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Abstract Quantum cellular automata and quantum walks provide a framework for
the foundations of quantum field theory, since the equations of motion of free rel-
ativistic quantum fields can be derived as the small wave-vector limit of quantum
automata and walks starting from very general principles. The intrinsic discreteness
of this framework is reconciled with the continuous Lorentz symmetry by reformu-
lating the notion of inertial reference frame in terms of the constants of motion of the
quantum walk dynamics. In particular, among the symmetries of the quantum walk
which recovers the Weyl equation—the so called Weyl walk—one finds a non linear
realisation of the Poincaré group, which recovers the usual linear representation in
the small wave-vector limit. In this paper we characterise the full symmetry group of
the Weyl walk which is shown to be a non linear realization of a group which is the
semidirect product of the Poincaré group and the group of dilations.

Keywords Quantum walk · Doubly special relativity · Quantum cellular automata ·
Quantum field theory · Lorentz transformations

1 Introduction

The conjecture, originally advanced by Feynman [20], that the laws of physics can be
ultimately modelled by finite algorithms is a very inspirational proposal [29]. There
are many reasons why this might prove to be the case and, thus, for adopting this
conjecture as a standpoint for a research program. The primary reason is stated by
Feynman himself: “It always bothers me that according to the laws as we understand
them today, it takes a computing machine an infinite number of logical operations to
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figure out what goes on in no matter how tiny a region of space and no matter how
tiny a region of time”. A similar concern is that in an arbitrarily small region of a
continuous space-time it is in principle possible to store an infinite amount of bits of
information. The only alternative to this situation is that the dynamics of systems in
a finite region of space-time is perfectly computed by a finite algorithm running on a
finite memory. Furthermore, the idea that the dynamical laws could be reconstructed
within a (quantum) computational framework appears as a natural continuation of
the research on quantum foundations from the information perspective (see e.g. Refs.
[15,16,21,23] and for a comprehensive historical overview see Refs.[19,25,26]).

As long as we accept that the best microscopic theory at our disposal is quantum
theory, the most natural computational model for the description of physical laws is a
quantum cellular automaton [20,22,36]. The approach to the foundations of quantum
field theory based on quantum cellular automata was explored for various decades
[10,34,35,39] and it is gathering increasing interest [6–9]. Nevertheless, the idea that
a discrete quantum computer can exactly compute the evolution of elementary physical
systems is seemingly at clash with continuous symmetries [37].

In recent years, free relativistic field equations were derived starting from the
requirements of homogeneity, locality, linearity and isotropy [11,14,17,18]. The
free quantum field theory (Weyl, Dirac, and Maxwell) is achieved by restricting to
evolutions that are linear in the field—i.e. a quantum walk—in the limit of small
wave-vectors, namely for states so delocalised that the discrete underlying structure
cannot be resolved. It is remarkable that Lorentz-invariant equations can be derived
without imposing the relativity principle, and not even mechanical notions. However,
the Lorentz symmetry has no direct interpretation in the above framework, where the
geometry of space-time is not assumed a priori. The achievement of Weyl, Dirac and
Maxwell’s equations is a clear indication that an alleged conflict between discrete
dynamics and continuous symmetries was drawn based only on naive intuition.

In Ref. [13] the notion of inertial reference frame has been formulated in terms of
representation of the dynamics parameterised by the values of the constants of motion.
Such notion is suitable to the study of dynamical symmetries, without the need of
resorting to a space-time background. In this way the Galileo principle of relativity is
formulated by identifying the notion of change of inertial frame with the change of
representation that leaves the eigenvalue equation of the quantum walk invariant. In
the same Ref. [13] it has been shown that such changes of representations for theWeyl
quantum walk encompass a non-linear realization of the Poincaré group. This result,
besides embodying a microscopic model of doubly special relativity (DSR) [4,5,31],
represents a proof of principle of the coexistence of a discrete quantum dynamics with
the symmetries of classical space-time.

In this paper we review and extend the results of Ref. [13] classifying the full
symmetry group of the Weyl quantum walk, which is a semidirect product of the
group of diffeomorphic dilations of the null mass shell by the Poincaré group.

2 Weyl Quantum Walk

A quantum cellular automaton gives the evolution of a denumerable set of cells, each
one corresponding to a quantum system. We consider the case in which each quantum
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system is described by the algebra generated by a set of field operators. Following the
definition of Ref. [36], a quantum cellular automaton is an automorphism of the quasi-
local algebra. The restriction to non interacting dynamics corresponds to consider
algebra automorphism that are linear in the field operators (i.e. each field operator is
mapped to a linear combination of field operators). In the same way the dynamics of a
free field is specified by its single particle sector, a linear quantum cellular automaton is
specified by a quantum walk describing the evolution of a single particle. A quantum
walk [2,24] on a discrete lattice ! of sites x ∈ ! is given by a unitary operator
A ∈ L(H) where H := ℓ2(!) ⊗ Cs where ℓ2(!) is the space of square summable
functions on ! and Cs corresponds to some internal degree of freedom. If |x⟩, |i⟩
are orthonormal basis for ℓ2(!) and Cs respectively, a (pure)state in H is a vector
|ψ⟩ = ∑

x∈!,i∈s ψ(x, i)|x⟩|i⟩ where ∑
x∈!,i∈s |ψ(x, i)|2 = 1. The quantum walk A

is usually assumed to be local, i.e., for any x, we have that ⟨x|⟨i |A|x′⟩|i ′⟩ ̸= 0 only if
x′ belongs to a finite neighboring set1.

As it shown in Ref. [18] (which we refer to for a complete discussion), in the
three-dimensional case with minimal dimension s = 2 the assumptions of locality,
homegeneity, and isotropy single out only one lattice, the body centered cubic one, and
four admissible quantum walks (modulo a local change of basis) A(±), B(±). These
quantum walks are given by the following unitary operators

A(±) =
∑

h∈S
Th ⊗ A(±)

h

B(±) =
∑

h∈S
Th ⊗ B(±)

h B(±)
h =

(
A(±)
h

)T (1)

where S is a set of generators of the BCC lattice S := {±h1,±h2,±h3,±h3} with

h1 =
1√
3

⎛

⎝
1
1
1

⎞

⎠ , h2 =
1√
3

⎛

⎝
1

−1
−1

⎞

⎠ , h3 =
1√
3

⎛

⎝
−1
1

−1

⎞

⎠ , h4 =
1√
3

⎛

⎝
−1
−1
1

⎞

⎠ , (2)

Th are the translation operators Th|x⟩ = |x− h⟩, and the matrices A(±)
h are defined as

follows:

A(±)
h1 =

(
ζ ∗ 0
ζ ∗ 0

)
,A(±)

h2 =
(
0 ζ ∗

0 ζ ∗

)
, A(±)

h3 =
(
0 −ζ ∗

0 ζ ∗

)
,A(±)

h4 =
(

ζ ∗ 0
−ζ ∗ 0

)
,

A(±)
−h1 =

(
0 −ζ

0 ζ

)
,A(±)

−h2 =
(

ζ 0
−ζ 0

)
, A(±)

−h3 =
(

ζ 0
ζ 0

)
,A(±)

−h4 =
(
0 ζ

0 ζ

)

ζ = 1± i
4

. (3)

1 For example, if ! is the one dimensional lattice which we identify with the set of integers Z, we may
require |x − x ′| ≥ n ⇒ ⟨x |⟨i |A|x ′⟩|i ′⟩ = 0 for some n ≥ 1. More synthetically we can say that the unitary
matrix A is block-sparse.
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From Eq. (1) one immediately sees that the quantum walk commutes with the lattice
translations generated by the vectors hi , i.e. [A±, Thi ⊗ I ] = [B±, Thi ⊗ I ] = 0. It is
therefore convenient to consider the Fourier transform basis

|k⟩ = 1√|B|
∑

x∈!

e−ik·x|x⟩, |x⟩ = 1√|B|

∫

B
dkeik·x|k⟩,

k =
3∑

j=1

k j h̃ j , h̃ j · hl = δ jl . (4)

where B is the first Brillouin zone of the BCC lattice (see Fig. 1). In the Fourier basis
the quantum walks of Eq. (1) becomes

A(±) =
∫

B
dk|k⟩⟨k| ⊗ A(±)

k , Ak = Iλ(±)(k) − in(±)(k) · σ (±)

λ(±)(k) := cxcycz ∓ sx sysz n(±)(k) =

⎛

⎜⎝
n(±)
x

n(±)
y

n(±)
z

⎞

⎟⎠ :=

⎛

⎝
sxcycz ± cx sysz
cx sycz ∓ sxcysz
cxcysz ± sx sycz

⎞

⎠ (5)

ci = cos
(

ki√
3

)
si = sin

(
ki√
3

)
σ (±) := (σx ,∓σy, σz)

T .

It is possible to show that the matrices A(±) can be written as

A±
k = e

−i kx√
3
σx e

∓i
ky√
3
σy e

−i kz√
3
σz
. (6)

from which one can immediately see that, in the limit of small wave-vector k → 0,
the quantum walk A(+) recovers (up to a rescaling k√

3
→ k) the Weyl equation for

right-handed spinors, i.e. (i∂t−k·σ )ψ = 0. Therefore, in order to lighten the notation,
it is useful to make the rescaling

k√
3

→ k. (7)

We can also verify that, in the limit k → 0, the quantum walk A(−) recovers, up to
the change of basis induced by the conjugation with the σy matrix, the Weyl equation
for left-handed spinors i.e. (i∂t + k · σ )ψ = 0. For this reason, the quantum walks
A(±), B(±) are calledWeyl quantum walks. The Weyl equation is also recovered when
|k − ki | → 0 where k1 := π

2 (1, 1, 1), k2 := −π
2 (1, 1, 1), k3 := π(1, 0, 0). For

k → k2 we have the same chirality as for k → k0 := 0 while for k → k1,k3 the
chirality changes. We have then that a single quantum walk describes four different
kind of massless particles, two left-handed and two right-handed. This fact can be
interpreted as an instance of the known phenomenon of fermion doubling [38] but
with a different discrete framework. In the following we will use the expression “small
wave-vector” to denote the neighborhoods of the vectors ki , i = 0, . . . 3.
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2.1 The Map n(k)

Before discussing the symmetries and the change of inertial frame for the Weyl Quan-
tum Walks, we are going to describe some features of the maps n(±)(k) defined in
Eq. (5). The results we are going to show, will be used for the characterization of the
symmetry transformations of the Weyl Quantum Walks. For sake of simplicity, we
focus on the map n(+)(k) =: n(k) but the same analysis can be carried out for the
map n(−). Moreover the map n(k) is a smooth analytic map from the Brillouin zone
B to R3. Its Jacobian Jn(k) is given by

Jn(k) := det[∂i n j (k)] = cos(2ky)λ(k), (8)

and it vanishes on the set F := G ∪ X, where

X := {k ∈ B| cos(2ky) = 0}, G := {k ∈ B| λ(k) = 0}.

Let us then define the open sets

B ′
0 := {k ∈ B| λ(k) > 0, cos(2ky) > 0},

B ′
1 := {k ∈ B| λ(k) < 0, cos(2ky) > 0},

B ′
2 := {k ∈ B| λ(k) > 0, cos(2ky) < 0},

B ′
3 := {k ∈ B| λ(k) < 0, cos(2ky) < 0}. (9)

and let us denote with ni (k) the restriction of n(k) to the set B ′
i . Since Jn(k) ̸= 0 for

k ∈ B ′
i the map ni (k) defines an analytic diffeomorphism between B ′

i and its image
ni (B ′

i ). An expression for the inverse map n−1
i : R3 → B ′

i can be obtained exploting
the following identities:

2(λnx − nynz) = sin 2kx cos 2ky, 2(λnz − nynx ) = sin 2kz cos 2ky

1 − 2(n2x + n2y) = cos 2ky cos 2kx , 1 − 2(n2z + n2y) = cos 2ky cos 2kz

2(λny + nxnz) = sin 2ky, λ2 = 1 − n2x − n2y − n2z . (10)

The ambiguities emerging from the inverse trigonometric functions are solved by the
requirement that n−1

i (n) ∈ B ′
i . One can see that the domain of the inverse function

coincides with the unit ball in R3 except for the image n(F) of the critical points of n.
This set is easily characterized as follows:

H′ := U\n(F),
n(F) =

{
m ∈ U |mx = ±mz, 2m2

x + 2m2
y = 1

}
,

U :=
{
m ∈ R3| ||m||2 < 1

}
, , (11)

namely the unit ballminus two ellipses (see Fig. 1). Themapni then defines an analytic
diffeomorphism between B ′

i and H′. We can easily see that H′ is connected but not
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Fig. 1 (Colors online) Left the Brillouin zone for the BCC lattice. The region os defined as: B := {k|− π
2 ≤

k · h̃i ≤ π
2 , 1 ≤ i ≤ 6}, which in Cartesian coordinates reads −π ≤ ki ± k j ≤ π, i ̸= j ∈ {x, y, z}.

Middle The set B0 := n−1
0 (H) embedded in the Brillouin zone. Right the star shaped region H. The set H

has been obtained by removing the set F′ (dark red region) from the unit ball.

simply connected. For our purposes we will need to restrict the range of the function
n to a star-shaped (and then simply connected) region. The largest star-shaped region
including H′ is

H := U\F′,

F′ =
{
m ∈ U|mx = ±mz, 2m2

x + 2m2
y ≥ 1

}
, (12)

and we also restrict the domain of ni (see Fig. 1) to the counter image

Bi := n−1
i (H). (13)

Let us summarize what we have shown so far. We have defined four different sets
Bi such that their union is the whole Brillouin zone B except a null-measure set. We
introduced the set H which is star shaped and differs from the unit ball in R3 by a null
measure set. For each i = 0, . . . , 3, the map ni (k) defines an analytic diffeomorphism
between Bi and H. We can verify that each of the vectors ki , which were defined at
the end of the previous section, belongs to a different set Bi , namely ki ∈ Bi . In the
following we will see that we can interpret the four regions Bi as the momentum space
of four different massless fermionic particles.

3 Change of Inertial Frame

It is now convenient to express the dynamics of the Weyl quantum walk through its
eigenvalue equation

Akψ(ω,k) = eiωψ(ω,k), (14)

whose solution set provides an equivalent way to present the walk operator A. In order
to lighten the notation we will focus only on the walk Ak := A(+)

k . However, the
following derivation holds for any of the admissible Weyl quantum walks.
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If we consider the real and imaginary part of Ak separately, Eq. (14) splits into two
equations as follows:

{ [cosω − λ(k)]ψ(ω,k) = 0,
[sinωI − n(k) · σ ]ψ(ω,k) = 0,

(15)

where λ(k) and n(k) were defined in Eq. (5). Notice that the two equations are not
independent, as one can easily verify by applying sinωI + n(k) · σ to the left of
the second equation, and then reminding that by unitarity λ(k) = 1 − ∥n(k)∥2. The
second equation can be easily rewritten in relativistic notation as follows

nµ(k)σµψ(k) = 0, (16)

where we introduced the four-vectors k := (ω,k), n(k) := (sinω,n(k)), and we
definedσ := (I, σ ). The eigenvaluesω ofEq. (16) then necessarily obey the dispersion
relation

cosω = λ(k), (17)

with two branches of eigenvalues, namely ω = ± arccos λ(k). In the small wave-
vector limit, Eq. (16) is approximated by the usual relativistic dispersion relation
ω2 = ∥k∥2. Following the analogy with quantum field theory, we can interpret and
the two solutions of Eq. (17) as particles for ω > 0 and anti-particles for ω < 0.

Let us now restrict the domain of the function n(k) to one of the four region Bi
defined in Eq. (13). Since the following considerations won’t be affected by the choice
of Bi wewill omit the subscript i . The solutions of Eq. (16) are preserved ifwemultiply
the left hand side by an arbitrary function f (k) such that f (k)n(k) can be inverted as
a function on Bi . In particular, we choose an arbitrary rescaling function f (k) such
that f (k)n(k) maps Bi to the full R3. This is achieved by any rescaling function f
that, besides preserving invertibility of f (k)n(k) on the regions Bi , is singular at the
border of the region H. In particular, we consider C∞ functions f . The eigenvalue
equation thus becomes

p( f )µ (k)σµψ(k) = 0, p( f ) = D( f )(k) := f (k)n(k). (18)

The values k and ω provide a representation of the state space in terms of constants of
motion of the quantum walk dynamics. We now define a change of inertial frame as a
change of representation that preserve the set of solutions of the eigenvalue equation.
We conveniently use the expression of the eigenvalue equation in Eq. (18).

A change of representation of the dynamics in terms of the constants of motion is
given by a function

k′ : k =
(

ω

k

)
2→ k′(k) :=

(
ω′

k′

)
.
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We remark that by definition, since p( f )µ (k) = f (k)nµ(k) and nµ(k)nµ(k) =
det(nµ(k)σµ) = sin2 ω−∥n(k)∥2, forω = ± arccos λ(k) one has p( f )µ (k)p( f )µ(k) =
0. On the other hand, for ω ̸= ± arccos λ(k) the eigenvalue equation must have trivial
solution ψ(k) = 0, and then one has p( f )µ (k)p( f )µ(k) ̸= 0. Thus, for every invertible
map k′ one can define M(k) ∈ GL(2,C) such that M(k)ψ(k) = α(k′)ψ(k′), with
α(k) ∈ C. For values of k on the mass shell k = (ω(k),k)T , this linear transformation
can be expressed in the space ℓ2(!) ⊗ C2 as

T :=
∫

B
d k|k′(k)⟩⟨k| ⊗ M(k). (19)

Let us restrict ourselves to those transformations k′(k) for which there exists an M ∈
GL(2,C) independent of k and a rescaling α(k) such that Mψ(k) = α(k′)ψ(k′).

The above arguments motivate the following definition:

Definition 1 (Change of inertial reference frame for the Weyl walk) A change of
inertial reference frame for the Weyl walk is a quadruple (k′, a,M, M̃) where

k′ : k =
(

ω

k

)
2→ k′(k) :=

(
ω′

k′

)

a : B × [−π,π] → [−π,π]
M, M̃ ∈ GL(2,C) (20)

such that the eigenvalue equation (18) is preserved, i.e.

p( f
′)

µ [k′(k)]σµ = M̃ p( f )µ (k)σµ M−1, (21)

and the eigenvectors are transformed as

ψ ′(k′) = eia(k)Mψ(k). (22)

Notice that the change of f to f ′ in Eq. (21) allows to take α(k′) as a phase eia(k).
A special case of change of inertial frame is given by the trivial map k′ = k along with
the matrices M = M̃ = I . As we will discuss in the next section, the above subgroup
of changes of inertial frame, that only involves the phases eia(k), recovers the group
of translations in the relativistic limit. The set of all the admissible changes of inertial
frame forms a group, which is the largest group of symmetries of the Weyl walk.

In order to classify this group, we now observe that a map acting as in Eq. (20)
transforms the four Pauli matrices linearly σµ 2→ Lµ

ν σ ν , and in turn this implies that
p( f

′)
µ (k′) = Lν

µ p
( f )
ν (k). Moreover, the set of invertible linear transformations repre-

sented by Lν
µmust preserve themass-shell p( f )ν p( f )ν = 0.By theAlexandrov-Zeeman

theorem [1,40] this implies that the transformations Lν
µ must be a representation of

the Lorentz group. Thus, a general change of inertial frame (k′, a,M, M̃) for the
right-handed Weyl walks must be of the form
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k′(k) = D(g)−1 ◦ Lβ ◦ D( f ),

M = .β , M̃ = .̃β , (23)

where Lβ , .β and .̃β are the ( 12 ,
1
2 ), (0,

1
2 ) and (

1
2 , 0) representations of the Lorentz

group, respectively. The only difference in the case of left-handed Weyl walks is that
the representations .β and .̃β are exchanged. Notice that

D( f ) ◦ D(g)−1 = M f ◦ n ◦ n−1 ◦ M−1
g = M f ◦ M−1

g , (24)

where
M f (m) = f (n−1(m))m (25)

one has
D( f ) ◦ D(g)−1

(m) = h(m)m, (26)

and thus

(D(g′)−1 ◦ Lβ ′ ◦ D( f ′)) ◦ (D(g)−1 ◦ Lβ ◦ D( f ))

= (D(g′)−1 ◦ Lβ ′ ◦ D( f ′) ◦ D(g)−1 ◦ L−1
β ′ ) ◦ Lβ ′ ◦ Lβ ◦ D( f )

= D(g′′) ◦ Lβ ′◦β ◦ D( f )

D(g′′) := D(g′)−1 ◦ Lβ ′ ◦ D( f ′) ◦ D(g)−1 ◦ L−1
β ′ (27)

It is then sufficient to prove that a function f with the desired properties exists, oth-
erwise the group of symmetries of the walk would be trivial. We have already shown
in Sect. 2.1 that the restriction ni (k) of n(k) to Bi define an analytic diffeomorphism
between Bi and the manifold H ⊂ U. Let us consider the solutions of Eq. (18), and
define the function g(ω, rm) := f (ω,n−1(rm)), where g is monotonic versus r ≥ 0
for every m ∈ H. We notice that the function g(ω, rm) is well defined since H is
star-shaped. Furthermore, if g(ω, rm) diverges on the boundary of H, we have that
the map D( f )(k) defines a diffeomorphism between the set Ci := {k = (ω,k)|k ∈
Bi , cosω = λk} and the null mass shell K := {p ∈ R4, s.t. pµ pµ = 0}. A possible
choice of f (k) which satisfies all the previous requirements is given by

f (ω,k) := f ′(n(k)),

f̃ ′(r, θ,φ) := 1+ r
∫ r

0
ds

(
1

a(s)
+ 1

b(s, θ,φ)

)
,

a(r) := 1 − r2, b(r, θ,φ) := cos2 2φ + ( 12 − r2(1 − cos2 θ sin2 φ))2 (28)

where we used spherical coordinates nx = r cos θ cosφ, ny = r sin θ , nz =
r cos θ sin φ for the argument in the definition of the function f ′ : H → R, with
the convention that for n = 0 one has φ = 0.
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Fig. 2 (Colors online) The red surfaces represent the orbit of a wave-vector k = (kx , 0, 0) under the

action of the deformed rotationsR = D( f )−1 ◦ R ◦D( f ) where f is the function defined in Eq. (28). Left
kx = 0.07.Middle kx = 0.2 Right kx = 0.4

In order to classify the most general transformation leaving the walk invariant, it is
still possible to allow for transformations of the kind

k′ =
∑

i

n−1
j (i)ni , (29)

a = 0, M = M̃ = I, (30)

where the region Bi is mapped to the region Bj (i). Notice that this corresponds to a
permutation of the four regions Bi , which however must fulfil the constraint that i and
j (i) must labe lregions corresponding to walks with the same chirality ({B0, B2} and
{B3, B4}). This part of the group thus corresponds to Z2 × Z2.

By considering the case f = g in Eq. (23), we have

Lβ := D( f )−1◦Lβ◦D( f ) (31)

which is a non linear representation of the Lorentz group as the ones considered
within the context of doubly special relativity [3,4,32]. It is easy to observe that,
if f ′(0) = 1 and ∂µ f ′ = 0 where f (ω,k) = f ′(sinω,n(k)) as in Eq. (28), the
Jacobian JLβ

of Lβ coincides with Lβ . In the limit of small wave-vector we have that
Lβ = Lβ + O(|k|2) that is the non linear Lorentz transformations recover the usual
linear one. In Fig. 2 we show the numerical evaluation of some wave-vector orbits
under the subgroup of rotations of the nonlinear representation of the Lorentz group.
We see how the distortion effects, which are negligible for small wave-vector, become
evident at larger wave-vectors.

4 Conclusion

The analysis of the previous section can be in priniciple applied to any quantum walk
dynamics for which we know a complete set of constant of motion. In particular
we could consider the Dirac quantum walk of Ref. [18], whose eigenvalue equation is
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(pµ(ω, k,m)γ µ−mI )ψ(ω, k,m) = 0 where γµ are the Dirac γ matrices in the chiral
representation, m is the particle mass and p(ω, k,m) := (sinω,

√
1 − m2n(k)). In

this case we may generalize Definition 1 and allow for maps that change the value of
m. We can then consider the invariance of the whole family of Dirac quantum walks
parametrized by m. One could prove that the symmetry group of the Dirac walks
include a non-linear representation of the De Sitter group SO(1, 4).

Since the frequency (or energy) ω and the wave-vector (or momentum) k are the
constant of motion of the quantum walk dynamics, the scenario we discussed so far
deals with the changes of reference frame in the energy-momentum (ω,k) space. In
particularwe saw that theLorentz group is recovered and one couldwonder how to give
a time-position description of the deformed relativity framework that we obtained in
energy-momentum space. It is believed that the nonlinear deformations of the Lorentz
group in momentum space have profound consequences on our notion of space-time.
In particular we may have the emergence of relative locality [5], i.e. the coincidence
of events in space-time becomes observer dependent. This would imply that not only
the coordinates on space-time are observer dependent, as in ordinary special relativity,
but also that different observer may infer different space-time manifolds for the same
dynamics. Non-commutative space-time and Hopf algebra symmetries [12,27,28,30,
33] have been also considered for a time-position space formulation of deformed
relativity.

Acknowledgements This publication was made possible through the support of a grant from the John
Templeton Foundation under the Project ID# 60609 Causal Quantum Structures. The opinions expressed
in this publication are those of the authors and do not necessarily reflect the views of the John Templeton
Foundation.

References

1. Alexandrov, A.D.: A contribution to chronogeometry. Can. J. Math. 19, 1119–1128 (1967)
2. Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: One-dimensional quantum walks. In:

Proceedings of the thirty-third annual ACM symposium on Theory of computing, pp. 37–49. ACM
(2001)

3. Amelino-Camelia, G.: Relativity in spacetimes with short-distance structure governed by an observer-
independent (Planckian) length scale. Int. J. Mod. Phys. D 11(01), 35–59 (2002)

4. Amelino-Camelia, G., Piran, T.: Planck-scale deformation of Lorentz symmetry as a solution to the
ultrahigh energy cosmic ray and the TeV-photon paradoxes. Phys. Rev. D 64(3), 036005 (2001)

5. Amelino-Camelia, G., Freidel, L., Kowalski-Glikman, J., Smolin, L.: Principle of relative locality.
Phys. Rev. D 84, 084010 (2011). doi:10.1103/PhysRevD.84.084010

6. Arnault, P., Debbasch, F.: Quantum walks and discrete gauge theories. Phys. Rev. A 93(5), 052301
(2016)

7. Arnault, P., DiMolfetta, G., Brachet, M., Debbasch, F.: Quantumwalks and non-abelian discrete gauge
theory. Phys. Rev. A 94, 012335 (2016). doi:10.1103/PhysRevA.94.012335. http://link.aps.org/doi/
10.1103/PhysRevA.94.012335

8. Arrighi, P., Facchini, S., Forets, M.: Discrete Lorentz covariance for quantum walks and quantum cel-
lular automata. New J. Phys. 16(9), 093007 (2014). http://stacks.iop.org/1367-2630/16/i=9/a=093007

9. Arrighi, P., Nesme, V., Forets, M.: The Dirac equation as a quantum walk: higher dimensions, obser-
vational convergence. J. Phys. A 47(46), 465302 (2014)

10. Bialynicki-Birula, I.: Weyl, Dirac, and Maxwell equations on a lattice as unitary cellular automata.
Phys. Rev. D 49(12), 6920 (1994)

11. Bisio, A., D’Ariano, G.M., Perinotti, P.: Quantum cellular automaton theory of light. Ann. Phys. 368,
177–190 (2016)

123

http://dx.doi.org/10.1103/PhysRevD.84.084010
http://dx.doi.org/10.1103/PhysRevA.94.012335
http://link.aps.org/doi/10.1103/PhysRevA.94.012335
http://link.aps.org/doi/10.1103/PhysRevA.94.012335
http://stacks.iop.org/1367-2630/16/i=9/a=093007


1076 Found Phys (2017) 47:1065–1076

12. Bisio, A., D’Ariano, G.M., Perinotti, P.: Quantum walks, deformed relativity and Hopf algebra sym-
metries. Philos. Trans. A Math. Phys. Eng. Sci. 374(2068). doi:10.1098/rsta.2015.0232 (2016)

13. Bisio, A., D’Ariano, G.M., Perinotti, P.: Special relativity in a discrete quantum universe. Phys. Rev.
A 94, 041210 (2016). doi:10.1103/PhysRevA.94.042120

14. Bisio, A., D’Ariano, G.M., Tosini, A.: Quantum field as a quantum cellular automaton: the Dirac free
evolution in one dimension. Ann. Phys. 354, 244–264 (2015)

15. Chiribella, G., D’Ariano, G., Perinotti, P.: Informational derivation of quantum theory. Phys. Rev. A
84(012311), 012311–012350 (2011)

16. Dakic, B., Brukner, C.: Quantum theory and beyond: is entanglement special? In: Halvorson, H. (ed.)
Deep Beauty: Understanding the Quantum World through Mathematical Innovation, pp. 365–392.
Cambridge University Press, Cambridge (2011)

17. D’Ariano, G.M.: Physics as quantum information processing: quantum fields as quantum automata.
Phys. Lett. A 376(697) (2011)

18. D’Ariano, G.M., Perinotti, P.: Derivation of the Dirac equation from principles of information pro-
cessing. Phys. Rev. A 90, 062106 (2014)

19. D’Ariano, G.M., Khrennikov, A.: Preface of the special issue quantum foundations: information
approach. Philos. Trans. R. Soc. Lond. A 374(2068) (2016). doi: 10.1098/rsta.2015.0244. http://rsta.
royalsocietypublishing.org/content/374/2068/20150244

20. Feynman, R.: Simulating physics with computers. Int. J. Theor. Phys. 21(6), 467–488 (1982)
21. Fuchs, C.A.: Quantum mechanics as quantum information (and only a little more). quant-ph/0205039

(2002)
22. Gross, D., Nesme, V., Vogts, H., Werner, R.: Index theory of one dimensional quantum walks and

cellular automata. Communications in Mathematical Physics pp. 1–36 (2012)
23. Hardy, L.: Quantum theory from five reasonable axioms. quant-ph/0101012 (2001)
24. Kempe, J.: Quantum randomwalks: an introductory overview. Contemp. Phys. 44(4), 307–327 (2003).

doi:10.1080/00107151031000110776
25. Khrennikov, A., Weihs, G.: Preface of the special issue quantum foundations: theory and experiment.

Found. Phys. 42(6), 721–724 (2012). doi:10.1007/s10701-012-9644-x
26. Khrennikov, A., Raedt, H.D., Plotnitsky, A., Polyakov, S.: Preface of the special issue probing the

limits of quantum mechanics: theory and experiment, volume 1. Found. Phys. 45(7), 707–710 (2015).
doi:10.1007/s10701-015-9911-8

27. Kowalski-Glikman, J., Nowak, S.: Doubly special relativity theories as different bases of κ-Poincaré
algebra. Phys. Lett. B 539(1), 126–132 (2002)

28. Kowalski-Glikman, J., Nowak, S.: Non-commutative space-time of doubly special relativity theories.
Int. J. Mod. Phys. D 12(02), 299–315 (2003)

29. Lloyd, S.: Programming the Universe: A Quantum Computer Scientist Takes on the Cosmos. Vintage
Books, New York (2006)

30. Lukierski, J., Ruegg, H., Nowicki, A., Tolstoy, V.N.: q-deformation of Poincaré algebra. Phys. Lett. B
264(3), 331–338 (1991)

31. Magueijo, J., Smolin, L.: Lorentz invariance with an invariant energy scale. Phys. Rev. Lett. 88, 190403
(2002)

32. Magueijo, J., Smolin, L.: Generalized Lorentz invariance with an invariant energy scale. Phys. Rev. D
67(4), 044017 (2003)

33. Majid, S., Ruegg, H.: Bicrossproduct structure of κ-Poincare group and non-commutative geometry.
Phys. Lett. B 334(3), 348–354 (1994)

34. Meyer, D.: From quantum cellular automata to quantum lattice gases. J. Stat. Phy. 85(5), 551–574
(1996)

35. Meyer, D.A.: From gauge transformations to topology computation in quantum lattice gas automata.
J. Phys. A 34(35), 6981 (2001). http://stacks.iop.org/0305-4470/34/i=35/a=323

36. Schumacher, B., Werner, R.: Reversible quantum cellular automata. quant-ph/0405174 (2004)
37. Snyder, H.: Quantized space-time. Phys. Rev. 71, 38–41 (1947)
38. Susskind, L.: Lattice fermions. Phys. Rev. D 16, 3031–3039 (1977). doi:10.1103/PhysRevD.16.3031
39. Yepez, J.: Relativistic path integral as a lattice-based quantum algorithm. Quantum Inf. Process. 4(6),

471–509 (2006)
40. Zeeman, E.C.: Causality implies the Lorentz group. J. Math. Phys. 5(4), 490–493 (1964)

123

http://dx.doi.org/10.1098/rsta.2015.0232
http://dx.doi.org/10.1103/PhysRevA.94.042120
http://dx.doi.org/10.1098/rsta.2015.0244
http://rsta.royalsocietypublishing.org/content/374/2068/20150244
http://rsta.royalsocietypublishing.org/content/374/2068/20150244
http://dx.doi.org/10.1080/00107151031000110776
http://dx.doi.org/10.1007/s10701-012-9644-x
http://dx.doi.org/10.1007/s10701-015-9911-8
http://stacks.iop.org/0305-4470/34/i=35/a=323
http://dx.doi.org/10.1103/PhysRevD.16.3031

	Quantum Walks, Weyl Equation and the Lorentz Group
	Abstract
	1 Introduction
	2 Weyl Quantum Walk
	2.1 The Map n(k)

	3 Change of Inertial Frame
	4 Conclusion
	Acknowledgements
	References


