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Abstract

Homodyne tomography provides a way for measuring generic field operators. Here we analyze the determination of the
most relevant quantities: intensity, field, amplitude and phase. We show that tomographic measurements are affected by
additional noise in comparison with the direct detection of each observable by itself. The case of coherent states has been
analyzed in detail and earlier estimations of tomographic precision are critically discussed. © 1997 Elsevier Science B.V.

1. Introduction

One of the most exciting developments in the recent
history of quantum optics is represented by the so-
called homodyne tomography, namely the homodyne
detection of a nearly single-mode radiation field while
scanning the phase of the local oscillator [ 1-4]. From
a tomographic data record, in fact, the density matrix
elements can be recovered, thus leading to a complete
characterization of the quantum state of the field. This
is true also when not fully efficient photodetectors are
involved in the measurement, provided that quantum
efficiency is larger than the threshold value = 1/2.

In homodyne tomography a general density matrix
element is obtained as an expectation value over ho-
modyne outcomes at different phases. In formula

kol o0

d
Wil = [Z [ dxpo(xi) WiKs(x=2)l0)
0 -0

(1)

where p,(x; @) is the probability density of the ho-

modyne outcome x at phase ¢ for quantum efficiency
7 and the integral kernel is given by

K, (x) = %Re/dkk exp (lg—nnk2+ikx> )
0

While the kernel in Eq. (2) is not even a tempered
distribution, its matrix elements can be bounded func-
tions depending on the value of 7. This is the case of
the number representation of the density matrix, for
which the “pattern function”

£ 1(x, @) = (n|Ky(x — 2¢) |n + d) (3)

can be expressed as a finite linear combination of
parabolic cylinder functions [3].
As it comes from the experimental average

w o0

d
o = / @ / Qe py (i) 0 (), (4)
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the tomographic determination gy, for the matrix el-
ement g,, = {(n|d|m) is meaningful only when its
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confidence interval is specified. This is defined, ac-
cording to the central limit theorem, as the rms value
rescaled by the number N of data. As g, , is a com-
plex number, we need to specify two errors, one for
the real part and one for the imaginary part respec-
tively. For the real part one has

Y
Reg,pm = \/ AReor, = \/ Re0nm = [Regn,m] ,

N N
(s)
where
Wd oo
Redt, = [ 2 [ axpo(nid) Res@tr 6112,
0 —00

(6)

and likewise for the imaginary part.

Quantum tomography opened a fascinating per-
spective: in fact, there is the possibility of device-
independenit measurements of any field operator,
including the case of generalized observables that
do not correspond to self-adjoint operators as, for
example, the complex field amplitude and the phase.
The first application in this direction has been pre-
sented in Ref. [6] where the number and the phase
distributions of a low excited coherent state have
been recovered from the original tomographic data
record. No error estimation was reported in Ref. [6],
whereas an analysis of the precision of such determi-
nations has been reported in Ref. [7] on the basis of
numerical simulations. The idea behind these papers
is simple. Any field operator A, in fact, is described
by its matrix elements A, = (n|A|m) in the number
representation. Then, upon a suitable truncation of
the Hilbert space dimension, at the maximum photon
number H, the expectation value of A is given by the
linear combination

H
(AY =D Oum Anm, 7

n,m=0

whereas the corresponding confidence interval is eval-
uated by error propagation calculus,

H

—_—2

AA > [Nenm|® |Anml® - (8)
n,m=0

The whole procedure relies on two assumptions,
namely

Qn,m<<1, n,m>H, (9)
and

lim |egm|=0, (10)
n,m—o00

which needs a more careful analysis. The condition
in Eq. (9) is certainly fulfilled for some value of
H, whose determination, however, requires an a pri-
ori knowledge of the state under examination. On the
other hand, it has been shown in Ref. [8] that in a
tomographic measurement involving N experimental
data the errors Reg, ,, and Im g, ,, saturate to the value
/2/N for = 1, whereas they diverge exponentially
for! 5 < 1.Therefore, the condition (10) cannot be
fulfilled in a real experiment and one would conclude
that the determinations of Ref. [6] are affected by
diverging errors. For the same reason the analysis of
Ref. [7] is not correct, and the added noise has been
largely overestimated. On the other hand, one can no-
tice that results of Refs. [6,7] are still qualitatively
meaningful, as they are obtained by a suitable choice
of H (for Ref. [7]) or a smoothing parameter for the
Radon-transformed Wigner function (for Ref. [6])
according to some a priori knowledge about the state
under examination.

2. Homodyning field operators

In this paper we analyze the tomographic determi-
nation of field quantities from a different perspective.
By homodyning an observable A we mean the average

m o0

A d 2
(W= [2 [apeo RidIms . an)

0

of the state-independent kernel function RIA](x; ()]
[9], which allows for the determination of the ex-
pectation value (A) without the detour into density
matrix elements. For a Hilbert-Schmidt operator A

' The statistical errors for the homodyne-tomography-estimated
matrix elements gn., has been evaluated first in Ref. [5]. Notice
that Eq. (49) of this reference overestimates the saturation level
for large N by a factor V2. See Ref. [8] for more details.
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Eq. (11) follows directly from a generalization of
Eq. (1) with R[Al(x;¢) = Tr{AK(x—24)},
whereas alternative approaches to derive explicit ex-
pressions of the kernel have been suggested [11,9],
that here we briefly recall. Starting from the identity
involving trilinear products of Hermite polynomials
(valid for k + m+ n =2s even [10])

/ dxe™ Hy(x) Hy(x) Ha(x)

2(m+n+k)/277.1/2k!m!n!
T (=!I (s-m!(s—n)!’

(12)

Richter proved the following non-trivial formula for
the expectation value of the normally ordered field
operators [11],

w o0

<a1nam>=/dj_5_ /dxp(x;¢)
T
0 —o0
% ej(m_n)¢ Hn+m(\/§x)
VT

which corresponds to the kernel

iom-my Hnem(V22)
— -

\/an+m (n nm)
For non-unit quantum efficiency the homodyne pho-
tocurrent is rescaled by m, whereas the normally

ordered expectation {(a'"a™) gets an extra factor
y(ntm™/2 Therefore, one has

Rla™a™](x;¢) =¢ (13)

Hpym(+/27x)
eE GOk
(14)

Ryla"a™](x;¢) =€ "~"?

where the kernel R, [0](x; @) is defined as in
Eq. (11), but now with the experimental probability
distribution p, (x; ¢) for non-unit quantum efficiency
7. From Eq. (14) by linearity one can obtain the
kernel R, [ f1(x; ¢) for any operator function f that
admits a normal ordered expansion

f=flaa)=>_ fipa"a". (15)

nm=0

One obtains

[e o]

Rolfl(x) =)

s=0

H(v/27x)
s1(2n)s/?

%)
X Z fim MM IS s
nm=0

_ f: Hy(v2n0)i* &

S!(277)S/2 dos ]:[f](U;(ﬁ), (]6)

v=0
where
o0 -1
Py R _ (n) n+m
f[f](u,qb)—n%fm( - )
X (—ip)ttmeilm—me (17)

Continuing from Eq. (16) one obtains

14 d
Ryl F1(x; ¢) =exp (Q;a,ji +2”‘E) ’FO

x FIf1(v; ), (18)
and finally
Rn[f](x;¢)=/—~d~’f~
. 2my—!
x e~V [ F1(w + 2ix; $) . (19)

In summary, the operator f possesses a tomographic
kernel R,,[f] (x; @) if the function F[f](v;¢) in
Eq. (17) grows slower than exp(nu?/2) for v — oo.
In addition, as we can assume that p, (x; @) goes to
zero faster than exponentially at x — oo, the average
in Eq. (11) is meaningful for the integral in Eq. (19)
growing at most exponentially for x — oo. In the next
section we will consider the tomographic determina-
tion of four relevant field quantities: the field intensity,
the real field or quadrature, the complex field, and the
phase, for all of which the above conditions are satis-
fied.

3. Added noise in tomographic measurements

As already mentioned in the previous section the
tomographic measurement of the quantity A is defined
as the average w, of the kernel w, = R,,[A] (x,d)
over the homodyne data. A convenient measure for
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the precision of the measurement is given by the con-
fidence interval Aw, which, w,, being a real quantity,

is given by Awy, = (w2 — W) /2, where
w2 = R2[A](x, ¢)
m d o0 .
=f;"’ / dxpy(x,¢) RE[A)(x,4).  (20)
0 —00

When the quantity A can also be directly measured
by a specific setup it makes sense to compare tomo-
graphic precision Aw with the corresponding fluctu-
ations ((AA2))!/2, Notice that, when we deal with
7 < 1 the noise ((A/\A2),7)1/2 is larger than the quan-
tum fluctuations due to the smearing effect of non-unit
quantum efficiency. As we will see, the tomographic
measurement is always more noisy than the corre-
sponding direct measurement for any observable, and
any quantum efficiency 7. However, this is not sur-
prising, in view of the larger amount of information
retrieved in the tomographic measurement compared
to the direct measurement of a single quantity.

In Table 1 we report the tomographic quantities wy,
for the field observables examined. Before going into
the details of each observable, we mention a useful
formula for evaluating confidence intervals. These are
obtained by averaging quantities like

H3+m( \/2—"7)5)
(2,’7) (n+m) (m:—n)z
(21

Rila™a™] (x,$) =H¢" ™

By means of the following identity for the Hermite
polynomials [12],

- Hau(x)
H,(x) =2'n! ZM k225 (n—k)!’ (22)
we arrive at
2,,12
2 _ 2ip(m—my R
Rﬂ[atnam](x’(ﬁ) = gli¢(m—n

nm+n

m+n 2k 1l
Z k|4(fz +)mn k)vR”[QTkak](x’¢) ’

(23)

which expresses RZ[a'"a™](x,¢), the generic
square kernel, in terms of “diagonal” kernels

Rylat*a*](x, ¢) only.

3.1. Field intensity

Photodetection is the direct measurement of the field
intensity. For a single-mode of the radiation field it
corresponds to the number operator # = a'a. For non-
unit quantum efficiency % at the photodetectors, only
a fraction of the incoming photons is revealed, and
the probability of detecting m photons is given by the
Bernoulli convolution

pn(m)=2pm(,';>n"'(1 -, (24)

n=m

Pnn being the actual photon number distribution of the
mode under examination. One considers the reduced
photocurrent

I,=-da, (25)

I |-

which is the quantity that traces the photon number,
namely it has the same mean value

AN =
() == mp(m)=n, (26)
7’mﬂ)

where we introduced the shorthand notation 7 = {(a'a).
On the other hand, the variance of I, is given by

Zm p(m) = Anz) +n (l - 1) ,
n

(27)

AI2 =

where (Kr?) denotes the intrinsic photon number vari-
ance. The term 7 ( 17" — 1) represents the noise intro-
duced by inefficient detection. The tomographic kernel
that traces the photon number is given by the phase-
independent function w, = 2x2 — (25) ~!. With the
help of Eq. (23) we can easily evaluate its variance,
namely

— — * 2 3 1
Aw,,2 = (An2) + H(n?) + 7 (— - E) t53

- 7 (29
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Table 1

Tomographic versus direct quantities for the variables of interest in this paper

Variable Tomographic quantity Direct quantity
intensity wy = 2x% — 1/29 I=dla

real field Wy = 2xC08 ¢ %= %(a+af)
complex amplitude wy = 2xexp(i¢p) a=x+iy
phase wy = arg(xei®) ¢ = arg(a)

The difference between Aw,,2 and (Zﬁ),, defines the
noise N[#] added by the tomographic method in the
determination of the field intensity,

N[A] =1 [<r§>+ﬁ<%—1)+%} : (29)

The noise N[A] added by the tomographic measure-
ment is always a positive quantity and largely depends
on the state under examination. For coherent states we
consider the noise ratio

which is minimum for i = 1.

3.2. Real field

For a single mode light beam the electric field is pro-
portional to a field quadrature £ = %(a’r +a), which is
just traced by homodyne detection at fixed zero-phase
with respect to the local oscillator. The tomographic
kernel, which traces the mean value Tr{$3%}, is given
by wn, = R,[%](x,#) = 2xcos ¢, independently of
7, whereas the square kernel w2 = R*[%](x,¢) =
4x? cos? ¢ can be rewritten as

w2 = 1 [R1a21(x, ¢) + R[aP1(x, )]

+R[a'al(x,¢) + i. (31)
29

The confidence interval is thus given by

— 1 a+a\’
=1 12 2 A
Aw, =1 [{a )-{-(a)]-i-rH-z77 < 3 >

= (Ax?) + i+ —, (32)

(Ax2) being the intrinsic quadrature fluctuations. For
coherent states Eq. (32) reduces to

Bwy =1 (ﬁ + 1) , (33)
n

The tomographic noise in Eq. (32) has to be compared

with the rms variance of a single-homodyne detection

(without scanning the reference phase) for non-unit

quantum efficiency. This is given by.

— — 1-7

<Ax2>77 = (AX2> + 4—77‘ y (34)
For coherent states Eq. (34) becomes (ZE),, =1/4n.
The added noise results in

N[2] =%(ﬁ+——) : (35)

, (36)

and increases with the scaled intensity n#.

3.3. Field amplitude

The detection of the complex field amplitude of a
single-mode light beam is represented by the general-
ized measurement of the annihilation operator a. The
tomographic kernel for a is given by the complex func-
tion w, = R[a](x,¢¥) = 2xexp(id). To evaluate the
precision of the measurement one has to consider the
noise of a complex random variable. Generally there
are two noises,

__2 (R—— - _
Awy =1 (|w|3, — [+ |Awg,|) : (37)
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corresponding to the eigenvalues of the covariance ma-
trix. Using Eq. (23) one has

wl = R2[a)(x,¢) =e2? (7—1’ +2R,[a'a) (x, ¢))

oi26
= Ry l@) (). (38)
and
lwol” = [Rylal (x, )
-1 [1 +29R,[alal(x,4)] , (39)

which lead to

(:)+2n—| a)f? £ |[(a® (a)2|) :
(40)

Aw, =

because ei"? = §,q for all states. The optimal measure-
ment of the complex field a, corresponding to the joint
measurement of any pair of conjugated quadratures X4
and %4, /2, can be accomplished in a number of dif-
ferent ways: by heterodyne detection [ 13], eight-port
homodyne detection [14-16], or by six-port homo-
dyne detection [17,18]. In such devices each exper-
imental event & = x + iy in the complex plane con-
sists of a simultaneous detection of the two commuting
photocurrents % and §, which in turn trace the pair of
field quadratures. The probability distribution is repre-
sented by the generalized Wigner function W;(«a, &)
[19],

W(a,&) = /dz_ATr{eAaT+;\a+s|/\[2/2}e)\&+ia ,
T
(41)

with ordering parameter s related to the quantum ef-
ficiency as s = 1 — 2n~. The precision of such mea-
surement is defined like Eq. (37) as follows,

Aad), = L(Jal? — [@* £ [ - @), (42)

where

- fdzaaWs(a,&) ={a),
C

?:/dza ? Wy(a,a) = (a®),

C

_=/d2aaa* W(a,&) = (a'a) + % (43)
C

From Egs. (42) and (43) we have

— 1

&)y =4 (4 1 - P £ i) - @)
(44)

The noise added by quantum tomography is thus sim-
ply given by

N[a] =17, (45)

which is independent of the quantum efficiency.
For a coherent state we have

—2 1 - 1
=1 (n+;), &)= 5. (46)

and the noise ratio is given by

(47)

3.4. Phase

The canonical description of the quantum optical
phase is given by the probability operator measure
[20,21]

au(®) =52 3 explitm—malln)(ml,  (48)
n,m=0

which defines a phase operator [22] through the rela-
tion

4= /dl/«(¢)¢——12( D

n#¥m

— |n) (.
(49)

In principle, a comparison between homodyne tomog-
raphy and direct determination of the phase would re-
quire on the one hand the average of the kernel corre-
sponding to the operator &, and on the other hand the
direct experimental sample of the operator ¢. How-
ever, such a comparison would be purely academic, as
there is no feasible setup achieving the optimal mea-
surement (48). For this reason, here we consider the
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heterodyne measurement of the phase, and compare
it with the phase of the tomographic kernel for the
corresponding field operator a, i.e. w, = arg(2xe'®).
Notice that the phase wy, is not just the given local
oscillator phase, because x has varying sign. Hence
averaging w,, is not just the trivial average over the
scanning phase ¢. The probability distribution of such
kernel variable can be easily obtained by the follow-
ing identity,

ﬂ'd oo

/ifdxpn(xy¢)=1
7T

0

—o0

k4

d o0
=/—::l/dxpn(x,w,,), (50)

-7 0

which implies

1 o0
p,,(w,,):;/dxp,,(x,w,,). (51)
0

The precision in the tomographic phase measurement

is given by the rms variance Aw,,2 of the probability
(51). In the case of a coherent state | 8) = || 8]} (zero
mean phase), Eq. (51) becomes

ﬁﬂ\_l%m]} )

which approaches a “boxed” distribution in [—7/2,
/2] for large intensity. We compare the tomographic
phase measurement with its heterodyne detection,
namely the phase of the direct-detected complex
field a. The outcome probability distribution is the
marginal distribution of the generalized Wigner func-
tion Wi(a, &) (s = 1 — 29~ !) integrated over the
radius,

1
Pq(wn) = oy {1 + Erf

x

Pn(#) =/pdp Wi(pe?, pe™i?), (53)
0

whereas the precision in the phase measurement is

given by its rms variance mi We are not able to
give a closed formula for the added noise N[¢] =

—2 -2 . .
Aw, —Ag, . However, for high excited coherent states

|8) = ||8|) (zero mean phase) one has _A_yi =72/12

LANE B B S H S S A I SN AN BN A S SR SR BN B

5¢, (dB)

ollllll‘llllllllllll

0 10 20 30

n

Fig. 1. The coherent-states noises ratio (in dB) for all the quan-
tities considered in this paper. They are plotted for unit quantum
efficiency versus 7i: this plot has to be compared with Fig. 6 of
Ref. [7].

and _A_¢f, = (2n#)~!. The asymptotic noise ratio is
thus given by

A -
by =\ |2 =m| T, A1 (54)
3o,

A comparison for low excited coherent states can
be performed numerically. The noise ratio 8¢, (ex-
pressed in dB) is shown in Fig. 2 for some values of
the quantum efficiency #. It is apparent that the tomo-
graphic determination of the phase is more noisy than
the heterodyne one also in this low-intensity regime.

4. Summary and remarks

Homodyne tomography provides a complete char-
acterization of the state of the field. By averaging suit-
able kernel functions it is possible to recover the mean
value of essentially any desired field operator. In this
paper we analyzed the determination of the most rel-
evant observables: intensity, real and complex field,
phase. We have shown that these determinations are
affected by noise, which is always larger than the cor-
responding one from the direct detection of the con-
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Table 2
Added noise in tomographic determinations and noise ratio for coherent states. For the phase the results are valid in the asymptotic regime
n>1
Variable Added noise Noise ratio
intensity N[A] = %((;2) + 72/ = 1)+ 1/9%) 8ny = (24 mAf2 + 1/2mA) 12
real field N[2] = 4(R+1/27) 8xy = {2(1 +9a)}'/?
complex amplitude Nla] = }7 8ay = (1 +nn)'/?
phase Nl¢l=n/12—1/29R 8y = /MAf6
In conclusion, homodyne tomography adds larger
a L A A EL L | noise for highly excited states, however, it is not too
) noisy in the quantum regime of low 7. It is then
° very useful in this regime, where currently available
e photodetectors suffer most limitations. Indeed, it has
ot been adopted in recent experiments of photodetection
|
o [23,24].
7]
o
(2}
=

Fig. 2. Ratio between tomographic and heterodyne noises in the
measurement of the phase for low excited coherent states, The
noise ration is reported versus the mean photon number 7 for
some values of the quantum efficiency. From bottom to top we
have 7 =0.2,04,0.6,0.8,1.0.

sidered observables. In Table 2 a synthesis of our re-
sults is reported.

We have considered the ratio between the tomo-
graphic and the direct-measurement noises. This is an
increasing function of mean photon number 7, how-
ever scaled by the quantum efficiency 7. Therefore
homodyne tomography turns out to be a very robust
detection scheme for low quantum efficiency. In Fig. 1
the coherent-states noises ratio (in dB) for all the con-
sidered quantities are plotted for unit quantum effi-
ciency versus 7: this plot has to compared with Fig. 6
of Ref. [ 7], where the tomographic errors were largely
overestimated.
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