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Abstract

Communication using direct detection of Fock states achieves the maximum mutual in-
formation (the ideal channel capacity). Also squeezed-state based communication with ho-
modyne detection leads to great improvements of the mutual information with respect to
the classical channel based on heterodyne detection of coherent states. However, any non-
classical state is made “classical” by loss, and even for not too high losses, the conventional
coherent-state channel gives the best mutual information anyway. Using the Blahut’s algo-
rithm we optimize the a priori probability for the Fock-state based channel in the presence
of loss and at constrained fixed power. For high losses, the optimization improvement of the
mutual information achieves 60%. Moreover, we show that there is a threshold (around loss
n = .6) where the optimized @ priori probability departs from the monotonic thermal-like
probability, and develops “holes” of zero probability at intermediate numbers of photons.
However, we find that even such an optimized channel is worst than the classical one for
sufficiently high power.

1 Introduction

The results about the mutual information of ideal narrow-band quantum-optical channels that
employ Fock states, coherent states and squeezed states are well-known [1]. The ultimate capacity
is achieved by the number-state channel with thermal e priori probability and direct detection
at the output. Also the communication channel based on homodyne detection of quadrature-
squeezed states with optimized squeezing is more efficient (1 bit is gained for high power) than
the classical channel based on heterodyne detection of coherent states. These results hold true
for optimal channels, and are more interesting from the theoretical point of view rather than
in practice. For applications, it is necessary to determine the relative robustness of the above
communication schemes with respect to losses along the line. Here we analyze the detrimental
effect of loss on the efficiency of the communication channels. The influence of loss is parametrized
by a value 7 between 0 and 1, corresponding to the energy attenuation factor. Due to its peculiar
form, the master equation that describes the loss keeps coherent states as coherent, so that, at
sufficiently high average power, heterodyne channel turns out to be more effective than the number-
state and squeezed-state channels. Nevertheless, one can try to optimize the a priori probability
as a function of the attenuation factor n, and consider unconventional a priori probabilities—for
example with gaps for the number-state channel—in order to make the states more distinguishable
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at the receiver. Indeed, as we will show in the following, the optimal number a priori probability
departs from the thermal-like menotonic behaviour and develops “holes” of zero probability for
sufficiently high losses (for n < .6). Optimization is obtained numerically by means of the recursive
Blahut's algorithm [2] and leads to a sizeable enhancement (over 60% for high loss) of the mutual
information for the number-state channel.

2 Coherent-state and squeezed-state channels

The effect of loss on a single-mode communication channel can be modelled by the following
master equation

86 = Lrd =T(n, +1)L[a] + n,L{al] . (1)

In Eq. (1), the superoperator Lr gives the time derivative of the density matrix ¢ of the radiation
state in the interaction picture, through the action on ¢ of the Lindblad superoperators Lla]s =
aga! — t(alag+ ga'a) [3]. The coefficient I" represents the damping rate, whereas n, denotes the
mean number of thermal photons at the frequency of mode @, and can be neglected at optical
frequencies. The loss = e™'*, which represents the energy attenuation factor, is introduced from
the following relation

(a'a(t)) = Tr[a'a (t)] = Tr[a'a e’r*3(0)] = n{a'a(0)) . (2)

2.1 Coherent-state channel

The communication channel based on coherent states employs a Gaussian a priori probability
density and heterodyne detection at the output. The heterodyne channel noise is additive (3 dB)
and Gaussian, and the Gaussian form for the a priori probability achieving the capacity is re-
quested by Shannon’s theorem [4] for Gaussian channels with quadratic constraint (corresponding
to fixed average power). The channel capacity—i. e. the maximum quantity of information that
may be transmitted without error over the channel-—for average photon number N is given by

C =In(l +nN), (3)
and the corresponding optimal a priori probability density writes
1 |C€|2 y
pla) = g (m—j\_f - (4)

Notice that Eq. (4) is independent on . This means that the optimal e priori probability for the
ideal channel still remains the optimal one in the presence of loss. As we will show, this does not
hold true for the squeezed-state and number-state channels.

2.2 Squeezed-state channel

The squeezed-state channel encodes a real variable r on the quadrature-squeezed state

|z)» = D()S(r)[0) - (5)
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The state in Eq. (5) is generated from vacuum |0) by the action of displacement and squeezing
operators, respectively ;

D(z) = exp [x (aT - a)] , 8(r) = exp E (a*z - a2)] : (6)

Decoding is performed through homodyne detection of the quadrature X = (a+af)/2. The
conditional probability density of getting the value z' when the transmitted state is |z), writes

=t 1/2: 2 4
Qn($'1$)=«}§;lﬁ*gexp FESm | =gl -] G

The mutual information for Gaussian a priori probability and fixed average number of photons
N is given by

ok 4n(N — sinh’r)
I==In [1+ i | (8)
Upon maximizing Bq. (8) with respect to £ = e~>" one obtains
1 4EN — (1 - £)?
= - 1
I zlnl:+ ZCT: (9)
with
+y/1+4n(l — )N
_n+y/I+an(-nN a0

(AN +1)n+1

The well-known result I = In(1+2N) for the ideal squeezed-state channel is easily recovered from
Eq. (9) with 7 = 1. The cptimal number of squeezing photons is given by (6 +&71 —2)/4: for
increasing loss, the demand of squeezing photons that optimize the mutual information rapidly
decreases.

Following Hall [5], one can prove the following upper bound for communication channels based
on homodyne detection and degraded by loss 7

I<In(1+279N) . (11)

Is the upper bound (11) achievable? While for ideal transmission (n = 1) the bound is achieved
by a Gaussian ensemble of squeezed states, in the presence of loss the bound is not reached, even by
optimizing the squeezing parameter r versus 7. Notice that Eq. (8) has been derived for Gaussian
a priori probability, namely taking r as constant, and we cannot rule out the possibility of further
improving the mutual information by optimizing r versus the signal z in Eq. (5). However, such
an optimization is difficult to achieve, since the corresponding conditional probability density is
no longer Gaussian, and even numerically, we have no method available to evaluate the ultimate
capacity of the lossy homodyne channel and to determine the relative a priori probability density.
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3 Number-state channel

The ideal communication channel that encodes Fock-states with thermal a priori probability
distribution and direct detection at the output achieves the ultimate capacity (Holevo’s bound
[6, 7]) for single-mode channels subjected to a fixed power constraint. For ideal transmission
the conditional probability density is given by the Kronecker delta ¢, , which is replaced by a
binomial distribution in the presence of loss.
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Figure 1: Optimized a priori probability p(n) versus n for different values of the attenuation factor i and average
power N: a)p=.8, N =5.79, I =2.41bit. b)n=.6, N =241, I =1.34 bit. ¢) p = .4, N =1.89, I = 0.89 bit.
d)n=.2 N =224, I =063 bit.

We have used the Blahut’s recursive algorithm [2] to evaluate the Fock-state channel capacity
in the presence of loss and to determine the corresponding optimal a priori probability. Fig. 1
shows the optimal number probability for different powers and different values of 1. The Hilbert
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space has been truncated at 200, but truncation at 100 gives indistinguishable results. For n = .8
the corresponding distribution p, is thermal-like (with enhanced vacuum-probability) and the
improvement of mutual information with respect to the non-optimized channel is around 4%.

For higher loss (n = .6) the optimal a priori probability departs from the monotonic thermal-
like distribution and develops “holes” of zero probability (as for n = .4 and, more dramatically,
for n = .2). Correspondingly, the improvement of mutual information due to the optimization
procedure is much better: 10%, 24% and 60% for n = .6, .4 and .2, respectively. In these cases (low
power), this improvement makes the number channel more efficient than the coherent channel.
The mechanism of development of holes in the optimal input probability is easy to understand:
when the loss is too high it is more convenient to use a smaller alphabet of well-spaced letters,
in order to guarantee a better distinguishability at the receiver. However, for sufficiently high
power, even such an optirnized channel is worst than the classical one, as one can see in Fig. 2,
which gives the regions on the plane “loss vs power” where each channel is optimal. In Fig. 3
the coherent-state, squeezed-state and optimized number-state channels are compared. Notice the
value of the minimum over the border line between the coherent and the squeezed regions (n = .5
and N = 8): this means that for average power lower than eight photons the squeezed-state
channel is always better than the coherent-state one.
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Figure 2: Optimal channel diagram comparing the coherent-state (black region) and the optimized number-state
(dark grey region) channels.
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Figure 3: Optimal channel diagram comparing the coherent-state (black region), the squeezed-state (light grey
region) and the optimized number-state (dark grey region) channels.



