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We analyze and compare the characterization of a quantum device in terms of noise,
transmitted bit-error-rate (BER) and mutual information, showing how the noise de-
scription is meaningful only for Gaussian channels. After reviewing the description of a
quantum communication channel, we study the insertion of an amplifier. We focus atten-
tion on the case of direct detection, where the linear amplifier has a 3 decibels noise-figure,
which is usually considered an unsurpassable limit, referred to as the standard quantum
limit (SQL). Both noise and BER could be reduced using an ideal amplifier, which is
feasible in principle. However, just a reduction of noise beyond the SQ}L does not gener-
ally correspond to an improvement of the BER or of the mutual information. This is the
case of a laser amplifier, where saturation can greatly reduce the noise-figure, although
there is no corresponding improvement of the BER. Such mechanism is illustrated on
the basis of Monte Carlo simulations.

1. Introduction

In order to exploit the bandwidth available in the optical domain the evolution of
optical communications urges conversion of hybrid electro-optical devices towards
all-optical ones. For long distance communications the losses along the optical
fiber decrease the transmitted power and introduce communication errors, thus
being the crucial limitation to the development of this kind of technology. On the
other hand, an amplifier along the line restores the power level, but introduces
noise of quantum origin. For direct detection, which would allow to achieve the
ultimate channel Capax:il;y,l an optical phase insensitive amplifier used in the linear
regime introduces 3 decibels of noise. Such noise has long been considered as an
unsurpassable limit? — the so called “standard quantum limit” (SQL) — which,
however is just a peculiarity of the linear phase insensitive amplifier (PIA).%

In order to recover the transparency of an optical network one needs to achieve a
perfect amplification that, by itself, does not introduce any additional disturbance.
Indeed, as suggested by Yuen,* it is possible in principle to achieve such ideal
amplification also for direct detection, although there is still no actual device that
can attain it in practice. With this aim one could try to improve the performance
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of an existing amplifier by driving it far from the linear regime, and going beyond
the SQL. In Ref. 3 it has been shown that this is indeed possible for a saturable
laser amplifier, where in an intermediate-saturating regime one can accomplish noise
suppression with still sizeable gains. The objective of Ref. 3 was originally to prove
that the SQL can be actually breached in a concrete case. In a following debate™®
it has been pointed out that the noise is not the significant quantity for evaluating
the goodness of an amplifier, and one should better resort to the original problem
of the transmitted bit-error-rate (BER). However, Ref. 5 still considered the PIA
as the reference standard quantum amplifier, whereas, as clarified in Ref. 6, the
ideal photon number amplifier (PNA) of Yuen indeed could greatly improve the
transmitted BER of the PIA.

In this paper we reconsider the problem of characterizing the quality of a low-
noise amplifier from the beginning. We clarify that the quantity that unambiguously
determines the behavior of a device inserted in a communication channel is the
so called “mutual information” between the input and the output. For a binary
channel, the BER. is essentially equivalent to the mutual information for small error
probabilities, whereas it remains an ambiguous characterization for any pathological
gituation. On the other hand, we will also show that the characterization in terms
of noise is still meaningful for Gaussian communications channels.

As the noise characterization® is not sufficient to establish whether a saturable
amplifier can perform better than a linear one, here we present a careful analysis
of a laser amplifier in a quantum regime, and compare it with an ideal PIA. We
illustrate the mechanism that underlies a noise reduction under saturation, and
explain why such reduction does not correspond to any improvement of the BER.
We will show that this is typical of the saturation mechanism, whereas, in general,
a noise reduction may correspond to an improvement of the BER, and, indeed, for
an ideal PNA such an improvement can be actually achieved.

The outline of the paper is the following. In Sec. 2 we give a brief introduc-
tion to the basic concepts of information theory that are needed for a complete
characterization of the operation of a quantum amplifier. Such concepts are then
specialized to the case of a quantum communication channel in Sec. 3, where a com-
plete description of the transmission of quantum signals and the characterization of
a quantum amplifier are given. In Sec. 4 the linear Gaussian channel is discussed.
This channel is of particular interest because it is the only case where a quantum
amplifier can be equivalently characterized in terms of mutual information and in
terms of noise. In view of the subsequent comparison between the performances
of a linear and a saturable amplifier, in Sec. 5 the conventional linear PIA is re-
viewed and the SQL is derived. In Sec. 6 the laser saturable amplifier is presented
and analyzed on the basis of the Fokker—Planck equation derived by Haake and
Lewenstein.” In Sec. 7, after presenting some numerical tests of the theory and of
the Monte Carlo simulation method, we compare the performance of the saturable
amplifier to the one of the linear PIA. The conclusions are then given in Sec. 8.
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2. Basic Concepts of Information Theory

A communication channel between a transmitter and a receiver can be viewed as
composed of three basic constituents: an encoder, a transmission line, and a de-
coder. The encoder transforms the input of the channel — i.e. the message to
be transmitted — into a proper set of physical signals that are impinged into the
transmiqqiun lin(, In this schematic roprmcntation the ’rrarmmisqiﬁn line includes all

Henr](-}r to I.hc receiver, 111(:111(1111@; a}J noise sources cl]'lLI any kmd r_>f devlt,e ( e.g. dIIl]’)ll-—
fiers) inserted along the line. The decoder applies a set of operations on the received
signal, like measurements and data-processing of the results, and then gives the re-
constructed message at the output of the channel. If no transformation modifies
the signals along the line, then the encoded message can be perfectly reconstructed,
otherwise errors can arise at the decoder, and the intrinsic potential of the channel
decreases.

The significant quantity that measures the efliciency of a communication channel
is the mutual information. Let us define it first in the case of a classical discrete
channel, and then generalize it later to the continuous and quantum cases.

By definition, a discrete channel transmits only symbols belonging to a numer-
able set. Suppose that the input of the channel is a symbol from the set (or alpha-
bet) {z;,j = 1,...,J} of J elements with a priori probabilities {p;,j = 1,..., J}
{Ei_lpi = 1), whereas the output is a symbol from the set {gi,k = 1,..., K} of
K elements (the two sets need not be equal). The two sets are linked by specifying
the conditional probabilities QJy|; that the output is yx given the symbol z; at the
input. The mutual information is given by

7 R Or
i :
=§;11ij|_«;10822 (Zf.ﬂi@ki) (1)

and quantifies the degree of knowledge (in bits) that the output random variable
Y gives about the input random variable X (by the capital letter X = {x;,p;,7 =
1,-+,J} we denote the random variable, namely the set of symbols {x;} along with
the corresponding probability distribution {p;}). The mutual information can also
be written as follows

HX;Y)=H(X)—- H(X|Y), (2)
namely as the difference between the entropy at the input
J
H(X)=-) pjlog,p; (3)
j=1

and the conditional entropy at the output

H{X|Y) = Z-Th Z Pjx loga Pjjic , (4)
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where g, = ), piQy; is the unconditioned probability of the output symbol v, and
Py = piQp;/qx is the conditioned probability that symbol z; was transmitted
given that symbol gy is received. In the limiting case X = Y that input and output
alphabets coincide and the channel is noiseless (Q;x = djx), one has

I(X;X)=H(X), (5)

namely the information transmitted through a noiseless channel is just the entropy
of the input alphabet. In the opposite limiting case that the input and output
random variables are completely uncorrelated (@, = ¢; for all k) the mutual
information vanishes.

The definition of mutual information (1) can be straightforwardly generalized to
the case of a continuous set of symbols 2z € X and y € ', with a prieri probability
density p(x) and conditional probability density Q(ylz). Here the sums in (1)
replaced by integrals as follows

Q(ylx) ) _ ()

I(X;Y) = Ldm /y dy p(z)Q(y|x) log, (j dz p(2)Q(y|z)

Let us now consider the case of a binary channel, where two different symbols “0”
and “1” (which make one “bit”) are transmitted with equal a priori probabilities
po = p1 = 1/2. Usually a binary channel is characterized by the probability of
making errors at the decoder, called “bit error rate” (BER), and defined as follows

B = - (GQo1 + Quo) - (7)

ba| =

In Eq. (7) Q1) is named “false alarm probability” (the probability of detecting “1”
when the signal “0” was transmitted), whereas ¢1; = 1 — @)y is called “detection
probability”. Among the possible choices of sets of independent probabilities, in
the following we adopt the couple {Qy1,Q 10}, in terms of which all quantities of
interest (e.g. BER B and mutual information I') can be expressed. The mutual
information of the binary channel takes the form

5 21 ~ Qo) ) ( 2Qop; )
I = - = i l r 4 | J >
2 {(I i (1 = o S e e

9% 2(1 —
-I'Q1|n log, (%) + (1 — Qo)1) log, (1 _(Qu.lc_gl_ﬁlglw)] . (8)

In the binary channel the BER gives the same characterization as the mutual in-
formation in the limiting case of small error probabilities (Q1j0s Qoj1 € 1). Here, I
can be expanded at first order in Qo and Qp/;, and one has

Bgl=I=1—B. (9)
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Notice, however, that the BER and the mutual information generally do not give
the same description of the channel, as one can have channels with the same BER
but having different mutual information, and vice versa. For instance, consider the
case B = 0 corresponding to Qu1 = @10 = 0 (namely no errors are made in the
identification of the binary symbol at the output). As mentioned before this means
that the information is maximum, i.e. /(X;Y) = 1. On the other hand, for B = 1
one has @y = @10 = 1, namely the output symbol is always interpreted in the
wrong way: in this case, however, the mutual information is still unit, and, in fact, it
is possible to reconstruct the transmitted message without ambiguity by swapping
the symbols “0” and “1" at the output. Moreover, one can have different values
of the mutual information that correspond to the same BER, just by varying the
probabilities of error and keeping their sum fixed.

As shown in the above examples, the mutual information gives a more complete
description of the communication channel than the BER, and hence it should be
adopted as the right quantity to characterize the channel. In the rest of this paper,
however, we will use the BER, because in our case the probabilities of error are so
small that BER is equivalent to the mutual information via Eq. (9).

3. The Quantum Communication Channel

In this section we specialize the above concepts to the quantum communication
channel, where the information is encoded on quantum states. In the first two
subsections we give a characterization of the channel in terms of mutual information,
and in terms of gain and noise-figure of the devices inserted along the line. Finally,
in Subsec. 3.3 we review the description of the dynamical evolution of the quantum
state along the transmission line, with the insertion of both amplification and losses.

3.1. Mutual information in the gquantum channel

In a quantum channel the symbols to be transmitted are encoded into density
operators p, on the Hilbert space H of the dynamical system that supports the
communication. The alphabet (which can be either discrete or continuous) is dis-
tributed according to an e prieri probability density p(z), which also determines
the mixture p given by

ol — jdz plx)ps - (10)

The set of states p, and the probability density p(x) are globally referred to as
“encoding”. The transmission line includes all dynamical transformations of the
encoded states between the encoder and the decoder. In the Schrodinger picture
these are described by a completely positive (CP) map p — p, = E;(p) acting on
the density matrix p that carries the information through the channel. The last step
in the communication channel is the decoding operation, where the recognition of
the transmitted symbol is established as the result of a quantum measurement. In




























































