where jIi ¼P

d
i¼1 jiijii is an unnormalized maximally entangled vector

in H in �H in. For a unitary channel Uð�Þ ¼ U�Uy, the
Choi operator is jUihUj, with jUi ¼ ðU � IÞjIi. A quantum
network for N-to-M cloning is a network with N open slots
in which the N input copies are inserted, and is also

described by a suitable Choi operator RðNÞ (N ¼ 1 for
one-to-two cloning, see Fig. 1). If the Hilbert spaces of
the inputs are labeled with even numbers from 0 to 2N, and
the output spaces with odd numbers from 1 to 2N þ 1, the

Choi operator RðNÞ is a non-negative operator on the tensor
product

N
2Nþ1
k¼0 H k satisfying the recursive normalization

condition

Tr 2Nþ1½RðNÞ� ¼ I2N � RðN�1Þ; (1)

where Tr2Nþ1 denotes the partial trace over the Hilbert

space H 2Nþ1 of the N þ 1th output system, and RðN�1Þ is
the Choi operator of a network with N � 1 open slots,
which in turn satisfies Eq. (1) with N replaced by N � 1.
A network with N ¼ 0 open slots is a quantum channel
from SðH 0Þ to SðH 1Þ, and has the normalization

Tr1½Rð0Þ� ¼ I0. Inserting N channels C1; . . . ; CN in the N
slots of a network, we obtain a new channel C0 from
SðH 0Þ to SðH 2Nþ1Þ, with Choi operator given by [14]

C0 ¼ Tr1;2;...;2N½ðI0 � C�
1 � . . . � C�

N � I2Nþ1ÞRðNÞ�: (2)

In one-to-two cloning (N ¼ 1) the first input H 0 and
the last output H 3 must have a bipartite structure, H 0 ¼
H 0B �H 0E andH 3 ¼ H 3B �H 3E, since the ultimate
aim of the network is to mimic the bipartite channelUB �
UE on Bob’s and Eve’s systems. Then, the normalization
of the Choi operator in Eq. (1) gives

Tr 3½Rð1Þ� ¼ I2 � Rð0Þ; Tr1½Rð0Þ� ¼ I0: (3)

Inserting the gateU in the network, we obtain the bipartite

channel C0U, which according to Eq. (2) is given by C0
U ¼

Tr1;2½ðI0 � jU�ihU�j1;2 � I3ÞRð1Þ�.
We derive now the cloning network for which the chan-

nel C0U most closely resembles UB �UE. As a figure of
merit we use the global channel fidelity, uniformly aver-
aged over the unknown unitaries

F ¼
Z

dU
1

d4
Tr½CUjUihUj�2�

¼ 1

d4

Z
dUhUjhUjhU�jRð1ÞjUijUijU�i: (4)

Note that F ¼ 1 if and only if CU ¼ U�2 for any U,
corresponding to perfect cloning. Exploiting symmetry
then provides a radical simplification of the problem:
Lemma 1. The optimal cloning network maximizing

the channel fidelity (4) can be assumed without loss of

generality to be covariant, i.e., with a Choi operator Rð1Þ
satisfying the commutation relation

½Rð1Þ; V�2
0 � V�

1 �W�
2 �W�2

3 � ¼ 0 8 V;W 2 SUðdÞ:
(5)

Proof. Let Rð1Þ be optimal. Then take its average Rð1Þ ¼R
dV

R
dWV �2

0 �V �
1 �W �

2 �W �2
3 ðRð1ÞÞ, where V ,

V �, W �, W are the unitary channels corresponding to

FIG. 1. (a) One-to-two cloning of unitaries. Two input systems
are first processed by Eve with channel A, which entangles
system 1 and a quantum memory M. While the memory M is
kept by Eve, system 1 is sent to Alice, who applies the secret
gate U, and sends back output 2. Then, Eve applies the channel
B, producing two output systems, so that the overall trans-
formation from inputs to outputs optimally emulates U�2.
(b) One-to-two quantum learning of unitary. In a training phase,
the example U is applied locally on the bipartite state �, and
stored in the state �U ¼ ðU � IÞ�ðUy � IÞ. Then, two input
systems interact with �U, undergoing a transformation that
optimally emulates U�2.
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V, V�, W�, W. It is immediate to see that Rð1Þ satisfies
Eqs. (5) and (3), and has the same fidelity as Rð1Þ. j

The representation V�2 � V� in Eq. (5) can be decom-
posed into irreducible blocks as follows. First, one has
V�2 ¼ Vþ � V�, where V� is the irreducible block acting
in symmetric (antisymmetric) subspace H� � H �2, of
dimension d� ¼ dðd� 1Þ=2. Then, one can further de-
compose Vþ � V� ¼ V�;þ � V�;þ, where V�;þðV�;þÞ is

the irreducible block acting on the subspace
H �;þðH �;þÞ � Hþ �H , of dimension d� ¼ d [d� ¼
dðdþ � 1Þ]. Similarly, V� � V� ¼ V�;� � V�;�, corre-

sponding to irreducible subspacesH �;�,H �;� 	 H� �
H of dimensions d� ¼ d, d� ¼ dðd� � 1Þ, respectively.
Note that the subspacesH �;þ andH �;� carry equivalent

representations, and that for qubits the block H �;� does

not show up. By Schur lemmas, the Choi operator Rð1Þ in
Eq. (5) must be of the form Rð1Þ ¼P

�;�2S

P
i;j;k;l¼� r

��
ik;jlT

�
ij � T�

kl where S ¼ f�;�; �g, r��
ik;jl

is a non-negative matrix for any �, �, and T
�
ij ¼Pd�

n¼1 j�; i; nih�; j; nj is the isomorphism between the

two equivalent subspacesH �;i andH �;j (T
�
þ� ¼ T�

�þ ¼
T�
þ� ¼ T�

�þ ¼ 0). Exploiting this fact, we obtain for the
fidelity the following expression:

F ¼ 1

d4
X
�2S

X
i;j¼�

d�r
��
ii;jj (6)

while the normalization constraint of Eq. (3) becomesX
�;�

d�d�t
��
i ¼ did; t��

i
:¼ X

k

r��
ik;ik; i ¼ �: (7)

We are now ready to derive the optimal cloner:
Theorem 1. The fidelity of the optimal universal

cloning of unitary transformations is Fclon ¼ ðdþffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � 1

p
Þ=d3. The value Fclon is achieved by a network

as in Fig. 1(a) with preprocessing channel A from
SðH 0B �H 0EÞ to SðH 0A �MÞ, M being a memory
qubit, given by

A ð�Þ ¼ X
i;j¼�

Tr0E½Pi�Pj� � jiihjj (8)

(P� orthogonal projector on H�, and fjþi; k �ig ortho-
normal basis for M), and postprocessing channel B from
SðH 0B �MÞ to SðH 3B �H 3EÞ, given by

B ð�Þ ¼ X
i;j¼�

dffiffiffiffiffiffiffiffiffi
didj

p Pi½hij�jji � I3E�Pj: (9)

Accordingly, the approximate cloning ofU is a channel C0U
from SðH 0B �H 0EÞ to SðH 3B �H 3EÞ:
C 0

Uð�Þ ¼ B 
 ðU � IMÞ 
Að�Þ

¼ X
i;j¼�

dffiffiffiffiffiffiffiffiffi
didj

p Pi½UTr0E½Pi�Pj�Uy � I�Pj: (10)

Proof. For the fidelity we have the following bound:

F � 1

d4

�X
i¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
�2S

d�r
��
ii;ii

s �
2 � 1

d4

�X
i¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
�2S

d�t
��
i

s �
2

� 1

d4

�X
i¼�

max
�2S

� ffiffiffiffiffiffiffi
did

d�

s ��
2
:

The first inequality comes from Schwartz inequality ap-
plied to the non-negative matrix ai;j ¼ P

�d�r
��
ii;jj, the

second from the definition of t
��
i [Eq. (7)], and the third

from constraint (7). Since the maximum in the bound is
achieved for minimum d�, i.e., for � ¼ �, we have F �
1=d4ð ffiffiffiffiffiffi

dþ
p þ ffiffiffiffiffiffi

d�
p Þ2 � Fclon. To conclude achievability,

we directly compute the fidelity between C0U [Eq. (10)]
and U�2, which yields FðC0U;U�2Þ ¼ Fclon8U. j

Let us now clarify the meaning of the pre- and post-
processing channels A and B in the optimal network.
First, channel A can be extended to a unitary interaction
between the input systems H 0B, H 0E and the memory

M: Að�Þ ¼ Tr0E½Vð� � j0ih0jÞVy�, where j0i ¼ ðjþi þ
j�iÞ= ffiffiffi

2
p 2 M, and V is the controlled-swap V ¼

I � jþihþj þ S � j�ih�j, Sj	ijc i ¼ jc ij	i. Such an
extension has a very intuitive meaning in terms of quantum
parallelism: for bipartite input j�iBE the single-system
unitary U is made to work on both B and E by applying
it to the superposition j�iBE þ Sj�iBE and discarding E.
Less intuitive, and much more intriguing, is the meaning of
channel B. It is an extension of optimal universal cloning
of pure states [19]: if system H 0B and the ancilla M are
prepared in the state jc ijþi, then we obtain Bðjc ihc j �
jþihþjÞ ¼ d=dþ½Pþðjc ihc j � IÞPþ�, which are indeed
two optimal clones of jc i. This means that realizing the
optimal cloning of unitaries is a harder task than realizing
the optimal cloning of states: an eavesdropper that is able
to optimally clone unitaries must also be able to optimally
clone pure states. This suggests that cryptographic proto-
cols based on gates (such as the two-way protocol in the
introduction) might be harder to attack than protocols
based on states.
The performances of the optimal cloner crucially depend

on entanglement with the quantum memory M: Suppose
that after channel A the ancillary qubit M decoheres on
the basis fjþi; j�ig. Then, the approximate cloning of U is
no longer given by Eq. (10), but rather by its decohered

version ~C0Uð�Þ ¼
P

i¼�d=di½PiðUTr0E½Pi�Pi� � IÞPi�.
Direct calculation of the fidelity in this case gives Fdeco ¼
1=d2, which is exactly the same fidelity Fran that one would
achieve by applying U on the first system and by perform-
ing a randomly chosen unitary on the second. For large d,
the optimal fidelity achieved with the quantum memory is
essentially twice this value. Another classical cloning
strategy would be to optimally estimate the unknown

unitary, getting an estimate Û, and then performing Û�2
on the input systems H 0B and H 0E. Using the optimal
estimation strategy of Ref. [20] we can readily evaluate the
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fidelity of estimation to be Fest ¼ 6=d4 for d > 2, Fest ¼
5=16 for d ¼ 2. Note that, as far as it concerns the global
fidelity, for d > 2 estimation is by far worse than the crude
decohered strategy described above.

We answer now a natural question: since there is a
canonical isomorphism between unitaries U and maxi-
mally entangled states jUi ¼ ðU � IÞjIi, one might won-
der whether the optimal cloning of U can be achieved via
cloning of the state jUi. Surprisingly at first sight, the
answer is negative. To prove this fact, we put ourselves
in a slightly more general scenario: we apply the unknown
gate U to an arbitrary bipartite state � 2 SðP Þ (not nec-
essarily maximally entangled), and use the state �U :¼
ðU � IÞ�ðUy � IÞ to program a transformation LU on the
two systems H 0B, H 0E, given by LUð�Þ ¼ TrP ½Wð� �
�UÞWy�, whereW is a suitable interaction. Again, the goal
is to maximize the fidelity between LU and UB �UE.
This is an elementary instance of quantum learning, in
which a training set of examples—N uses of the unknown
U—is provided in a first stage (N ¼ 1 here), and, after the
training has been concluded, the learning machine is asked
to optimally emulate U�M (M ¼ 2 here). Using the same
method illustrated for cloning, we can find the optimal one-

to-two learning network with Choi operator Lð1Þ, for which
the normalization (3) now reads

Tr 3½Lð1Þ� ¼ I2 � �1; Tr½�1� ¼ 1; (11)

where I2 acts on the tripartite space H 2 ¼ H 2B �
H 2E �H 2A and the space H 0 is one-dimensional (see
Fig. 1). Using the symmetry argument of Lemma 1, we can
restrict the optimization to Choi operators satisfying

½Lð1Þ; V�
1 � V�2

2B;2E �W�
2A �W�2

3B;3E� ¼ 0, i.e., of the form

Lð2Þ ¼ P
�;�2S

P
i;j;k;l¼� l

��
ik;jlT

�
ij � T�

kl. The normalization

of Eq. (11) then becomes
P

�;md�l
��
im;jm ¼ 
ij for any � 2

S, and i; j ¼ �. Maximizing the fidelity under this con-
straint we then obtain the maximum value Flearn ¼ 6=d4

for d > 2 and Flearn ¼ 5=d4 for d ¼ 2, exactly the same
value of optimal estimation. Therefore, any scheme based
on the application of U on a fixed input state will be
extremely poor compared with the optimal cloner. This
highlights the fundamental difference between quantum
learning and cloning: in learning one has to first apply
the unknown gate U to a fixed state �, which implies an
irreversible degradation of its computational power. Note
that the difference between cloning and learning is a spe-
cific treat of quantum channels, while for states there is no
difference between the two tasks. Moreover, one can re-
gard the quantum learning of unitary transformations as a
special case of gate programming [5], e.g., for one-to-two
learning the program is of the form �U ¼ ðU � IÞ�ðUy �
IÞ and the target is U �U.

In conclusion, in this Letter we proved a general no-
cloning theorem for black boxes, and derived the optimal
universal cloning of unitary transformations from one-to-
two copies. The optimal cloner is realized via a quantum

channel with memory, and greatly outperforms the optimal
measure-and-prepare strategy. Exploring the deep relations
among cloning, learning, and programming of quantum
transformations is a natural development of our work and
an interesting avenue for future research.
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