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Self-homodyne tomography of a twin-beam state
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A self-homodyne detection scheme is proposed to perform two-mode tomography on a twin-beam state at
the output of a nondegenerate optical parametric amplifier. This scheme has been devised to improve the
matching between the local oscillator and the signal modes, which is the main limitation to the overall quantum
efficiency in conventional homodyning. The feasibility of the measurement is analyzed on the basis of Monte
Carlo simulations, studying the effect of nonunit quantum efficiency on detection of the correlation and the
total photon-number oscillations of the twin-beam stp$1.050-294{@8)00607-4

PACS numbd(s): 42.50.Dv

I. INTRODUCTION raphy of a twin-beam state produced in parametric down-
conversion, we are interested in features of the joint photon-
One of the most significant advances in modern quantunmumber distribution of the signal and the idler, such as the
optics is the theoretical developmdif and subsequent ex- delta-function correlation between the photon numbers of the
perimental realizatiorf2] of homodyne tomography. This two modes, and the even-odd oscillations of the total photon
measurement scheme allows one to reconstruct the densityamber. The sampling algorithm for the two-mode tomogra-
matrix of the quantum state from a set of field quadraturephy is obtained by a straightforward extension of the single-
measured by a balanced homodyne detector. Reconstructiomode casg18]. In the relatively new field of multimode
methods, initially based on an approximate inverse Radotomography, recent advances have been made in the theoret-
transform of the quadrature histograms, have been enhancéshl description19] and the experimental measuremgza]
later through exact algorithn{8-6] that achieve the mea- of the photon-number correlation between two temporal
surement of the matrix element by sampling a correspondingnodes.
pattern function of the experimental homodyne outcomes From the experimental point of view, homodyne tomog-
(for a review se¢7]). These algorithms have been proven toraphy of the photon-number distribution is a viable alterna-
be very stable and fast enough to allow real-time data santive to direct detection. It allows one to measure very weak
pling. For the photon-number representation, the calculatiophoton fluxes—of the order of a fraction of a photon per
of the pattern functions has been greatly improved by meansmeasurement time—using high quantum efficiency fast
of factorization formula$8] and asymptotic approximations p-i-n photodiodes, as compared to the slow and less effi-
[9] for large photon numbers of the matrix indices. The di-cient avalanche photodiodes used for direct detection. This
rect sampling approach has been implemented experimeonvenience, however, comes with its own price tag. One
tally to measure the photon statistics of a semiconductor laencounters the problem of mode matching between the LO
ser[10], and the density matrix of a squeezed vacyddi. and the detected modg21], determined by their spatiotem-
The success of optical homodyne tomography has stimulategbral overlap, which gives a detrimental contribution to the
the development of state-reconstruction procedures fooverall quantum efficiency. As shown in R¢4], the detec-
atomic beamd12], the experimental determination of the tion of the quantum features is rapidly degraded by less-than-
vibrational state of a moleculgl3], of an ensemble of he- unity quantum efficiency of the homodyne detector, and the
lium atoms[14], and of a single ion in a Paul trdd5]. degree of degradation rapidly increases for larger photon
Finally, some nontomographic state reconstruction methodsumbers.
have also been recently propoddd]. The problem of mode matching becomes especially se-
While the full density matrix reconstruction requires thevere for quantum states generated in traveling-wave or
knowledge of the phase of the detected mode with respect tpulsed experiments, particularly those employing the optical-
the local oscillatorLO), for the diagonal matrix elements it parametric amplifier§OPA’s). It has been shown that a LO
is just sufficient to average over a random phgk8. The  well matched to a squeezed vacuum can be generated in the
typical nonclassical states of interest—such as squeezeshme parametric proce§82]. For example, in Ref[22] a
states—already exhibit interesting quantum features in jugpolarizationally nondegenerate OPA was used to produce the
the photon number distribution; this makes homodyne tosqueezed vacuum and the matched LO in two orthogonal
mography especially attractive. Among the quantum featurepolarizations. However, while this approach is justified for
of interest, there are the even-odd oscillations in the photomeasurements of the squeezing, it cannot be used for
number distribution of a squeezed vacul], which were  density-matrix reconstruction, as a tiny leakage of light from
recently observed experimentall¥1]. In two-mode tomog- the LO polarization into the signal polarization can easily
spoil the signal photon-number distribution.
In this paper, we address the problem of generating a
*Also at Theoretical Quantum Optics Group, INFM, UniePa-  matched LO for the reconstruction of the density matrix of
via, via Bassi 6, | 27100 Pavia, Italy. the output state of a polarization-and-frequency nondegener-
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ate OPA. In the spirit of Ref.22], we develop a concept of a ., by

self-homodyning that allows one to create both the LO and A g

the signal in the same OPA. In the direct detection of the o X N

output signal field, a strong mean field at the central fre- idler, 4 DR 0, 0yt . Detector1

guency wg can serve as a LO for measuring a mode that ~f’-@‘__) M I (Q

consists of two sidebands at+ ). As we will show in the pump, 2w, >l NOPA [

following, the relative phase between the LO and the two- “‘:~-»D_ $ @

sideband mode can be varied, thus allowing homodyne to- _, bo (%)
signal, ay Detector 2

mography of the latter. In this way one can perform the
tqmographic reconstruction of full joint Qensity matrix of the FIG. 1. Scheme of a self-homodyne detector along with the
signal and idler tW'n'beam mOdes' In this paper,_ W? Co,ns'detrelevant modes of the electromagnetic field involved in the mea-
the measurement of the joint photon—numbgr d'IStrI'butIOI’l Ok rement. The nondegenerate optical parametric ampiiOPA)
these two modes and the photon-number distribution of the; seeded with input fields having strong coherent components at
signal mode alone. For the latter, a thermal distribution irequencyw,, and is pumped at the second harmanjg=2w,. At
expected, as seen in recent self-homodyning experimentge output of the amplifier the intensities of the two different polar-
[23]. We also show that self-homodyning can be used tQzations are separately measured by photodetectors, and a narrow
measure the photon statistics of th€45°- and the band of the output photocurrents is selected, centered around fre-
—45°-polarized linear combinations of the signal and idlerquencyQ < w,.

modes.

From Monte Carlo simulations we will estimate the ex-
perimental conditions that are needed to extract the join
photon-number probability distribution of the twin beams,
the photon correlation between the modes, and the quantu
oscillations of the total photon number. We will show how
these quantities can be experimentally measured for realist
values of quantum efficiency~0.9) of the photodiodes and
for reasonable number of data points 10°).

having a strong coherent component at frequengywith
pgmplitudesa; ander.. depending on the polarization, with
denoting the vertical ang- the horizontal polarization, re-
ﬁpectively. The amplifier is pumped at the second harmonic
wp=2wo With amplitudea,>a; ,a.,, such that the pump
can be considered as classical and undepleted during the am-
Fﬂification process. At the output of the amplifier two photo-
detectors separately measure the intensities of a couple of
orthogonally polarized components of the figldand €., .

In Sec. Il we give a detailed theoretical description of the the output of the photodetectors, a narrow band of the

self—homodyne measurement, relating the measurement B otocurrent is selected, centered around frequéneiw,
the field quadratures to the output photocurrents in Sec. Il A(typically g is an optical frequency, whereds is a radio

and evaluating the joint probability distribution of the pho- frequency. In the narrow-band approximation and for radia-

tocurrents in Sec. 11 B, in a form suitable for Monte Carlo tjon apsorbed in a thin detector layer, the filtered output pho-
simulations, also taking into account the effect of nonunitiy.,rrents are given by theompley operators

guantum efficiency. In Sec. Ill we briefly review the exact

reconstruction algorithm for quantum tomography, for one - AT 5
mode only in Sec. Il A, and then with extension to any 'w(Q)“ﬁx dte™[ £, (0)]%
number of modes in Sec. Il B. In Sec. Ill C we analyze how
the two-mode tomography is achieved through self-
homodyne detection. In Sec. Ill D we introduce the concepts
of the measurement of the “dressed” state, often adopted in
experiments—as opposed to the “bare” state, usually aswhere : : denote the customary normal ordering with the
sumed by the theorists. In Sec. IV we present some selectgdutpuy field annihilation-operator componenftég on the

Monte Carlo simulations, also for nonunit quantum em'_right and the creation operatoﬁg on the left, and the sub-
ciency, for both the bare and the dressed states. We Willqey 7 runs on the two independent polarizatignand <.
focus attention on the joint photon-number probability, on n terms of the annihilation and creation operatorand b’
the correlation between the photon numbers of the twc; P

modes, and finally on the total photon-number probability,Of the relevant output modes one has

which exhibits oscillations typical of the twin-beam state. TW(Q):BE b +61 60 , )

Section V concludes the paper with a discussion of the re- T T

sults in view of the feasibility of the real experiment. The where the subindex 0 refers to the central mode at frequency

Appendix covers the details of derivation of the joint photo- wg, and = refer to the sidebands at frequencieg+ (2, re-

current distribution used in Sec. Il B. spectively. The input-output Heisenberg evolutions of the
relevant field modes across the NOPA are given by

=fjwdwg;(w+ﬂ)3’;(w), m={l,=} @

IIl. THEORETICAL DESCRIPTION b01:M3-01+ Va&_,, bo..=pag.. + Va(’gl '
OF THE SELF-HOMODYNE MEASUREMENT
A. The detector byi=pa,+ va |, by =pa, + Vatl )
The scheme of a self-homodyne detector is depicted in ELIZMéLfF véﬂﬁ, b__=pa__+ Véii,

Fig. 1, along with the relevant modes of the electromagnetic
field involved in the measurement. A nondegenerate opticavherea anda' denote the annihilation and creation opera-
parametric amplifie(NOPA) is injected with an input field tors for the input modes,u=cosh, v=e'%sintr, r
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xLxP|a,| (L is the amplifier lengthx(?) is the effective
second-order susceptibilityln the following we putf,=0,
namely, we set the pump phase as the reference phase for all o1
modes. We assume the modg, to be in a highly excited
coherent state with amplitude; . For the purpose of mea- £ oo
surement of the joint photon-number distribution, the mode 2 o02
éOH will also be assumed in a highly excited coherent state 00
with amplitudea_, . In the case where we are interested in
measuring the photon-number distribution of one beam only,

the photocurrent produced by the-"-polarized beam can FIG. 2. Theoretical two-mode photon-number probability
be ignored or the modéOH can be assumed to be in the p(n,m) of parametric fluorescence in the signal and idlevin-
vacuum state. In the process of direct detection, the highlypeam modes(left), and in the+ 45°-polarized modegight), given
excited central modesy; . beat with thewy+ Q) sideband Y Eds.(17) and(26), correspondingly. The mean number of pho-
modes, thus playing the role of the LO of homodyne andons in each mode=10.

heterodyne detectors. This converts the direct detectors into

j
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self-homodyne detectors whose experimental outcomes are Re[il( 0)e'é]=X ¢(B(I§))’
the measured values of the following rescaled output photo- (7)
currents in the limit of strong LO’s: Re[? (Q)eix:l:)"(w(é(x))'
- - Troll () pio] where the operatdX ,(c) denotes the quadrature at phase
11(Q)= lim , . L ~
of the mode with annihilation operatot namely,

Ia\—>°°\/§771|,ua1+ va® |
. X4(C)= 3 (e 'Yc+e'’ch, ®
Trioll - (Q)p o]

1. (Q2)= lim \/— o (4) and the operatoIABSZ‘) is the annihilator of the polarized out-
lel—=\2n_|pwa_ + vaj | put mode

where»; and 7., denote the quantum efficiencies of the two R 1 . o
photodetectorsy* denotes the complex conjugate®f p, o B$>=E(e'”b_w+ e by ,). 9
represents the density operator of the LO state, angy Tr

denotes the partial trace over the LO modes. In B). ;g easy to check that the output modé® have corre-
| -(Q) is modified from that in Eq(2) because of the non- sponding input modes given by

unity quantum efficiencies of the two photodetectors. It is

given by 1

AMN=—(elra__+e Ma, ), (10)

w

1.(Q)=bitb" _+b"" b, (5) 2

O™ —m

where b/, = \/waﬁ ‘/1_. Nalym. Herev,, for ye{0, and they are related by the Heisenberg evolutions
+,—} andme{],<} are independent vacuum-state opera-

. RN _— AN AT
tors accounting for the loss at the three frequency compo- B(I )—MA% '+ AT, (11)
nents of each polarization mode. For the sake of simplicity, R A R
we will assumen;= 7., =1 for the rest of this subsection. BN =uAN +yAMT,

We will take into account the effect of nonunity quantum A
efficiency on the photocurrent probability distribution in Sec.By scanning the relative phagebetweerby; and the pump

I B. Thus, Li)sin_g Egs(3) and quantum efficiency equal to mode, one can measure any quadrafu(g(aéf)) of the out-
unity, one obtain24] put field. If the input sideband modes. are in a state with
1 a completely random phase, such as the vacuum, then the
]I(Q): —(e“¢6_1+e‘¢611), only phase reference in the output modes is _the pump
phased,=0. In that case, the phagecan be easily changed
(6) by delaying all the input fields with respect to the pump field,

1 with no need to change the phaseé@f separately from the
1.(Q)=—(e b__+e€b ), other input modes. .
\/E From Eg.(9) one can recognize that there are actually

four output modes that commute with each other; hence,
where¢=arg(a;+ 7al)) is the phase of the modAl%)I rela- their quadratures could be Jolngy meﬁi%edA (b3)l the self-
tive to that of the pump withr=tantr, and analogouslys ~ homodyne detectors. They ai{, Bf , B, and
=arg(a_ + m’f). Taking the real part of the photocurrents BWX*72) corresponding to the “cosine” and “sine” com-
at given radio-frequency phasésand y one has ponents of the two photocurrents in E¢8) at phases and
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X. respectively. The mode’{" andB®) are correlated due POXGX 3 b, )= (X, X" s b, BRI, X s b, ), (12)
to the parametric interaction in Eqll). This interaction,

£0) 2 (\+ 7/2)
however, does not couple the mod#’ and B " ™). where|x,x'; ¢, #)=|x) ,®|x'),, represents the simultaneous

eigenvector of the two quadraturﬁ%,) and 5(;’ with eigen-

valuesx andx’ in the Fock space;®H., of the two modes
Since we are interested in using self-homodyne detectioR  angB_ | respectively, andR denotes their joint density

to measure the quadratures of two correlated mﬁ%@sand operator. For detectors with nonunit quantum efficienajes

B®), the radio-frequency phasecan always be set to zero and 7., the joint probability distributiorp,, ,, | (x,X"; ¢, )

by shifting the time origin. Then, the quadratuiég(B(*)) ~ of the photocurrents is the convolutig4] of the ideal prob-

and5(¢,(l§>ff)) are jointly measured. In the following we wil ability in Eq. (12) with Gaussians for each mode of variances

use the shorthand notatidh,=B{") andXj=X 4(B{"), and

B. Photocurrent probability distribution

analogously for the input modes,=A? . For perfect de- A2 1T (13)
tectors, the joint probability distribution of the “cosine” Tmo A,
photocurrents witht= y in Egs.(7) coincides with the joint
probability distribution of the two quadrature@}z5 and Xy, In this way, the resulting output probability distribution can
namely, be written in the form
|
1 . (x=XL)2  (x'=X})?
Py (XX )= 5————Tr{ Rexg — 7 2 : (14)
KRR 277A,71A,7H 2A,]I 245,
|

For simplicity, in the following we will assume equal quan- p(n,m)=|(n,m|¥)|?= 81— 72) 72"

tum efficienciesn; = 5. = n for both detectors. Notice that
in the limit of unit quantum efficiency—1, one hasA

—0, and the ideal probability in Eq12) is recovered. Sam n\"
We are now interested in the simplest case of measure- === 17
ment, that withwo= Q sidebands in the vacuum state at the n+1lin+1
input of the NOPA (i.e., parametric fluorescenceln the
Schralinger picture, Eqs(11) correspond to the following \\here
state generated at the output of the NOPA:
—(1_ 2\12 S n — 7 .
[W)=(1-)"2 n,n), (15) = = 2=sinl?r (18)
n=0 1-7
wherer=tantr, and the two-mode Fock stafte,m) pertain-
ing to él andB_. is given by is the average number of photons in each mode at the NOPA
L output due to parametric fluorescence. The main feature of
(B{)”(Bl)m the distribution(17) is the perfect correlation of the photon
|n,m)y= ——=—10,0), (16)  numbers in the signal and idler modes. The two-mode
n'm! photon-number probabilityp(n,m) of Eq. (17) is shown in
R Fig. 2 (left).
where|0,0) denotes the vacuum for both tBe. modes. For The joint probability distribution of the output photocur-
the statg(15) the photon-number probability is given by rents is derived in the Appendix, and is given by
|
! ! 142 )2
P, (XX, 4h)= Wlexpy — —[(X=Xy) "+ (X" =X,)] 1| ¥ 19
’ 2wA? 242 ’ '
2 r{ (x+x")%  (x=x")2 20
= expg — - , 20
(2 +442) (0% +442) di+4A?  d?, +4A7
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which can also be cast in the equivalent form with Tr_, denoting the partial trace over the Hilbert space of
ab the undetected modB. .. The reduced density operator of
p(X,x"; ¢, )= ——exd —a3(x—c,x")2—b3x'?], the modeB; in Eq. (23) is that of a thermal state with the
m photon-number probability
(21)
where —
, 1 n
k=e ¢ Vtantr, p(n)=——(——) : (24)
n+1\in+1
2 |1+ «|?
K 1 _ 2 _
1=« where the average photon numbrers given by Eq.(18).
2 0 2 The probability distribution of the output photocurrent, Eq.
di+d<,+8A , . . . 9 1, 1 9
i: > —— i =, (22), is a Gaussian with variance“=3 (n+ 3) +A7, cen-
(di+4A7)(dZ, +4A7) tered at zero. This result of self-homodyning of only the
signal mode has been recently demonstrated experimentally
d2—d?, [23].
Cu= 2 +d2+8A2" Let us note that, while our analysis is aimed at the mea-
KTk 7 surement of the joint signal-idler photon distribution, a simi-
b2=a2(1—c?) lar self-homodyning approach can also be implemented to

measure the joint distribution aof 45°-polarized OPA out-
In the case that we measure only a single output photocuRUts. In that case, a quadrature of the annihilation operator
rent, say?I(Q)—namely, we ignore the measured value of

Fhe other photocurreﬁL(Q)—the self-homodyne detecto_r B, =puA_+ vAIT (25)
is equivalent to a conventional homodyne detector, which
measures only the quadratu)?é) of mode él' The output
probability distribution is given by is detected at a phase arg(+ 7o), where the subindex
12 runs on the two independerit45° polarizations, namely/”
)= 1 T 5 exd — (X—X4) 22 and\_, anda,, is the coherent-state amplitude of the corre-
P,(X:¢)= ¢ ex 2 ' sponding central-frequency component of the input. Since
2mA3, 243 ! -
the interaction(25) does not couple the-45° and —45°
where the reduced density operator of the mé@lds _modes_ with each other, the polarization nondegenerate_ QPA
is equivalent to two degenerate OPA’s. Two-mode joint
— é}él photon-number distribution is just a product of the marginal
~ 1 A .
o=Tr [N ¥|]==—| =— (23 Q|str|bqt|ons for each mode, and in the case of vacuum-state
n+1\n+1 input sidebands is given Hy.7]
0 for n=2k+1 or m=2l+1
— \ k+l
={ 2k=Dr2-nHn 1 n 2
pnm) = (k=D @ -1t 1 [ | for n=2k  m=2l (26)
27kt n+1ln+1

where the mean photon numbeiin each mode is given by Wwardly extended to any number_of modes—in particular, to
Eq. (18). The probability distributior(26) is shown in Fig. 2  the case of two modes involved in the self-homodyne detec-
(right), next to the signal-idler joint photon-number distribu- tion of the OPA output—and we will obtain an algorithm
tion of Eq.(17). While the +45° modes exhibit independent similar to those in Refd.18]. Finally, we introduce th.e mea-
photon-number oscillations in Fig. @ight), the signal and Surement of the “dressed” state, often performed in experi-
idler correlations in Fig. Zleft) result in oscillations of the Ments, as opposed to the “bare” state, typically assumed by
total photon number. the theorists.

IIl. QUANTUM HOMODYNE TOMOGRAPHY A. Single-mode detection

In this section we briefly review the method for recon- The method for reconstructing the matrix elements of the
structing the quantum state that was introduced in R8fd]  density operator is based on the following resolution of the
for one field mode. Then we show how it can be straightfor-identity on the Hilbert-Schmidt space
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. d®w .. . where the overbar denotes the experimental average. The
Q:JTTr[QD(W)]DT(W)' (27) functions<v|f<,](x—)A(¢)|u’> for different vectors|v) and
|v') are called “pattern functions” after Ref5].
where the integral is extended to the complex pl&rfer w, In Ref. [4] the boundness of different types of matrix

and D(w) = exp(-w*a+wa') denotes the displacement op- elements of the operator kerri€l (x—X,) was analyzed as
erator for the field mode of interest with annihilation opera-a function of the quantum efficiency. It was shown that for
tor A. Equation(27) simply follows from the orthogonality the photon—number and coherent-state representations these
relation for displacement operators matrix e_Iements become unbounded_ﬁasel/Z. The f_act that
n=1/2 is a lower bound for measuring the state in &ngt
exotic) representation was thoroughly discussed in Ref.
The way in which nonunit quantum efficiency manifests its
detrimental effect when approaching the lower bound is
through increasingly large statistical errors. Let us restrict
our attention to the photon-number representationnAtl,
as proven in Ref[25], the statistical errors of the diagonal

T D(W)DT(v)]= 8x(w—0), (28)

where 6,(w) denotes the Dirac delta function on the com-
plex plane. By changing to polar variables= (i/2)ke'?, Eq.
(27) becomes

A wdep (+=dKK _ - - » matrix elementgn|o|n) saturate at the limiting valug2/N
= Jo = Tr(eeXs)e %y, (29 for sufficiently largen, independently of the stage (N is the

number of data collected in the experimemtlso, errors of

. L the off-diagonal elements increase very slowly versus the
whereX 4= 3(a'e'?+ae"'?) denotes the quadrature opera- distance from the main diagonal. On the other hand,sfor
tor for the field mode. Then we evaluate the trace using the <1 the errors increase dramatically versus eitmeror
eigenvectorg|x) 4} of X,,, and multiply and divide the func- 1~ 7, and eventually become infinite at the lower bound
tion inside the integral by eXfl— 7)k?(87)] in the follow- 7= 1/2[26]. In the next section we will see how this behav-

ing fashion: ior manifests itself in the two-mode tomography measure-
ment, on the basis of numerical results from Monte Carlo
w simulation experiments.
“:f”d_‘i’ o dkkl e
0 TJ-w

B. Multimode detection

X fﬂdx p(X; ) elkxel(1=m)/87] kzefik5<¢, (30) It is easy to see that E§27) can be extended because of
—oo linearity to the case oM modes as follows:

N M o M M
wherep(x; ¢) = 4(x|e|x), is the ideal homodyne probabil- ~ zj dw _ |~ - ~ 4
ity. Using the convolution theorem we obtain cM |1:[1 T i Rsﬂl D(ws) ,1;[1 Dr(wr), (34)
é= Joﬂd%bfj:dx p”(x;¢)Rn(X_5(¢)' (31) where R now denotes the joinM-mode density operator,

andl5|(w|) is the displacement operator for thtt mode. As

_ S a consequence, E(33) is extended to the multimode mea-
wherep,(x; ¢) is the homodyne probability distribution for syrement in the following way:

nonunit quantum efficiency;, which is the convolution of

p(x; ¢) with a Gaussian of varianc&f] given in Eq.(13). M
The kernelK ,(x—X,) in Eq. (31) is formally given by (P|R|D")Y=(D|]] R,?I(x|—5(gl))|d>’), (35)
=1
- c 1 e —7 5. c .
Kn(x—x¢):§ Rej dk k ex 8 K+ik(x—Xg) |, where |®) and |[®') are now multimode vectors, and the
0 n (32) experimental average is taken over the random outcofnes

of the joint homodyne measurement of quadrattf(%%, I
where convergence of the integral in E§2) for the opera- =1,... M, of all M modes with random LO phases (we

7 & - S homodyne detectpr Equation(35) agrees with the results
of the matrix elements(v|K,(x—X,)[v') between the obtained in Refs[18]
Hilbert-space vectortv) and|v'), which are evaluated be- '
fore integration. From Eq(31) it follows that the matrix
element v|é|v’> can be experimentally obtained by averag-
ing the function(v|K ,(x—X4)|v') over the quadrature out- ~ As we have seen in Sec. Il, in the self-homodyne mea-
comesx that are homodyne detected at random phases surement one can jointly measure the quadratmgsand
with respect to the LO, namely, X;; of two different modes3; andB_., and thus, in prin-

R _ _ ciple, perform a two-mode tomography of the OPA output.
(v]elv')=(vK (x=X,)[|v'), (33  However, in order to perform two-mode tomography we

C. Two-mode tomography through self-homodyning
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need uncorrelated phases and ¢ for the quadratures, |wa+ va* |?
whereas in the self-homodyne measurement they are actually  g(o)= W_ =u?(1+7?+27 coso). (42
correlated. In fact, one has

p=arga;+ ra*), a9 Hence, the weighting function is simply

y=arg a._+ Ta’f). w(o)= 1

279(0)’ “3

In the case when we are interested in the photon distribution

of one mode only, we can assume,=0. Then, by letting Which can be easily and independently measured for every
the phase of; fluctuate with a uniform distribution from 0 data point while the homodyne data are collected.

to 27, one can perform one-mode tomography of ERB). This approach to phase averaging can also be used for
On the other hand, if we are interested in the joint photondetection of the= 45° modes mentioned in Sec. Il B. In that
number distribution, then we cannot make the measuremesase, the quadrature phases argf-7a*:) and argge

by simply averaging the two-mode pattern functions over thet+ m*\) are independent, but nonuniformly distributed.
experimental outcomes as in E@®5). This is because the Then, the averaging is done over the input phase

LO phasesp and¢ in this case are not independent random=arg(« ) or o=arg(a- ), respectively, with the weighting
variables. We will show, however, that it is possible to takefunction (43) given by the phase-sensitive gain of the central
the correlation of¢ and ¢ into account and still perform component.

two-mode tomography by appropriately weighting the ex-

perimental outcomes in E35). We first rewrite Eq(35) in D. Measuring the “bare” or the “dressed” state
the two-mode case as follows: . -
For nonunit quantum efficiency one can measure the den-
, 2m d¢> Zﬂdz,k sity matrix elements for above the bound;=1/2. How-
(PIR|®")= f o 2 dxf dX'P(X.X"3h. %) ever, instead of measuring the density matrix of the sRate
of interest, one can always measure the density matrix of the
x<¢|kn(x_§(}/))kn(xf _)”(;)|q>'>_ (37)  state that has been damped—or “dressed”—by the quantum

efficiency, without any limitation forp, even though such a
We focus our attention on the phase average only. For LO’slressed state would be less and less significant for lower
with equal intensitiee..|=|ay| and phasesp;=arg(e;)  quantum efficiencies. The concepts of “dressed” and

and¢_ =arg(a.,), one has “bare” states are two faces of the same measurement de-
scription when regarded in the equivalent Schinger and
d—Y=¢1— ., (38) Heisenberg pictures. The conventional description corre-
B et sponds to the Hei_senberg picture, in which th_e true state—
pty=eite +2ardl+re THTE]. also called the “signal” or the “bare” state—is measured

and the effect of quantum efficiency is ascribed to the detec-
tor observable(photocurrent In the “dressed” state de-
scription, on the other hand, one regards the measurement

(39  with »<1 on the true stat® as the corresponding hypo-
thetical “bare measurement” withp=1, but now on the

“dressed” state I32,7, ascribing the effect of the nonunit
the average over the phases can be rewritten in terms of trgiantum efficiency to the quantum state itself, rather than to
average over the sum and difference phases with an apprthe detector. In other words, the effect of the nonunit quan-
priate weighting function as follows: tum efficiency is regarded in a Sclilinger-like picture, with

2n deb (27 d ir ds (2 the state evolving fronR to IA?,?, where the quantum effi-
f mdg (zmdy (7 do ﬁdaw(a), (40)  ciency plays the role of a ime parameter.

After performing the change of variables
o=3(e1teo),

6=3(e1—90.),

o 2m)o 2m )5 2m)o An easy way to perform tomographic measurement on a
o o dressed state is just to use the experimental datayfol
where the weighting function is given by and analyze them using the pattern function witk 1. As
5 shown in Sec. Il B, the effect of nonunit quantum efficiency
1 1-7 is to convolve the quadrature-probability distributions for all

w(o)= (41

LO phases with a Gaussian of variam:%,given by Eq.(13).

This corresponds to convolving the Wigner function with an
Since the input phases; and ¢_, can certainly be consid- isotropic Gaussian of the same varianr% in the complex
ered as random and uncorrelated, the same must hold true fpfane, which, in turn, corresponds to adding Gaussian noise
their half-sumo and half-differences in Eq. (39). Then, the  {j he quantum state. In terms of the bare sﬁa,tehe state

measurement of the matrix element in E8f) is obtained by -~ -~ . . L
averaging over the experimental random phaseand & I',(e) dressed with the Gaussian noise is giver by

with the weighting function41). Also, the weighting func- d2w
tion can be rewritten in terms of the gaifo) of the central- I (0)= J —exp(— |w[Zm)D(w)eDt(w), (44
frequency component that is given by 7 mn

27 1+ 72427 coso
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where the noise-equivalent mean thermal photon number
is related to the quantum efficiency through

— o, 1-9
m=2A%= 20 (45)

In the multimode case, one needs to apply the transformation
(44) repeatedly, once per each mode, with the corresponding
displacement operator of the mode. In the context of measur-
ing the bare state, Eq44) was exploited in Ref[28] to FIG. 3. Two-mode photon-number probabilip(n,m) of the
show that the measurement is possible even in the presen®én-beam state of parametric fluorescence in @& (two differ-

of quantum noise, however, with no more tham 1/2 ther- ent perspectives obtained by.a Monte Carl.o.simula_tion of self-
mal photons. hqmodyng tomography at unit quantum efficiency for 10 and
Another way of dressing the state, which is often em-With 10° simulated data.
ployed in experimental analysis of the tomographic dag®  correlated state given by E(L5).
Refs.[10,11,23) is to consider the state that has undergone a The simulation of the homodyne outcomes is based on the
loss equivalent top. In this case, the analysis is done by probability distribution in Eq.(20), which shows how the
rescaling the output photocurrents kly; instead of as in  outcomes can be obtained from a Gaussian random genera-
Egs.(4), and then using the pattern functions fer=1. Itis  tor, starting from the generation &f, then generating, and
easy to see that this procedure corresponds to measuring tfieally shifting the latter byc, x’. The phaseg and of the
dressed statéd n(é), which is related to the bare stateas q_uadratu_re_are chosen randomly for every sqmp_le. The den-
follows: sity matrix in the photon-number representation is measured
by averaging the pattern functions over the random data:

S (p—1)" —@atay - (12ata atyn R
- a'n on (ah)" (n1,m;|R[ny,my)
“ !

A0)=2

(46) = (ng|R (=K In) (Mg K (X' =K )lmp).  (47)

Again, in the multimode case the transformati@®) is ap-  The pattern functions for a generigare obtained from the
E)Ileq separately to all modes. One can also regard the stafytern functions forp=1, using the inverse generalized
A,(e) in Egq. (46) as the state of the mode Bernoulli transformation as in Ref29]. The pattern func-
Jna+1— po—instead of the state of just the modeof  tions for =1, in turn, are obtained from the factorization
interest—where is the independent vacuum-state mode reformulas of Refs.[8] (following our conventions for the
sponsible for the loss. q_uadrgtures, we actuglly use the factorization formu]as as
Before concluding this section, we need to say a fewdiven in Ref.[7]). In Fig. 3 we show the results of a simu-
words regarding the difference between the two dresselition for the measurement of the two-mode photon-number

A A I . probability p(n,m) for unit quantum efficiency. The theo-
states,,(¢) andI’,(g). In the loss model corresponding to retically expected distribution, given by E@.7), is shown in

A,(e), the dressed state loses some signal, and becomes thgy 2 (left). In Fig. 4 the diagonal elementgn,n) of Fig. 3
vacuum state in the limit ofy—0, independently ofp, are shown with their respective error bars, and compared
which makes the state less and less meaningful for decreaagainst the theoretical probability of E§L7). From both
ing ». On the other hand, in the Gaussian-noise model corFigs. 3 and 4 we see that there is an excellent agreement

responding td", (@), there is no loss of signal, but the state between the theoretically obtained and tomographically re-
gets an increasingly large number of thermal photons fofonstructed joint probabilities, and the fluctuations in the lat-
decreasing. In this way, the most interesting quantum fea- ter are already very small for a number of data samples as
tures of the state—as, for example, oscillations in thdow as 16, which can be easily acquired within the stability
photon-number probability—are lost, as shown in Hdj,  time of a typical twin-beam setup.

and all states tend to look “classical.” In the next section we In Figs. 5 and 6 the same tomographic measurement of
will see these effects at work in some Monte Carlo numericaFigs. 3 and 4 is reported, but now for a quantum efficiency

experiments for the two-mode case. 1n=0.8 for each detector. However, in the reconstruction, the
pattern functions forp=1 are used. As explained in Sec.
IV. MONTE CARLO SIMULATIONS Il D, this corresponds to a measurement of the sfa,;(ef{)

] ) ] that has been dressed by the Gaussian-noise equivalent of the
In this section we present some numerical results fromyyantum efficiency, instead of a measurement of the true

Our aim is to analyze the feasibility of a real experiment and— .8 and»=0.9 used throughout this paper, the two kinds
to see how many measurements are needed for a state receff- state dressing—Gaussian-noise or loss—give similar
struction, especially in the presence of the detrimental effecgitative results. The smearing effect of the nonunit quan-
of nonunit quantum efficiency of the photodetectors. We willy,m efficiency is evident in Fig. 5, where the perfect photon-
restrict our analysis to the measurement of the joint densityymper correlation between the two modes is smudged, re-
matrix R of the two modesB; andB__. , assumed to be in the sulting in nonvanishing probabilitiep(n,m) for n#m.
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FIG. 4. Diagonal elements(n,n) of Fig. 3(shown by thin solid FIG. 6. The same as in Fig. 5, but for the diagonal elements

line on an extended abscissa rangth their respective error bars p(n,n) only (thin solid line with error bars in gray shagdeom-

in gray shade, compared to the theoretical probabillfy) (thick  pared to the theoretical probabilifl7) for the bare statdthick

solid ling). solid line). The disagreement between the theoretical probability for
the bare stat® and the simulated measurement for the dressed state

Because of the preservation of the normalization in th@n(ﬁ) is a typical manifestation of the nonunit quantum efficiency.

(n,m) plane, the diagongb(n,n) is decreased, resulting in

the evident disagreement in Fig. 6, where the reconstructed " .
diagonal elementg(n,n) are reported with relative error s(n)=|20 (I,n—=1[R[I,n—1), (48)
bars and compared with the theoretical probabi(ity) for N
the bare state. N

In Fig. 7 we present the results of Monte Carlo simulation dy(n)= > A.n+1R|I,n+1). (49)
for a realistic measurement of the bare state, but now using I=max—n,0)

the pattern functions with the correct experimental value o
the quantum efficiencyy. One can see that the smearing
effect of the nonunit quantum efficiency has been cleane
out, which, however, comes at the expense of increasin
fluctuations for largen. This is even more evident in Fig. 8, (1-7)7", n even

where the reconstruction of the diagonal probabifity,n) s(n)= (50)
for the bare state is shown for two different valuess 0.9 0, n odd,
and »=0.8, of the quantum efficiency. One can see that
there is no longer the disagreement between the recorsimilar to the photon-number distribution of a single-mode
structed and the theoretical values, of the kind shown in Figsqueezed Vacuu[ﬁ]_l,lﬂ_ On the other hand, the quantity

6, but now the error bars have increased dramatically fof (n) represents the photon-number correlation between the
largern, becoming worse for smalley [cf. Fig. 8 (right)]. two modes, and in the limil—« is the Kronekers,, for a

The off-diagonal number probabilities and the correlationyyin-beam state. For finitd its theoretical value for the state
between the two modes can be analyzed by evaluating th@ Eq. (15) can be evaluated to be

following sums of matrix elements:

f'I'he quantitys(n) is the probability distribution for the total
number of photons in the two modes. The theoretical result
gor our state in Eq(15) is the oscillating function

dn(n)= Spo(1— 2N D), (51)

FIG. 5. Monte Carlo simulation of self-homodyne tomography
of the two-mode photon-number probabilip{n,m) for quantum FIG. 7. Reconstruction of the bare state using the pattern func-
efficiency = 0.8 (two different perspectivgsThe state is the same tions with the correct experimental value of the quantum efficiency

as in Fig. 3, but in its Gaussian-noise dressed fﬁ‘r,g(ﬁ) [see Eq. 7 (two different perspectives are sho)/.vh{ereﬁ= 10, »=0.9, and
(44)]. Notice the smearing effect of the nonunit quantum efficiency.we used 10 data samples for the Monte Carlo simulation.
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FIG. 8. Reconstruction of the diagonal probabilggyn,n) for FIG. 10. Similar to Fig. 9, but for a quantum efficienay

the bare state, using the pattern functions with the correct experi=0.8. Results for the Gaussian-noise-dressed state reconstruction
mental value of the quantum efficiency. Here n=10 and 7 are shown on the left and for the bare state reconstruction on the
=0.9 (0.8) in the left(right) figure. The theoretical probability right. Heren= 10, and we used % 10° data samples for the left plot
(thick solid lineg is superimposed onto the results of the Monte and 13 data samples for the right plot. In the left plot, the ordinate
Carlo experiments (fOdata samples the latter are shown with s truncated at the maximum value of the simulated probability. The
thin solid lines with statistical errors in gray shade. Notice that therepscillations are nicely recovered in the right plot, wherein pattern
is no longer the disagreement shown in Fig. 6, but now error bargunctions with the correct value of quantum efficien®y8) were
increase dramatically vs and for smaller. used for reconstruction.

In Fig. 9 we show the results of a simulation of the total R di t of the phot b lati
photon-number probabilits(n), Eq. (48), for »=1 and egarding measurement of the photon-number correlation

compare them to the theoretical value, E80). As shown, dn(n) [EGs.(49) and(51)], comments similar to those made
the theoretically expected distribution is well reproducedfor the total photon-number probabilig(n) hold. Figure 12
from 10 data samples with very small statistical errors. InPresents the results of a S|mulat|gn of the correlation function
Fig. 10 a similar simulation is presented as in Fig. 9, but nowfor the twin-beam state wittN=n=10 and unit quantum

for a quantum efficiency ofy=0.8. The total photon-number efficiency, whereas Fig. 13 shows the results of simulations
probability s(n) is reconstructed for both the dressed statewith quantum efficiencyp=0.8, once again, reconstructing
and the bare state. Once again, one can see the smearith@ correlation for both the dressed-state and the bare-state
effect of the quantum efficiency in the dressed-state cas@ases. Here also, the nonunit quantum efficiency in the case
where the oscillations of the total photon number are almosgf dressed-state reconstruction partially smears out the cor-
completely washed out. On the other hand, the oscillationge|ation, which is well recovered in the case of bare-state
are nicely recovered in the reconstruction of the bare statgeconstruction. In Fig. 14, we compare the reconstructed cor-
albeit at the expense of increasingly large statistical errors. Ipg|ation function for the dressed state in Fig. (&) to that

Fig. 11 we present a simulation foy=0.9 to show how {5 two modes in uncorrelated coherent states, each having

these quantum oscillations would be detected in an exXperk . came mean photon numbes 10 as the modes of the

mentally feasible measurement of the dressed state with in-heam state. One can see that, in spite of the detrimental

=4 and 16 data samples. effect of the nonunit quantum efficiency, the correlation for
T the reconstructed dressed state is still stronger than that for
nr | the uncorrelated coherent states, the latter representing the
- standard quantum limit.
lo H : A - [ T T T T T I T T T T I i
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& ot ]
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O [liladibdift f | ]
S 8L ]
0 10 o} .
n I ]
l L L 1 L l L L 1 L I
FIG. 9. Oscillations of the total photon-number probabitity) © 6 T é o 1'0
in Eq. (48) due to the perfect correlation of the photon number in
the twin-beam state, EL5). Thin solid line with error bars in gray n

shade represents the results of a Monte Carlo simulation with unit

quantum eﬁiciencyﬁ= 10, and 16 data samples. Thick solid line FIG. 11. Similar to Fig. 1@left), but for 7;=0.9,F=4, and 16
is the theoretical result, E¢50). data samples.
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FIG. 12. Correlation function, Eq49), for the twin beam state
in Eq. (15) with n=10 and =1 reconstructed from 81C° data  the Gaussian-noise-dressed state of Fig.(I&8), shown by thin
samples. Results of the Monte Carlo simulatithin solid line with ~ Solid line with error bars in gray shade, with that for two modes in
error bars in gray shaglare superimposed onto the theoretical cor- Uncorrelated coherent statéhick solid ling, having the same
relation, Eq.(51), shown by thick solid line. mean photon number=10 per mode.

FIG. 14. Comparison of the correlation function, E49), for

V. DISCUSSION the photodetectors. In particular, we have analyzed the fea-

We have proposed a method for performing two-modesibility of detecting photon-number oscillations and deltalike
optical-homodyne tomography of the twin beams produceghoton correlation between the twin-beam modes. We have
from a nondegenerate optical parametric amplifier. The locathown that for ideal photodetectors such features can be
oscillators(LO’s) needed for the homodyne tomography areclearly observed even with a small number of data samples
generated in the same parametric process as the twin beanig(®). However, for realistic quantum efficiencies the oscil-
and, therefore, are automatically matched to the signal angtions are exhibited with less contrast in the dressed-state
idler twin-beam modes. In our self-homodyning method, thereconstruction for the same number of data samples. On the
polarized central spectral componentgf serves as the LO  other hand, for a tomographic measurement of the true out-
for a mode that consists of two sidebandsgt-(), and the  pyt state of the OPA, more data samples are needed in order
relative optical phase between the central component and thg reduce the statistical errors. Our Monte Carlo simulations
sidebands can be varied. We have presented a theoreticgloy that for a quantum efficiency of=0.9, the oscilla-

des_crlfptlon for both one- arld ]Evrr?'m?]df tomogLaphg]/_, ;N_'ghtions in the total photon number can be observed, even in the
main focus on measurement of the photon-number diStrbUz, o oceq_state reconstruction, with as little as® idata

tions. For the signal mode alone, a thermal distribution o amples, which makes such an experiment feasible.

photons is found, in agreement with the results of a recent s .
experiment[23]. In the case of two modes, we have pre- We have also shown how the self-homodyning method

sented some selected Monte Carlo simulations of the tomogc-an ge fUShEd In deltecglo'rélof tkte35°-pqlar|z¢d modles', n-
raphic measurement of the joint photon-number distriby>tead of the signal and idler modes. Since in a polarization-

tions, choosing realistic values for the quantum efficiency of'°ndegenerate optical parametric amplifier these modes are
amplified independently, their joint photon-number distribu-

tion is factorized into a product of marginal distributions,
each exhibiting even-odd oscillations in its photon number.
While the focus of our paper has been on the twin-beam
state, the self-homodyning approach can be applied in other
| I i instances as well. There are a number of mode-matching
H I ] critical situations where it is possible to mix the signal with
another mode that underwent a similar generation process. A
key requirement in such situations would be the scanning of
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the relative phase between the two modes. Among potential
applications are detection of the superpositi®chral-

inger's caj states, and squeezed states generated in optical
FIG. 13. Similar to Fig. 12, but forp=0.8. Results for the fibers.
Gaussian-noise-dressed state reconstruction are shown on the left
and for the bare state reconstruction on the right. In both simula-
tions 5x 10° data samples were used. The nonunit quantum effi-
ciency in the dressed-state case partially smears out the correlation,
which is recovered in the bare-state reconstructiaght), however
at the expense of increasingly large statistical errors.
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APPENDIX

— _ 2\1/2 n
In this Appendix we derive the joint probability distribu- ¥)=(1-79) zo 7|n.n). (AL)

tion, Eq.(19), of the output photocurrents for two-mode ho-
modyne detection.

In the Fock representation, the state at the output of th&xpanding the Fock state) in terms of the quadrature rep-
NOPA is given by Eq(15), namely, resentatiorx) , for each mode, one has

2(1— 2 , i(p+4)n
= e dxexxzzo[Teznnl D, (Bor (B ey, )

whereH, (x) denotes the Hermite polynomial of degmeeUsing the following identity{30], which is valid for any complex
numberz,

5 (32" ~ 2xxX'z— (X?+x'?) 2
nZOTHn(x)Hn(x’)z(l—zz) Vzgy =7 , (A3)
we can rewrite EQ(A2) as
1—|l?|M2 2 (e r= , 4xx k= (X2+x'?)(1+ k?)
|V)y=|—— —| _dx| dx IX)s®[x") ex 1— <2 , (Ad)

wherex= rexf —i(¢+ )] [the choice of the branch for the square root in the normalization of the state y&d)agives only
an overall phase factor that is irrelevant for probabiliti€ésjuation(A4) corresponds to the following joint probability:

. 2 (x+x")2 (x—x")2
PXXL =T [ ™~

where d?=|1+ «|?/(1—|«|?). Nonunit quantum efficiency of the photodetectors is taken into account by evaluating the
convolution of the ideal joint probability in EqA5) with Gaussians for each mode of variances given by (Eg.. This
immediately leads to E(20).

: (A5)

[1] K. Vogel and H. Risken, Phys. Rev. 40, 2847(1989. Raymer, Phys. Rev. A2, R924(1995.

[2] D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, Phys. [11] S. Schiller, G. Breitenbach, S. F. Pereira, T Iy and J.
Rev. Lett.70, 1244(1993; D. T. Smithey, M. Beck, J. Coo- Mlynek, Phys. Rev. Lett77, 2933(1996; G. Breitenbach, S.
per, and M. G. Raymer, Phys. Rev. 48, 3159 (1993; G. Schiller, and J. Mlynek, Naturd_ondon 387, 471(1997).
Breitenbach, T. Muller, S. F. Pereira, J.-Ph. Poizat, S. Schiller[12] U. Janicke and M. Wilkens, J. Mod. Opt2, 2183(1995; S.
and J. Mlynek, J. Opt. Soc. Am. B2, 2304(1995. Wallentowitz and W. Vogel, Phys. Rev. Left5, 2932(1995;

[3] G. M. D’Ariano, C. Macchiavello, and M. G. A. Paris, Phys. S. H. Kienle, M. Freiberger, W. P. Schleich, and M. G.
Rev. A50, 4298(1994; G. M. D’Ariano, Quantum Semiclas- Raymer, inExperimental Metaphysics: Quantum Mechanical
sic. Opt.7, 693(1995. Studies for Abner Shimongdited by S. Coheat al. (Kluwer,

[4] G. M. D’Ariano, U. Leonhardt, and H. Paul, Phys. Rev52 Lancaster, 1997 p. 121.

R1801(1999; H. Paul, U. Leonhardt, and G. M. D’'Ariano, [13] T. J. Dunn, I. A. Walmsley, and S. Mukamel, Phys. Rev. Lett.
Acta Phys. Slov45, 261(1995. 74, 884 (1995.

[5] U. Leonhardt, H. Paul, and G. M. D’Ariano, Phys. Rev52 [14] C. Kurtsiefer, T. Pfau, and J. Mlynek, Natu¢eondon 386,
4899 (1995. 150 (1997.

[6] D. S. Kramer and U. Leonhardt, Phys. Rev.55, 3275(1997); [15] D. Leibfried, D. M. Meekhof, B. E. King, C. Monroe, W. M.
J. Phys. A30, 4783(1997. Itano, and D. J. Wineland, Phys. Rev. Lét¥, 4281(1996.

[7] G. M. D’Ariano, in Quantum Optics and Spectroscopy of Sol- [16] H. Paul, P. Toma T. Kiss, and J. Jex, Phys. Rev. Letf,
ids, edited by T. Hakioglu and A. S. Shumovskgluwer Aca- 2464(1996; O. Steuernagel and J. A. Vaccaibid. 75, 3201
demic, Amsterdam 1997pp. 175-202. (1995; K. Banaszek and K. Wikievicz, ibid. 76, 4344

[8] Th. Richter, Phys. Lett. 221, 327(1996); 53, 1197(1996. (1996; A. Zucchetti, W. Vogel, and D.-G. Welsch, Phys. Rev.

[9] U. Leonhardt, M. Munroe, T. Kiss, Th. Richter, and M. G. A 54, 856(1996; M. Freiberger and A. M. Herkommer, Phys.
Raymer, Opt. Commurii27, 144(1996. Rev. Lett.72, 1952(1994; M. S. Zubairy, Phys. Lett. 222,

[10] M. Munroe, D. Boggavarapu, M. E. Anderson, and M. G. 91 (1996; S. Wallentowitz and W. Vogel, Phys. Rev. 23,



648

[17]

[18]

[19]
[20]

[21]

D’ARIANO, VASILYEV, AND KUMAR PRA 58
4528 (1996; S. Mancini, V. Man’ko, and P. Tombesi, Euro- (1997; D. Levandovsky, Ph.D. proposal, Northwestern Uni-
phys. Lett.37, 79 (1997; P. J. Bardoff, E. Mayr, and W. P. versity, 1996(unpublishegl
Schleich, Phys. Rev. A1, 4963(1995; L. G. Lutterbach and  [22] O. Aytur and P. Kumar, Opt. Letl7, 529(1992; C. Kim and
L. Davidovich, Phys. Rev. LetZ8, 2547(1997; U. Leohnardt P. Kumar, Phys. Rev. Let?3, 1605(1994.
and M. G. Raymerjbid. 76, 1985 (1996; T. Opatrny and [23] M. V. Vasilyev, M. L. Marable, S.-K. Choi, P. Kumar, and G.
D.-G. Welsch, Phys. Rev. A5, 1462 (1997. M. D’Ariano, in Quantum Electronics and Laser Science Con-
R. S. Bondurant, BS thesis, MIT, 197@npublishei W. ference 1997 OSA Technical Digest Series, Vol. (@ptical
Schleich and J. A. Wheeler, Natufieondon 326, 574 (1987); Society of America, Washington, D.C., 199Pp. 95-96.

J. Huang, and P. Kumar, Phys. Rev.48, 1670 (1989; P [24] G. M. D’Ariano, in Quantum Optics and Spectroscopy of Sol-

. . . ids (Ref.[7]), pp. 139-174.
Kumar and J. HuandQuantum Optics VSpringer Proceedings s . .
in Physics Vol. 41, edited by J. D. Harvey and D. F. Walls [25] G. M. D’Ariano, C. Macchiavello, and N. A. Sterpi, Quantum

Semiclassic. Opt9, 929 (1997).
(Springer-Verlag, Berlin, 1989 P (1997

. [26] G. M. D’Ariano and C. Macchiavello, e-print quant-ph/
H. Kuhn, D.-G. Welsch, and W. Vogel, Phys. Rev5A, 4240 9701009,

(1995; M. G. Raymer, D. F. McAlister, and U. Leonhardt, [27] M. J. W. Hall, Phys. Rev. /50, 3295(1994).

ibid. 54, 2397 (1996; T. Opatrny, D.-G. Welsch, and W. [2g] G, M. D’Ariano, in Quantum Communication, Computing, and

Vogel, Opt. Commun134, 112(1997. Measurementedited by O. Hirota, A. S. Holevo, and C. M.
T. Opatrny, D.-G. Welsch, and W. Vogel, Phys. Rev55, Caves(Plenum, New York, 1997 p. 253.

1416(1999. [29] T. Kiss, U. Herzog, and U. Leonhardt, Phys. Rev52 2433
D. F. McAlister and M. G. Raymer, Phys. Rev. 35, R1609 (1995.

(1997. [30] J. BatemanHigher Trascendental Function@cGraw-Hill,

J. H. Shapiro and A. Shakeel, J. Opt. Soc. Am18& 232 New York, 1953.



