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Among the several different methods of sclution of the 2-dimensio-
nal Ising Model, one turns out to be particularly promising and suitable
for generalization to 3-dimensional cases: so-called Pfaffian method [1].
The latter generalization has been implemented in particular in those
situations when the model is defined over a finite lattice Loy iso-
morphic with the graph of some finitely presented group GD'

Let us first review the far-reaching properties that such an assumption
implies, schematically.

let G have presentation
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where the ak’s denote the generators of GD and Rj its defining re-
lators.

The Cayley graph C of G, 1s constructed in the following way. Let

M be a topological space (either a set or a metric space), and for
each element 9. € G, select a point P_ENM; s = 1 seatobnin |GDI » where
{Gol is the order of G;; in such a way that the elements of G, are
in one-to-one correspondence with the points selected.

Join then pairs of points PP, 5.t = 1,..,,[Gﬂ| in M, with a

n]GOI -fold set of edges defined as follows.
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then the points P_ and P, , and P, and P_ are connected by an

edge of type k, respectively beginning at PS and ending at P be-
ginning at Pé and ending at Ps' )
Thus exactly one positively oriented edge of each of the n types be-

gins at every point P_, and cne ends at P_.

Moreover the edges do not intersect mutually except at the points P.-

The graph C is the collection of all points P_, & = L (e

and edges E{k} = (g_,q9 lllk}j, where the index w is indeed a multi-
W 5 °t (k)

index, w = (s,t,A) and =
Modulo a trivial conjugation in Gﬂ, any point in M can be associated
with the identity element f , let it be P,. Any word W in the ge-
nerating symbols fa:% is uniguely represented by a path of oriented

A + il
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edges in M, starting from P1, If such a path is closed, the corres-
ponding word is eguivalent to the identity of Gy -

If the path is closed and has no subpaths of measure zero, namely path-
components which correspond to subwords of the form W' = £ f_1, where
f is a word, the word it represents coincides with one of the elements
R. of the complete set of defining relators in (1).

Given the graph C, the group GD can then be reconstructed as the
equivalence class group of the presentation given in terms of the gene-
rating symbols induced by the edges Eik} and the relators induced by
closed paths.

Lo
Notice that € is connected, hence LU is connected: indeed any ele-

is assumed to be isomorphic to C.

ment gSE G0 can be written

A A A
L} 1 2 s
(3) g. = a ay -ee Ay
and; 4¥f E_= E . e W = z=1.,.x; RI}, then the path E_ e  ...E

r W 1 I2 s

joins the identity to gstor P1 to Psi.
The general theory of the Pfaffian method [2] is based on the property
that, upon writing - for an Ising model defined over the lattice Ly -

+he Hamiltonian in the form

N
(4) H=- I
=1 k=1 % 8¢ @x9e

where the dynamical variables UQE'EZ’ g€G, have been explicitly
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///z:belled by elements of G, 4instead than by the points P, of Lox
Jk are the coupling constants characteristic of each type of (unorien-
ted) edge of L,, and we have set !Gol= N, 4n order to remind that
Icul is indeed the number of sites of Ly7 the partition function

(5) ST exp (~BH)
- [ag;g €Gyl

where B8 1is the inverse temperature, is given by

n N,
(6) Z = [2 EZH {cosh u )1 ° F(ft,})
where
{7) i, = BJ t, = tanh u

Pk kU Tk k

and F{{tk;} is the generating function - in the indeterminates tk -
of the number of closed loops with specified number of sides along the
edges of different types k, one can draw on Lﬂ.

Ft{tkjl is computed according to the following scheme. First LU is
decorated [3], i.e. each site of L0 is blown up into a set of

nq = 3(g = 2) points, where g denotes the coordination number of
LD' each of coordination 3.

Let us name I the decorated latticej; the number of sites of

L is N = ng NU‘

Fach site of L is now in one-to=-one correspondence with a pair (gs,i],
with g € Goand ie1 = {1,...,ngf .

F{ftki} is identical with the dimer covering generating function for

L, when weight ty is given to the bonds in Lf\LD of type k, and
weight 1 to the (4g - 9) bonds b,€ L\L0 added by the decoration
procedure.

If L is a 3-dimensional lattice - or a 2-dimensional one endowed with _
periodic boundary conditions - L has genus c¢ > 1 (i.e. L can be embed-
ded in a 2-dimensional, orientable, closed surface S. ©of topological
genus ¢, but not in one of genus (c ~ 1)).

One introduces then a new lattice Lo which is the
of L, in which the bonds are restricted to the subsets of those of L
corresponding to all possible orientations reguired by the combinatorial

22°.£614 covering

problem,
It turns out that if L. is homogeneous under the group € which is:



f/j’-:Trzocally the central extension of G, obtained by addition of
the (multiplicative) element - ¥ and the consequent modification
of the relators so that these satisfy the requirements of
Kasteleyn’s theorem [4],

ii) globally the extension of the group GU by the homology group
of S HT(SCI (namely the set of images of the fundamental
group of S_, M, (S.), with respect to the homomorphism
h: T,(5.) —-).32; the fundamental group of S_ 1s free abelian
over 2c generators and the homology group is a finitely gene-
rated module over the Noetherian ring 2'2};
then F({t,}) 18 given by a Pfaffian:

2c-1

(8) 1in F({tkI} i Tr ln A v

Bere & ={ hts is the antisymmetric {Ast = - hts’ weighted incidence
matrix of L., namely i
(

0 if Pt,PSG'LC are not nearest
neighbours in L/
p‘ts = < sgn(t,s) if the bond PtPEéLC is the image

under G of a bond by €L

if the bond Ptht Lo is the image
of a bond of type k in L.

L sgn{t;ﬁ] ] tkl

where sgn(t,s) is the signature of the oriented bond PtPsé‘LC homo-
geneous under G.

By the Baer-Nielsen theorem [5]1, the description of all the finite ex-
tensions of the fundamental group of an orientable surface of genus

c, Sc' is equivalent to the determination of the (finite) group of map-
ping classes, MC(S_ ). Thus G is globally isomorphic to the group

(9) HC{SCJ = Homeo Sc / Isot Sc

namely the group of homeomorphisms of S which preserve isotopy (or
at most a maximal subgroup thereof). On the other hand, S_ is iso-
morphic to the sphere with ¢ handles T_, and

g +
(10) Hctsc}n» L Diff {'rc}

the group of isotopy classes of orientation preserving diffeomorphisms
o Tus
If R denotes the regular representation of G, A can be written in

general in the form
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vhere ‘the coefgicients ® " =2 e D), ana 2 e s Vil
depend on the presentation of G, and the homology of §_ only; and
- gince no ambiguity arises = we designated the generating symbols of
¢ with the same notation as for those of G-

We have two alternative ways of reducing (8) to an algorithm which
could be solved.

TE DtJ}lg}, g€ G, denotes the J-th irreducible representation of G,

of dimension /J/, recalling that
(12) R(G) = g? 31 o (e
we can write the free energy per gite f in the form
n 2—2:—1 (

{(13) - Bf =1n 2 + I 1n cosh % N I Tr ln A
k=1 0 J

J)

where AIJ) is the J-th irreducible block-diagonal component of A;

the sum is over all the irreps.

Thus, on the one hand, we are faced with the problem of constructing

the irreps of G, and the algorithm is reduced to the calculation of
the finite set of finite determinants det A(J}, for all J's.

on the other hand, from (8), (11)
in F([td) = -2 -

14

(14) 2, B‘P

x Tr (Rlak )..-Rla }i

1

Notice that if we denote by W:E) A the word in G corresponding
F SR

to the element g = 1 ..ak’ , in (14) we have indeed to eva-

luate Tr {R[WEE} = }! B21ng in the regular representation implies

that only those words for which g is the identity element in G give
a non-vanishing contribution to the r.h.s. of (14).
In fact once more the latter correspond to closed paths, now in L.

c
The problem of deciding for a group G defined by a given presentation

(15) G=<aik=1,...0m }Ejf{akﬁi, S PR
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;& > m, for an arbitrary word W in the generators,in a finite number
of steps, wether W defines the identity element of G or not, has a
long standing in combinatorial group theory and is known as Dehn’s word
problem [6].
in our second alternative we are thus led to the word problem for G.
For both ways of solution, the presentation of G 4is an indispensable
ingredient. Hereafter we will briefly discuss the general properties
one can state for G, and how they bear on both the word problem and
the construction of the irreps.
sc can be thought of as a 2-dimensional compact manifold with a Rie-
mannian metric of constant Gaussian curvature -1, as well as a homoge-
neous space of G, 8ay G/K, where K 1B a normal, compact subgroup
of G of finite index. The fundamental group acts as a discontinuous
discrete subgroup of automorphisms, and L/ is the orbit of a point in
the fundamental region of € under the action of G itself. The uni-
versal cover of SC has constant negative curvature as well, so it is
isometric to the open unit disk endowed with Poincaré metric, gl2)

Since the covering translations of the universal cover act by isometries,

S, can also be represented by th}/T, where T is a subgroup of the

isometry group B of B .

The latter is isomorphic to the Fuchsian group Tr1tsc}. Since the topo-

logical genus of 5 is ¢, the space of hyperbolic surfaces 5. to-

gether with a fixed isomorphism of 771{SC} to T (where two surfaces
are equivalent if there is an isometry between them respecting this
isomorphism) is the Teichmiiller space of genus C, J'c Jiddss

T . can be thought of as the subset of discrete representations of
'J":’.I{Sc} into B up to conjugacy-.

Then HCISC} is isomorphic to the group of outer automorphisms of
m.(S.), say "o IEN

The diffeomorphism group of 5. acts on Jrc by pulling back metrics,

and the action descends to an action of G since the points of ?’c

are isotopy classes of metrics.

on the other hand the automorphism group of ﬁ‘1{SC] acts on the space

of discrete representations of ﬂ1{5C} into B, and the action des-

cends to an action of the group d, on F'C. Such an action is proper-
ly discontinuous and faithful. The guotient space is the moduli space of

genus c. Every finite subgroup K of G, acting on 3}R has a

fixed point and can therefore be realized as a subgroup of isometries

of some hyperbolic structure on a csurface of genus c¢. Indeed, let

5 (0} pe the fixed point of K when acting on JFC. For each ke K

c
there is an isometry of SC(OJ to itself in the isotopy class of k.
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Notice that such isometry is unique, because if there were two, one
could generate - by composing one with the inverse of the other - an
isometry of SC{U) isotopic to the identity but not eqgual to the iden-
tity, which would have a 1lift to 8{2, commuting with every element

of m,(5.) {act}ng on 312}}_ Then all the elements of 7 ,(5.) should
have the same endpoints, which is absurd.

The group of 1sometrie§- KcB generateé by choosing such & unigue iso-
metry in each class of k€K is isomorphic to K itself, because any
word in K which represents the trivial word in K is an isometry
isotopic to the identity (hence egual to the identity). The map

(16) ¥ & Diff (S_) ----> G

exists for any manifold 5. @ the question wether or not it is possible
to lift G back into Diff (SC], namely to chose a single represen-
tative in Diff tsci for each element in G, so that any word in the
lifted elements isotopic to the identity is egual indeed to the identity,
is referred to as the lifting problem.

Now the lifting problem for ¥ is certainly solvable for surfaces SC
of arbitrary genus ¢ if KcG is finite. For finite genus, the
Fuchsian group T 1is a finitely generated, discrete subgroup of B,
which is not cyclic. G can then be viewed as the group of outer auto-
morphisms of T, g o acting on the space of representations, induced
from homeomorphisms of S.-

The center of T is trivial (in fact the centralizer of every element
is cyclic). Upon defining the finite extension T of T by K, cor-

responding tc the exact seguence:
€17) IR == RO SR A 1

there is a homomorphism from T to 6;, defined by sending any collec-
tion L of simple curves filling up S. (such a collection is G-inva-
riant, since the orhit GL fills up the surface as well) to the auto-
morphism of T induced by conjugation by L.

T is again Fuchsian, and since K can be thought of as a finite sub-
group of i’T. realizable as a group of isometries acting on B{Z}/TASC,
such a Fuchsian group is associated to the quotient space G/K.

As for the presentafion of G, one can identify [B] K with the sub-
group of diffeomorphisms of sc which preserve a cut system. The latter
is defined as follows.

Let {Cp:p = 1....,c_f be a set of disjoint cycles on

T.~8, = {CP} =C, U 02 U...uC_. TC\ ;cp]is then a 2c-punctered sphere.
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//in isotopy class (Cp;p e PR -, SR -] fcpi is a cut system. K is
then the group which permutes the Cp's and reverses their orientations.
Denoting by Q€G the element of G supported locally by an homology

exchange between two intersecting cycles, we have:

i) G is generated by Q and K.
ii) There exists an exact seguence,

(18) 2 ——>I° @ 8B, _,>Kk->2+ S --=>0

where -Bn denotes the braid group on n strands, and JFn
the group of permutations of n objects.
iii) The elements 9 € G are represented by words HE whose let-
ters belonging to J-Qp p ¢ Ju Kk are indeed elements of K.
Thus the relations of G are generated by words of the form
ngs 1 .
There follows that since K is finitely presented, so is G. Moreover,
all the relations of G follow from relations supported on subsurfaces
of Se of genus at most 2.
Finally there exists a finite matrix representation of G which has
- due to (18) - the structure of a wreath product and which can be ob-
tained by induction from the (finite) matrix representation of K.
Thus F{[t 3 can be written as an automorphic function, depending on
the representations of K and the characters of ,f [7].
In turn the representations of K derive, by 1naucticn, from those of
ﬁzc_1. IL.et us then recall, in conclusion, some of the basic properties
and definitions of the braid group jEn
'ﬁn. can be thought of as the fundamental group of the space of unordered

sets of n distinct points in a plane. If P‘n] is the space of poly-
nomials of degree n,
(19) & ~re) . wepthyeo, i3

and thinking of P‘n, as the space of hyperelliptic curves of degree

n one can in fact obtain a representation of '3n in the group of sym-
plectic integral matrices, namely the matrices of automorphisms of the
homologies of the curves induced by circuits in the coefficient plane.
This somewhat seems to bridge present approach with the connection

- recently established by Sato, Jimbo and Miwa [9] in their holonomic
guantum field theory - between the problem of evaluating the 2-point



Green's function for the 2-dimensional Ising model and the Schlesinger

isomonodromy problem.

@n. has (n-1) generators S,,1 = 1,...,n=1 and (n-1)(n-2)/2 relations
of the form [10]:

(19) ’ B, 55 = 5, By . 3=3 > 2
(20) By 5441 5. = 5i+1 s 5547 7 1< i< (n=-2)

An interesting link between the relations of the braid group and the
Yang-Baxter-Zamolodchikow factorization eguations, leading to the for-
mulation of the latter within the scheme of an infinite dimensional Lie
algebra (euclidean), whereby the connected combinatorics is reconducted
to the generalized Roger-Ramanujan identities, has been recently
pointed out [11].

Work is in progress along these lines.
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