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Abstract

We propose an experimental procedure, based on homodyne tomography, for measuring the matrix
elements of the Liouvillian of optical devices. After describing the proposed experimental setup, we
give a numerical Monte-Carlo simulation of the measurement for a laser amplifier.

1. Introduction

The experiment here proposed allows the complete characterization of the quantum dynami-
cal properties of an optical device. We show how it is possible to reconstruct the Liouvil-
lian matrix by impinging a complete set of input states into the device and making an
accurate measurement of the corresponding output states. The measurement of the output
states is performed through quantum homodyne tomography [1, 2, 3]. The experimental
setup is composed of a linear highly efficient photodetector, a non degenerate optical ampli-
fier (NOPA), and a homodyne detector.

For an open quantum system the equation that evolves the density matrix q of radiation
is given by

d

dt
q�t� � L�q�t�� ; L�q� �: ÿ i

�h
�H; q� �PN

i�0
D�Ji� q ; �1�

where H is the Hermitian Hamiltonian, Ji are (generally non-Hermitian) operators describ-
ing the interaction of the system with the environment, L is the Liouvillian superoperator,
and D is the Lindblad superoperator

D�J� q�: JqJy ÿ 1

2
�JyJq� qJyJ� : �2�

In the first section of this paper we present the experimental apparatus for measuring the
matrix elements of L. In the second section we recall some notions on quantum homodyne
tomography. Then, we present some Monte-Carlo simulations to test the feasibility of the
experiment. Finally, in the conclusion, we give possible extensions and developments of the
proposed method.

2. Experimental apparatus

The experimental apparatus depicted in Fig. 1 is capable of reconstructing the Liouvillian
of devices that evolve states that are diagonal in the number representation
q�t� �Pj cj�t� jji hjj, with jji eigenstate of the number operator aya. Such devices are
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called `̀ phase-insensitiveº, and a two-index Liouvillian matrix is needed in the number
representation. The extension of the method to the measurement of generic non-diagonal
four-index Liouvillian matrices for phase-sensitive devices is currently under study [4]. The
non degenerate optical amplifier (NOPA) and the photodetector D, are used to create Fock
states (q � jni hnj) to be impinged into the optical device. The NOPA with vacuum input
and strong classical pump is used to create a couple of quantum correlated twin-beams. The
state of the radiation at the output of the NOPA is [5]

jwi �
����������������
1ÿ jjj2

q P1
n�0

jnjni jni ; �3�

where j is the pump±parameter. At detector D the number of photons in one of the two
beams is measured, and, because of the quantum correlations between the beams, for unit
quantum efficiency hD � 1 at D the other beam is projected onto the eigenstate jni of the
number of photons, n being the value detected at D. In the more realistic case of non-unit
quantum efficiency hD < 1 the detector D is equivalent to a perfect detector preceded by a
beam splitter of transmissivity hD. In this case the state reduction yields the mixture

qn �
P1
k�n

Dnk jki hkj; Dnk �: �jjj
2�1ÿ hD��kÿn k!

N�k ÿ n�! ; �4�

where n is the result of the measurement at the detector D, and N is a normalization factor.
The evolution of the state through the optical device is governed by the master equation (1)
which is solved by the Green superoperator G�t� �: exp �tL�, where t is the evolution time.
The matrix elements of the Green superoperator are reconstructed by determining the state
qout at the output of the device through a homodyne tomography performed at detector H.
For phase-insensitive devices the two-index matrix of the Green superoperator G�t� is given
by

G�t�mn �: hmj G�t��jni hnj� jmi : �5�
The photon number probability distribution at the output of the optical device is the n-th
row of the Green matrix G�t�mn, where n is the number of photons detected at detector D. In
fact, the output state is

qout � G�t��jni hnj� �
P1
m�0

pn�m� jmi hmj ; �6�
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Figure 1: Sketch of the proposed ex-
periment. The NOPA and the photode-
tector D are used to generate the input
Fock states q � jni hnj. These are im-
pinged into the device that evolves
them. The Liouvillian is reconstructed
through homodyne tomography of data
from the homodyne detector H at the
output of the device.



so that, for the matrix elements G�t�mn, one has the identity

G�t�mn � pn�m� : �7�
The Liouvillian can now be obtained by taking the natural logarithm [6] of the matrix G�t�mn,
namely Lmn � 1

t �log �G�t���mn. In the case of non-unit quantum efficiency hD < 1 at detector
D, if the photon number n is detected, the k-th row is chosen at random according to the
probability distribution Dnk in Eq. (4).

3. Quantum homodyne tomography

In this section we recall some details of the theory of quantum homodyne tomography. For
strong classical local oscillator (LO) the balanced homodyne detector H in Fig. 2 measures
the quadrature af � 1

2 �ayeif � aeÿif� of the field, where f is the phase of the input mode a
relative to the LO. For non-unit quantum efficiency h at photodetectors P1 and P2, one has
an added Gaussian noise with variance D2

h � 1ÿh
4h .

Homodyne tomography is an experimental technique that allows the measurement of the
density matrix of the radiation state from homodyne measurements. For quantum efficiency
h one can recover the density matrix of the state as [2]

q �
�p
0

df

p

��1
ÿ1

dx ph�x; f� Kh�x ÿ af� ; �8�

where ph�x; f� is the probability distribution of homodyne data and the kernel Kh�x� is
given by

Kh�x� � 1

2
Re

��1
0

dk ke
1ÿh
8h k2�ikx ; �9�
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Figure 2: Sketch of the homodyne de-
tector. The input radiation a to be mea-
sured impinges into a 50% beam split-
ter BS, where it is combined with the
local oscillator mode b, at phase f rela-
tive to the input field. The measure-
ment result is the difference between
the photocurrents measured at the two
photodectors P1 and P2 rescaled by the
amplitude of the field of the LO. In this
way the homodyne detector measures
the quadrature af �: 1=2�aeÿ1f � a

if �
of the input field mode.



and for h � 1 (ideal photodetection) becomes

K�x� � ÿ 1

2
P 1

x2
; �10�

with P denoting the Cauchy principal value. For any two vectors jxi and jzi in the Hilbert
space such that hxj Kh�x ÿ af� jzi is bounded for all x and f, one can statistically sample
the matrix element hxj q jzi, through Eq. (8). In fact, for bounded hxj Kh�x ÿ af� jzi, the
central limit theorem guarantees that

�p
0

df

p

��1
ÿ1

dx ph�x; f� hxj Kh�x ÿ af� jzi � lim
N!1

1

N

PN
n�0
hxj Kh�xn ÿ afn

�� jzi ;

�11�
where f�xn; fn�g are the homodyne outcomes at random values fn of the phase f relative
to the LO. For finite N the estimate (12) of the integral is Gaussian distributed around the
true value, with error decreasing as Nÿ1=2. In the present paper we will consider only the
number-state representation, and in this case hnj Kh�x ÿ af� jmi is bounded for h > 1

2 [2].

4. Numerical simulation

In this section we present a numerical Monte-Carlo simulation of the measurement of the
Liouvillian of a one-atom laser amplifier, which is a relevant case of a phase-insensitive
device. The laser's master equation is [7]

d

dt
R �

�
gk
2
�1� s0� D�s�� �

gk
2
�1ÿ s0� D�sÿ�

� 1

2
g? ÿ

gk
2

� �
D�sz� � gD�a�

�
R� g�s�aÿ sÿay; R� �12�

where g is the electrical-dipole coupling, gk and g? are the decay rates of population inver-
sion and atomic polarization respectively, g is the cavity decay rate, s0 is the unsaturated
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Figure 3: Theoretical Liouvillian for an one-atom laser, ob-
tained by solving the master equation (14) by the quan-
tum-jump method. The parameters for this laser are
C �: g2

gg?
� 20; ns �: gkg?

4g2 � 0:5; s0 � 1; f � gk
2g?
� 1;

g � 1.



inversion (ÿ1 � s0 � 1), s�; z are the Pauli matrices (with 0; �1 entries) and R denotes the
joint atom-radiation density matrix. The result of the tomographic measurement is the effec-
tive Liouvillian that evolves only the reduced radiation density matrix q, with the atomic
degrees of freedom traced out after a `̀ flyingº time t�.

The theoretical Liouvillian for the sole radiation cannot be obtained analitically from Eq.
(14), and here for a precise evaluation we use a quantum-jump simulation [8] based on a
large set of quantum histories. The result is shown in Fig. 3.

Once the theoretical Green matrix Gnm is evaluated, we simulate the experiment as fol-
lows. For any Fock state qin � jji hjj impinging into the laser we have the output state
qout �

P
m G�t�mnjmi hmj as in Eq. (7), and then we simulate the output photocurrent at the

homodyne detector H. In this way we have the simulated experimental data for the tomo-
graphic reconstruction based on Eq. (12), from which we measure the Green matrix G�t�mn
and the Liouvillian Lmn. The procedure is repeated on many statistical samples in order to
evaluate the statistical errors of the matrix elements Lmn.

In Fig. 4 the reconstruction of the laser Liouvillian, is given as it would appear from the
proposed experiment for unit quantum efficiencies hD � hH � 1. This should be compared
to Fig. 3, where the theoretical Liouvillian is represented. Notice how the details of the
Liouvillian are recovered for just 4� 105 data. In Fig. 5 the statistical errors are reported
for some non-zero diagonals of the Liouvillian matrix.
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Figure 4: Monte-Carlo simulated experiment for the recon-
struction of the laser theoretical Liouvillian in Fig. 3. Five
statistical blocks of 4000 homodyne data for each output
state have been used.

Figure 5: Some of the non-zero diagonals of the laser
Liouvillian are plotted with the error bars. The full line is
the theoretical Liouvillian coming from the quantum jump
numerical solution as given in Fig. 3.



5. Conclusion

In this paper we proposed an experimental method for reconstructing the Liouvillian super-
operator of phase insensitive devices, a large class of devices including laser amplifiers. A
numerical Monte-Carlo simulation for a one-atom laser has been presented. The practical
realization of the proposed experiment is connected with the availability of a linear and
efficient photodetector to be used at D in the setup in Fig. 1. With the current technology
[9] it seems that such a detector should be available in the next few years. We are currently
working on the extension of the method for measuring phase-sensitive Liouvillian matrices
on one hand, and for reducing errors from the non-unit quantum efficiency on the other
hand. Notice that the effect of non-unit quantum efficiency at detector H is already taken
into account in Eq. (12).

The possibility of achieving the measurement experimentally is of practical interest for
the forthcoming technology of quantum gates and for novel full-optical devices that will
perform digital signal processing directly on radiation at the quantum level.
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