
Annals of Physics 354 (2015) 244–264

Contents lists available at ScienceDirect

Annals of Physics

journal homepage: www.elsevier.com/locate/aop

Quantum field as a quantum cellular automaton:
The Dirac free evolution in one dimension
Alessandro Bisio, Giacomo Mauro D’Ariano,
Alessandro Tosini ⇤
Dipartimento di Fisica dell’Università di Pavia, via Bassi 6, 27100 Pavia, Italy
Istituto Nazionale di Fisica Nucleare, Gruppo IV, via Bassi 6, 27100 Pavia, Italy

h i g h l i g h t s

• The free Dirac field in one space dimension as a quantum cellular automaton.
• Large scale limit of the automaton and the emergence of the Dirac equation.
• Dispersive differential equation for the evolution of smooth states on the automaton.
• Optimal discrimination between the automaton evolution and the Dirac equation.

a r t i c l e i n f o

Article history:
Received 12 September 2013
Accepted 22 December 2014
Available online 30 December 2014

Keywords:
Quantum cellular automaton
Quantum walk
Dirac equation

a b s t r a c t

We present a quantum cellular automaton model in one space-
dimensionwhich has the Dirac equation as emergent. Thismodel, a
discrete-time and causal unitary evolution of a lattice of quantum
systems, is derived from the assumptions of homogeneity, parity
and time-reversal invariance.

The comparison between the automaton and the Dirac evolu-
tions is rigorously set as a discrimination problem between unitary
channels. We derive an exact lower bound for the probability of er-
ror in the discrimination as an explicit function of the mass, the
number and the momentum of the particles, and the duration of
the evolution. Computing this bound with experimentally achiev-
able values, we see that in that regime the QCA model cannot be
discriminated from the usual Dirac evolution.

Finally, we show that the evolution of one-particle states with
narrow-band in momentum can be efficiently simulated by a dis-
persive differential equation for any regime. This analysis allows for
a comparison with the dynamics of wave-packets as it is described
by the usual Dirac equation.
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This paper is a first step in exploring the idea that quantum field
theory could be grounded on amore fundamental quantumcellular
automaton model and that physical dynamics could emerge from
quantum informationprocessing. In this framework, the discretiza-
tion is a central ingredient and not only a tool for performing non-
perturbative calculation as in lattice gauge theory. The automaton
model, endowed with a precise notion of local observables and a
full probabilistic interpretation, could lead to a coherent unifica-
tion of a hypothetical discrete Planck scale with the usual Fermi
scale of high-energy physics.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The major problem of developing a quantum theory of gravity, whose effects should become
relevant at the Planck scale, seems to require a deep reconsideration of the spacetime structure.
Recently alternative models of spacetime are gathering increasing attention. We can cite for example
the loop quantum gravity model by Rovelli, Smolin and Ashtekar [1–3], the causal sets approach
of Bombelli et al. [4], the noncommutative spacetime of Connes [5], the quantized spacetime of
Snyder [6], the doubly-special relativity of Camelia in [7,8] along with the deformed special relativity
models of Smolin andMagueijo in [9]. Some of these approaches are even considered for experimental
tests, see for example the recent experiment proposals by Hogan [10,11] and Brukner [12]. Moreover,
the finiteness of the entropy of a black hole [13,14], which implies that the number of bits of
information that can be stored is finite, has led to the idea that space–time at the Planck scale could
be discrete and that the amount of information in a finite volume must always be finite.

In this work, following the ideas proposed in Refs. [15–19], we assume that at the Planck scale
physical dynamics occurs on a discrete lattice and in discrete time steps. Considering for simplicity
the one-dimensional case, the lattice is a chain of sites equally spaced with a period assumed to be
equal to the Planck length `P , while a single time step is equivalent to a Planck time ⌧P . Each site
x corresponds to a quantum system whose dynamics is described by a quantum cellular automaton
(QCA). The QCA generalizes the notion of cellular automaton of von Neumann [20] to the quantum
case, with cells of quantum systems interacting with a finite number of nearest neighboring cells via
a unitary operator describing the single step evolution.

One of the first theoretical notion of QCA appeared in Ref. [21], and later in [22,23] where it was
referred to as linear quantum cellular automata, while the notion of QCA as a mean for simulating
quantum physical systems originally appeared in Refs. [24–26]. Since then the QCAs have been a
quantum-computer-science object of investigation with a rigorous formulation and relevant results
about their general structure [27–29].Moreover, in the field of quantum information, particular atten-
tion is devoted to the so-called quantum walks (QWs) which describe the quantum evolution of one
particle moving on a discrete lattice and which correspond the one particle sector of QCAs with linear
evolution [30–32].1 This interest is motivated by the use of QWs in the design of quantum algorithms:
in Ref. [33] Childs et al. proved that QWs provide an exponential speedup for an oracular problem and
QWs are also known to provide polynomial speedups for many relevant problems [34–36].

The idea of modeling the physical evolution at the Planck scale on a discrete background first
appeared in the work of ’t Hooft [37]. However, in his work the automaton is classical, and it describes
a deterministic discrete theory underlying quantum theory. Then the idea of using QWs for the
simulation of Lorentz-covariant differential equations appeared in the pioneering works of Succi and

1 Notice that in Ref. [30] the word quantum cellular automaton appears for the first time. However, the model presented in
the paper describe the one-particle evolution and is technically a QW.
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Benzi [38], Bialynicki-Birula [39] and in the context of lattice-gas simulations, especially in the works
of Meyer [40] and Yepez [41].

It is important to stress that the approachwe are proposing does not aim to a QCA-discretization of
the known standardmodel of particle physics. Indeed,we do notwant to determine theQCAdynamics
by mimicking the known dynamics of Quantum fields but we propose to derive it from principles
of symmetry and simplicity of the quantum algorithm. Clearly, because of the discreteness of this
framework, the usual continuous symmetries (like the Poincaré invariance and the gauge symmetries)
are no longer tenable andmust be replaced. However, in the QCAmodel one can naturally require the
invariance of the dynamics under the discrete symmetries of the lattice (like translation invariance,
reflections and discrete rotations). In this work we consider a one dimensional QCA model which is
linear2 and which has the minimal number of internal degrees of freedom for a non-trivial evolution.
We then show that it is possible to single out a class of unitarily equivalent QCA by imposing the
symmetry under discrete translations, parity and time reversal. Among the QCA in this class, we then
focus on the one whose expression reproduces the Dirac equation in the Weyl representation as a
finite difference equation.

If the QCAmodel is a valid description of the microscopic dynamics, then it must recover the usual
phenomenology of quantum field theory (QFT) at the energy scale of the current particle physics
experiments. This means that the physics of the QCA model and the one of QFT must be the same
as far as we restrict to quantum states that cannot probe the discreteness of the underlying lattice.
It is then crucial to address a rigorous comparison between the QCA dynamics and the dynamics
dictated by the usual Dirac equation at different energy scales. We address such a comparison as
channel discrimination problem and we quantify the difference between the two evolution with
the probability of error pe in the discrimination. We derive a lower bound for pe as a function of
momentum, mass and number of the particles and the duration of the evolution. Computing this
bound with experimentally achievable values, we see that automaton evolution is undistinguishable
from the one given by the Dirac field equation. This result proves that, in the limit of input states with
vanishing momentum, the QCA evolution recovers the Dirac equation. We notice that our analysis
agrees with the works [42–46] that studied the continuum limit, i.e. when the lattice spacings and the
time steps are sent to 0, of QWs in comparison with the Dirac or the Klein–Gordon equations.3

In order to gain insight about the kinematics described by the QCAmodel we focus on one-particle
states that are smooth and have limited band in momentum. Their evolution can be approximated
by a dispersive (momentum-dependent) differential equation whose features can be easily compared
with the analogous expressions for the non-relativistic and relativistic cases. By using this tool wewill
then study an elementary discrimination experiment between the Dirac automaton evolution and the
usual Dirac one based on particle fly-time.

The line of research suggested by this paper explores the possibility that quantum information
processing underlies all of physics and is based on the principle, for the first time proposed by
Feynman [48] and then refined by Deutsch [49], that every finite experimental protocol is perfectly
simulated by a finite quantum algorithm. It is immediate to see that the principle implies both that the
density of information is finite, and that the interactions are local. The discreteness of the automaton
framework could also represent a possible way out of the typical problems affecting QFT originating
from the continuous background that still lack a satisfactory interpretation (see [50–53]). For example,
in a QCAmodel there cannot be ultraviolet divergences since the presence of a discrete lattice implies
a cutoff in momentum. The QCA has an exact notion of observables, accommodates localized states4
andmeasurements,5 and is endowedwithwell defined probabilistic interpretation and could lead to a
coherent unification of a hypothetical discrete Planck scalewith the typical Fermi scale of high-energy

2 Because of the linearity assumption one can regard this model as a second quantized version of a quantum walk.
3 We would like also to point out Ref. [47], which appeared after the first version of the present paper, where the authors

proved convergence of the solution of the QW to the solution of the Cauchy problem for the Dirac equation.
4 Since the automaton evolution is strictly causal any local excitation remains local during the evolution.
5 The relevance of presenting QFT as a probabilistic theory about local measurements has been also the main focus of the so

called algebraic quantum field theory [54,55].
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physics experiments. Finally, the field automaton is a physical model which is quantum ab initio, and
is not derived by applying a quantization procedure to classical field theory.

It is worth emphasizing that the difference between the QCA approach and the discrete approach
of lattice gauge theories is twofold. On the ‘‘foundational’’ side, our aim is to explore the idea whether
it is possible to ground QFT on a more fundamental QCA theory, and then recover the usual quantum
fields as a large scale approximation. Within this perspective, Lorentz covariance is supposed to hold
only in the limit of small wave-vectors, whereas generally it is deformed [7–9,56] while approaching
the Planck scale.6 On a more ‘‘technical’’ side the evolution of the automaton is not given by a finite
difference Hamiltonian or Lagrangian as in lattice gauge theory. The quantum automaton is based
on a discrete and exactly causal unitary evolution and the Hamiltonian has no longer any physical
relevance. The same fact that there is no Hamiltonian is the reason why the Fermion-doubling [58] is
no longer an issue in the QCA framework (see e.g. [39]).

We conclude this introductory section with a short outline of the paper. In Section 2, after
reviewing some generalities of QCAs and QWs, we discuss the covariance of a QCA with respect
to the symmetry of the causal network and we derive a one dimensional linear QCA from the
assumptions of minimal internal dimension, homogeneity, parity and time reversal invariance. In
Section 3 we show how this automaton recovers the Dirac dynamics for small masses and momenta.
Here, we set the problem by considering the probability of error pe in the discrimination between
the unitary channel corresponding to the automaton evolution and the one which corresponds to the
evolution dictated by the Dirac equation. We obtain a lower bound for pe in terms of the mass of
the field, the number and the momentum of the particles, and the duration of the evolution. Then
in Section 4 we present an analytical approximation method for evaluating the automaton evolution
for one-particle states which are smooth in momentum and with limited bandwidth. Then we derive
a dispersive (momentum-dependent) differential equation, which approximate the QCA evolution.
We compare computer simulations with the analytic approximation, and provide the leading order
corrections to the Dirac equation. After discussing possible ways of testing of the theory, like the
effects of the automaton evolution on wave-packets fly-times, we conclude the paper with future
perspectives.

2. The one-dimensional Dirac automaton

2.1. One dimensional field QCA and QuantumWalks

In this section,we present some generalities about QCA in one dimension andwe review the notion
of linear QCA and its connection with the one of QuantumWalk.

A one-dimensional QCA describes the discrete time unitary local evolution of quantum systems on
the one-dimensional lattice Z. Since we want to apply this model of evolution to quantum fields, any
site x 2 Z will correspond to a Bosonic or Fermionic quantum field operator (x) located at the same
position. If the field has⇤ internal degrees of freedom the operators

{ a(x)}a2A, A = {1, . . . ,⇤} (1)

will denote the generators of the field local algebra Fx that satisfies the usual commutation,
respectively anticommutation, rules [ a(x), b(x)]± = [ Ñ

a (x), 
Ñ
b (y)]± = 0, [ Ñ

a (x), b(y)]± =
�xy�ab. The automaton corresponding to the one-step update of the field is required to preserve the
above relation. In the usual QFT both the Fermionic and the Bosonic algebra’s structure is preserved
with the field evolving by a unitary operator U

 (x, t + 1) = UÑ (x, t)U . (2)

6 In the explorative approach of this work we will describe the automaton dynamics in a fixed reference frame while the
study of boosted automata and the features of the emerging spacetime have been the subject of another publication [57].
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Fig. 1. Left figure: Illustration of a one-dimensional QCA unitary step. Each site of the lattice x corresponds to a quantum
field evaluation  (x). The field operator at site x interacts with the field  (x ± 1) at neighboring sites. In the case of the
Dirac automaton the field operator has two components (see text). Right figure: Schematic of the three time steps causal
network corresponding to a one-dimensional quantum cellular automaton with next-neighboring interaction. The topology
of the network is left invariant by the mappings x 7! �x and t 7! �t and the dynamics of the automaton is assumed to be
parity (P) and time reversal (T) invariant (see Eqs. (17) and (18)).

If we restrict to the evolution of free, i.e. non interacting, fields the evolution in Eq. (2) is linear in the
field, namely we have

 a(x, t + 1) =
X

y2Z, b2A

Uab
xy  b(y, t) (3)

for some complex coefficients Uab
xy . Upon introducing the vector field  

 := (. . . , (x), (x + 1), . . .)>,  (x) := ( 1(x), . . . , ⇤(x))>, (4)

where each (x) is also a vectorwith⇤ components corresponding to the internal degrees of freedom
of the field, we have the equality  (t + 1) = U (t) where U is the unitary matrix UUÑ = UÑU = I
having entries Uab

xy according to Eq. (3).
If we want the evolution of Eq. (4) to be local, (x, t + 1) must be a linear combination of the field

on few neighboring sites Nx ⇢ Z at time step t , that is

 a(x, t + 1) =
X

y2Z, b2A

Uab
xy  b(y, t), Uab

xy = 0 8y 62 Nx. (5)

The map U represents then a linear QCA with ‘‘cell structure’’ Fx and neighborhood scheme Nx. In the
following we consider automata with nearest neighborhood scheme, namely Nx = {x � 1, x, x + 1}
(see left Fig. 1) (the next-neighboring interaction is not an assumption by itself, since it is always
possible to reduce to such a case by grouping a periodic pattern of the network into a single node of
the automaton) and satisfying translational invariance, say Umust commute with the shift operator

[U, S1] = 0, S1 :  (x) !  (x + 1). (6)

This implies that the only non zero entries of the matrix U are Uy,y±1 = U±1 and Uy,y = U0 and that
U has the simple band diagonal form

U =
X

x2{�1,0,1}
Ux ⌦ Sx =

0

BBBBB@

. . .
. . .

. . .

U�1 U0 U1
U�1 U0 U1

U�1 U0 U1
. . .

. . .
. . .

1

CCCCCA
(7)

where the Ux’s ⇤ ⇥ ⇤ are called transition matrices, while S1, S�1, S0 correspond respectively to the
right shift, left shift and the identity.

This framework is formally equivalent to a QuantumWalk on the Hilbert space C⇤⌦ l2(Z)with C⇤
the particle internal Hilbert space. A QuantumWalk is the generalization in the quantum framework
of the common notion of randomwalk and it was introduced for the first time in Ref. [31] (for a review
on QWs see e.g. Ref. [59] and references therein). It is known that a QCA restricted to the one-particle
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sector corresponds to a QW. However, when the evolution is linear as in the present case, the one-
particle dynamics fully specifies the evolution ofmany particles. By reversing the line of reasoning one
can realize that a linear field-QCA is obtained by ‘‘promoting’’ the state | i in the usual QW framework
to a vector of field operators  (see the ‘‘second quantization’’ of a QW of Ref. [27]).

For convenience, as usual in the literature [32,59–62], we will study the dynamics of the field
automaton in the momentum representation. For the field operator we have

 (k) := 1p
2⇡

X

x2Z
e�ikx (x), k 2 [�⇡ ,⇡], (8)

where with little abuse of notation we utilize the variable name k to denote the Fourier transform
of any function of x. Notice that the automaton model is naturally band-limited k 2 [�⇡ ,⇡] and
periodic in momenta due to the discreteness of the lattice. The automaton in the momentum space is
then given by

U =
Z ⇡

�⇡
dkU(k) ⌦ |kihk|, U(k) =

X

x2{�1,0,1}
Uxe�ikx, (9)

and we can define the Hamiltonian H that describes the automaton evolution for continuous times,
interpolating between time-steps, namely

H =
Z ⇡

�⇡
dkH(k) ⌦ |kihk|, Ut = exp(�iHt). (10)

Upon diagonalizing the unitaryU(k)we get the automaton one-particle eigenvalues and eigenvectors

uk(s) = e�is!(k), |sik, s = ±, (11)

with !(k) the automaton dispersion relation.
The field automaton U generally operates on the vector field  which describes an arbitrary

number of particles. The vacuum state for the automaton is defined as the state |⌦i such that

 s(k)|⌦i = 0 8s = ±, 8k 2 [�⇡ ,⇡]. (12)

Up to now, we have not specified the nature Fermionic/Bosonic of the field. Here we will focus only
on the Fermionic case of anticommuting field. A N-particle state can be obtained by acting with the
field operator on the vacuum as follows

|N, k, si =
 

NY

i=1

 Ñ
si(ki)

!

|⌦i. (13)

Specifically, for N = 1 particle eigenstates of U, we write

 Ñ
s (k)|⌦i = |sik|ki, (14)

whereas for N = 2 we have  Ñ
s1(k1) 

Ñ
s2(k2)|⌦i = |s1ik1 |s1ik2 |k1, k2i where |k1, k2i = �|k2, k1i,

and so forth for N > 2. The corresponding eigenvalues of the (logarithm of) U are !(N, k, s) =PN
i=1 si !(ki,m).

2.2. Derivation of the one-dimensional Dirac automaton

In this section we present the derivation of simplest field automaton, here denoted Dirac QCA, that
is covariant with respect to the symmetries of the one-dimensional causal network and that exhibits
a non trivial evolution.

In general, the lattice of an automaton is endowed with certain discrete symmetries. The one-
dimensional lattice Z only exhibits parity symmetry (see right Fig. 1), corresponding to the lattice
reflectionwith respect to some site (and the time reversal symmetry ifwe consider the causal network
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given by the automaton evolution). The invariance of the automaton dynamics with respect to a
discrete symmetry of the lattice, given by a group G whose elements are linear functions g : Z ! Z,
is satisfied if the QCA is covariant under a unitary representation {Og} of G on the field local algebra
Og : Fx ! Fg(x), namely

U =
X

x2{�1,0,1}
OgUxOÑ

g ⌦ Sg(x), 8g 2 G. (15)

In Appendix A we derive the simplest covariant one-dimensional automaton that exhibits a non-
trivial (non-identical) evolution. We can summarize our assumptions as follows:

(i) Unitarity of the evolution;
(ii) Translation invariance;
(iii) Covariance under parity x 7! �x;
(iv) Covariance under time-reversal t 7! �t;
(v) Minimal internal dimension⇤ for a non-identical evolution.

The first two assumptions are already contained in the definition itself of translational invariant
QCA which has the general form given in Eq. (7). From the band diagonal form of the unitary U it
is immediate to see that the unitarity condition UUÑ = UÑU = I is equivalent to the following
constraints on the transition matrices

U1UÑ
1 + U�1UÑ

�1 + U0UÑ
0 = I U0UÑ

1 + U�1UÑ
0 = 0, U�1UÑ

1 = 0 . (16)

Assumptions (iii) and (iv) require the automaton to preserve the symmetries of the one-dimensional
causal network (in right Fig. 1). The covariance for parity symmetry can be expressed as in Eq. (15)
where the parity transformation g(x) = �x has to be represented on the field local algebra via a
unitary matrix P such that

U = PU1PÑ ⌦ S�1 + PU�1PÑ ⌦ S1 + PU0PÑ ⌦ I. (17)

Similarly, we impose the covariance for time reversal, which is not a symmetry of the lattice but of
the full causal network, asking that

U = (T ⌦ I)UÑ(TÑ ⌦ I) = TUÑ
1T

Ñ ⌦ S�1 + TUÑ
�1T

Ñ ⌦ S1 + TUÑ
0T

Ñ ⌦ I, (18)

for some anti-unitary operator T (see Appendix A for the anti-unitarity of time reversal).
For ⇤ = 1 the only translational invariant QCA satisfying parity invariance is the identical one

U = I (see Appendix A) as already proved by Meyer in the context of quantum lattice gases [40].
Next, we have the case ⇤ = 2. In this case we find (see Appendix A) that all the QCAs satisfying the
conditions above are unitarily equivalent to the following automaton

U =
✓
nS�1 �im
�im nS1

◆
, n,m 2 R+, n2 + m2 = 1,  (x) :=

✓
 L(x)
 R(x)

◆
, (19)

where we named the two components of the field  R and  L left and right modes. Among the class
of unitary equivalent QCAs, we have chosen the one whose expression reproduces the Dirac equation
in the Weyl representation as a finite difference equation. The unitarity constraint n2 + m2 = 1 in
Eq. (19) forces the parameterm to bem 2 [0, 1].7

In the momentum space (see Eq. (9)) the Dirac automaton is given by

U(k) =
X

x2{�1,0,1}
Uxe�ikx =

✓
neik �im
�im ne�ik

◆
, (20)

7 We will see in the next section that in a certain limit the Dirac automaton evolution mimics the solutions of the Dirac
evolution and the parametermwill play the role of the mass.
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Fig. 2. Left figure: local implementation of the generic one dimensional automaton U. Right figure: the local implementation
of the Dirac automaton (19) with X = �i�1, Y = mI + in�1.

and, upon its diagonalization, it is easy to derive the Hamiltonian of Eq. (10)

H(k) = !

sin(!)

✓�n sin(k) m
m n sin(k)

◆
, (21)

with !(k,m) the automaton dispersion relation

!(k,m) = arccos(
p
1 � m2 cos(k)). (22)

In 1d we have that !(k,m) is an increasing function of |k|, and then there is no Fermion doubling,
namely no state other than for k = 0 corresponding to a minimum of the energy !(k,m) (for dimen-
sion greater than one, the dispersion relation can be aswellmademonotonic continuous by exploiting
the multi-valued nature of the dispersion relation [63], as pointed out in Ref. [39]). The eigenvalues
and the eigenvectors of the unitary matrix U(k) in Eq. (20) are given by

uk(s) = e�is!, |sik := 1p
2

p
1 � sv

s
p
1 + sv

�
, s = ±, (23)

in terms of the automaton dispersion relation (22) and the group velocity v = @k!.
As we will see in Section 4, in analogy with the Dirac theory, the eigenvalues with s = 1 in Eq. (23)

correspond to positive-energy particle states, whereas the eigenvalues with s = �1 correspond to
negative-energy anti-particle states. The most general state | i is thus a superposition of a positive
and a negative energy state, i.e. | +i + | �i, and typical aspects of the Dirac-field dynamics, such
as the Zitterbewegung and the Klein paradox, are also dynamical feature of the Dirac automaton as
shown by the authors in a more recent paper [64].

Notice that in the derivation of the automaton our assumptions imply a minimal internal dimen-
sion⇤ = 2 for a non-identical evolution. This means that it is not possible to consider an automaton
having just an internal degree of freedom—say a scalar field. Moreover, although it is not the focus
of this work, it is interesting to notice that as a byproduct of the assumptions leading to the Dirac
automaton we also have its localizability, namely the possibility of decomposing the unitary U in a
number of more elementary gates involving only neighboring systems as shown in the left Fig. 2. This
is the so-called Margolus scheme [65]. It is well known from the Cellular Automata and walks theory
that the locality of the automaton does not ensure the existence of a local implementation (typical
examples of local but non localizable automata are the right and left shifts, which do not satisfy par-
ity). Werner et al. proved [29] that a necessary and sufficient condition for the localizability of a QW is
that det(U(k)) = const, where U(k) is the momentum representation of the walk. As already noticed
the one-particle sector of the Dirac field automaton U coincides with a walk (see Eq. (7)) and we can
exploit the above result. In the Dirac case it is det(U(k)) = n2 + m2 = 1 (see Eq. (20)) which shows
the localizability of corresponding unitary evolution. Moreover, as shown by Arrighi et al. [28], a lo-
calizable d dimensional QCA can be locally implemented using 2d layers of quantum gates and then
by just two layers in the 1d case. For the one-dimensional Dirac automaton (19) we have the local
implementation shown in the right Fig. 2 and the local gate X and Y are as follows [17]

X = �i�1, Y = mI + in�1. (24)
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3. Recovering the Dirac dynamics

By interpreting the parameters k and m of the Dirac automaton as momentum and mass, it is
reasonable to expect that the usual kinematics of the Dirac equation

i@t (k, t) = HD(k) (k, t) where HD(k) =
✓�k m

m k

◆
(25)

is recovered in the small momenta (k ! 0) and small mass (m ! 0) regime. More precisely, one
would say that it is not possible to tell the difference between the automaton evolution | (t)i =
Ut
A| (0)i and the evolution given by Dirac Hamiltonian | (t)i = Ut

D| (0)i (Ut
D is the unitary evolu-

tion given by the Dirac Hamiltonian) as far as the mass m is small and the momentum of initial state
| i is small. This idea can be rigorously recast in terms of a discrimination problembetween two black
boxes. The scenario can be described as follows. An experimentalist is given a black box that can be ei-
ther the automaton (box A) or the usual Dirac equation (box D) with equal probability, and he is asked
to guess which box. The most general experiment which discriminates between two unitary evolu-
tions amounts to the following three steps procedure8: (i) preparing a quantum state ⇢, (ii) apply the
unknown unitary evolution UX (X = A,D) (iii) perform a two outcome measurement on the output
state: the two outcomes A and D correspond to the two possible evolutions. The measurement is de-
scribed by a positive operator valued measure (POVM) P = {PA, PD}, where PA and PD are positive op-
erators onH ⌦K which satisfy PA+PD = I , I denoting the identity. Then the probability of error reads

pe(PA, ⇢) = 1
2
Tr[PA((UD ⌦ I)⇢(UD

Ñ ⌦ I) � (UA ⌦ I)⇢(UA
Ñ ⌦ I))]. (26)

It is clear from this scenario that the minimum of the probability of error over all the possible experi-
ments is awell definedmeasure of howmuch themodels A andD are far apart. Minimizing expression
(26) over all the possible experiments entails a minimization over the set of the POVM’s and the set
of the available states. The minimization over the POVM set gives [67]:

inf
0PAI

pe = 1
2

� 1
2
kUD⇢UD

Ñ � UA⇢UA
Ñk1 (27)

where k�k1 denotes the trace norm k�k1 = Tr[p� Ñ� ]. If we now set bounds on the number of
particles N  N̄ and their momentum k  k̄, the minimization over the admissible input states ⇢ is:

p̄e = 1
2 � 1

2 sup
⇢2Tk̄,N̄

kUA⇢U
Ñ
A � UD⇢U

Ñ
Dk1, (28)

where Tk̄,N̄ denotes the set

⇢ 2 Tk̄,N̄ iff Tr[⇢Nk̄] = Tr[⇢PN̄ ] = 0 (29)

where PN̄ is the projector on theN > N̄-particles sector andNk̄ is the operator that counts the number
of particles with momentum |k| > k̄, i.e. Nk̄ = R

|k|>k̄ dk Ñ(k) (k).
In Appendix B we evaluate a lower bound for p̄e probability of error, which is given by

p̄e � 1
2 � 1

2

q
1 � cos2(g(k̄,m, N̄, t)) (30)

where

g(k̄,m, N̄, t) := N̄ arccos
�
cos(↵̄t) � �̄

�

↵̄ := max
k2{0,k̄}

|!D � !|, �̄ := max
k2{0,k̄}

����
1
2

✓
1 � vvD �

q
(1 � v2)(1 � v2

D)

◆����
(31)

8 In general, the optimal discrimination needs entangled states, but for the case of two unitary evolutions this is not
necessary [66].
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Fig. 3. Comparison between the dispersion relations!(k,m) of the Dirac automaton and of the Dirac equation, in Eqs. (22) and
(35), respectively. In the top figure the dispersion relation is plotted versus the adimensional massm 2 [0, 1] and momentum
k 2 [�⇡ ,⇡] (m = 1 corresponds to the Planck mass). The green surface represents the automaton, whereas the blue the Dirac
one. In the bottom figures !(k,m) is plotted versus k for four values ofm (the red line corresponds to the automaton, whereas
the black one is the Dirac’s).We can see that the two dispersion relations coincide for smallmasses andmomenta, and the larger
the mass the smaller the overlap region around k = 0. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

and v (see Eq. (40)) and vD = k/
p
k2 + m2 the automaton and the Dirac drift coefficients. The bound

in Eq. (30) explicitly quantifies the similarity between the evolution described by the automaton of
Eq. (19) and the evolution described by the Dirac equation. Moreover, this result is exact (i.e. it does
not depend on any approximations), easily computable (it is an explicit function of m, k̄, N̄, t), and
provide an experimentally meaningful numerical value (since pe is the probability of an experiment).

A simplified version of the bound in the k,m ⌧ 1 regime canbe obtained by expanding in series the
function g in Eq. (31) near m = k̄ = 0. Truncating the expansion at the leading order and neglecting
a small constant term we have

g(m, k̄, N̄, t) ⇡ 1
6
m2k̄ N̄ t. (32)

By putting p̄e = 0, corresponding to g(m, k̄, N̄, t) = ⇡/2, we obtain the minimum time required for
discriminating perfectly between the automaton and the Dirac evolution

tmin(m, k̄, N̄) ⇡ 3⇡
1

m2k̄N̄
. (33)

Notice that this is an in-principle result, without any specification of the actual apparatus needed to
achieve it. For a protonwith k̄ = kCR ⇡ 10�8 (as for order of magnitude, we consider numerical values
corresponding to ultra high energy cosmic rays (UHECR) [68]) we have

tmin(mp, kCR, 1) ⇡ 3⇡1046 Planck times ⇡ 103 s. (34)

The consistency of our result can be checked by power expanding the Hamiltonian of Eq. (21) and
the dispersion relation of Eq. (22) in the limit of k,m ! 0,

HA(k) ' HD(k) + m
3

 
mk 1

2 (k
2 + m2)

1
2 (k

2 + m2) �mk

!

!A ' !D

✓
1 � m2

6
k2 � m2

k2 + m2

◆
!D := !D(k,m) =

p
k2 + m2

(35)

and see that the leading terms are the Dirac Hamiltonian and the usual relativistic dispersion relation
(see also Fig. 3).
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The result of this section supports our interpretation of the parameters k and m of the automaton
with the momentum and the mass of the Dirac field, respectively. Since the typical rest masses and
momenta of particle physics experiments are many order of magnitude smaller than the Planck mass
and the Planck momentum also the approximations (32) and (35) are justified.

One can say that the bound (30) extends ‘‘outside the limit’’ the results of Refs. [39,42,43] which
compared the quantum walks model with the Dirac equations. Here we also have the additional
bonuses that the many particle case is included and that the bound is explicitly written in terms
of physical quantities like momentum, mass and number of the particle and is given in terms of an
experimental meaningful quantity, i.e. the probability of error in a quantum channels discrimination
procedure.

4. The one particle-sector of the Dirac automaton

In this section we explore the behavior of one particle states of the Dirac QCA. In particular we will
consider initial states whose momentum distribution is smoothly peaked around some k0, namely

| (0)i =
Z ⇡

�⇡
dkp
2⇡

g(k, 0)|sik|ki, s = ±, (36)

where g(k, 0) 2 C1
0 [�⇡ ,⇡] is a smooth function satisfying the bound

1
2⇡

Z k0+�

k0��
dk |g(k, 0)|2 � 1 � ✏, � , ✏ > 0, (37)

and the two-component vector |sik is defined in Eq. (23).
At time t and in the position representation, the state in Eq. (36) can be written as

| (t)i =
X

x
| (x, t)i|xi | (x, t)i := ei(k0x�s!0t)|�(x, t)i

|�(x, t)i :=
Z ⇡

�⇡
dkp
2⇡

ei(Kx�s⌦(k,m)t)g(k, 0)|sik (38)

where we posed K = k � k0 and ⌦(k,m) = !(k,m) � !0, with !0 = !(k0,m). It is convenient to
take x, t to be real-valued continuous variable by extending the Fourier transform in Eq. (38) to real
x, t . We derive the integral in Eq. (38) with respect to t , and expand⌦ vs. k around k0 up to the second
order. Then, taking the resulting derivatives with respect to x out of the integral (using the dominated
derivative theorem), we obtain the following dispersive differential equation with drift

i@t |�̃(x, t)i = s
✓
iv
@

@x
� 1

2
D
@2

@x2

◆
|�̃(x, t)i, (39)

with the drift constant v and the diffusion constant D depending on k and m as follows

v :=
s

1 � m2

1 + m2 cot2(k0)
, D :=

p
1 � m2m2 cos(k0)

(sin2(k0) + m2 cos2(k0))
3
2
, (40)

and with the identification of the initial condition |�̃(x, 0)i = |�(x, 0)i.
The drift and diffusion coefficients are obtained as derivatives of the dispersion relation as v = !

(1)
k0

and D = !
(2)
k0 , where

!
(n)
k0 = @n!(k,m)

@kn

����
k0

. (41)
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For | (x, 0)i satisfying Eq. (37), Eq. (39) provides the approximation of the state of the particle
| ̃(x, t)i = ei(k0x�s!0t)|�̃(x, t)i, corresponding to

| ̃(t)i =
Z ⇡

�⇡
dkp
2⇡

e�is
⇣
!0+vk� 1

2Dk
2
⌘
t g(k, 0)|sik|ki. (42)

The accuracy of this approximation can be quantified in terms of the parameters � and ✏ of the
initial state by evaluating (see Appendix C) the overlap between the states (38) and (42)

|h ̃(t)| (t)i| � 1 � ✏ � � � 3t � O(� 5)t, � = !
(3)
k0

2⇡

Z k0+�

k0��
dk |g(k, 0)|2. (43)

We can test the accuracy of the approximation by comparing it with the automaton simulation. In
Fig. 4 we show an example where the initial state (36) is a superposition of Hermite functions (the
polynomialsHj(x)multiplied by theGaussian) peaked around a very highmomentum k0 = 3⇡/10 and
for inertial mass m = 0.6. The mean value moves at the group velocity given by the drift coefficient
v. One can notice how the approximation remains accurate even for small position spreads of few
Planck lengths. For a spread �̂ of the order of a Fermi as in a typical particle physics scenario, the time
t needed for a significant departure would be comparable to many universe life-times.

In the relativistic regime k,m ⌧ 1 and k/m � 1, the dispersive differential equation (39)
approaches the Dirac equation. The leading order and the corrections to the drift and diffusion
coefficients introduced by the automaton evolution are

v = kp
k2 + m2

✓
1 � 1

3
m2 + 1

6
m2k2

k2 + m2

◆
,

D = m2
p

(k2 + m2)3

✓
1 + 1

3
m2k2 � 1

2
m2k4

k2 + m2

◆
.

(44)

The leading order in v and D correspond to the Dirac equation.
In the non relativistic regime, k,m ⌧ 1 and k/m ⌧ 1 the usual Schrödinger drift and diffusion

coefficients are recovered with the following corrections

v = k
m

✓
1 + 1

3
m2
◆

, D = 1
m

✓
1 + 5

6
k2
◆

. (45)

Notice that the leading terms are just the usual group-velocity and diffusion coefficient of the
Schrödinger equation.

The momentum dependent differential equation (39) along with the leading terms in the
relativistic and non relativistic regimes (see Eqs. (44) and (45)) provides a useful analytic tool for
evaluating the macroscopic evolution of the automaton, which otherwise would not be computable
in practice.We now consider an elementary discrimination experiment between the Dirac automaton
evolution and the usual Dirac one based on particle fly-time.

Consider again a proton UHECR with mp ⇡ 10�19 and momentum peaked around kCR ⇡ 10�8 in
Planck units, with a spread � . We ask what is the minimal time tCR for observing a complete spatial
separation between the trajectory predicted by the cellular automaton model and the one described
by the usual Dirac equation. Thuswe require the separation between the two trajectories to be greater
than �̂ = ��1 the initial proton’s width in the position space. Notice that UHECR belong to the
relativistic regime mp, kCR ⌧ 1, where the automaton well approximates the usual Dirac evolution.
We describe the state evolution of the wave-packet of the proton using the differential equation (39)
for an initial Gaussian state. The Dirac evolution corresponds to the differential equation (39) with
drift and diffusion coefficients given by the leading-order terms in Eq. (44), whereas the automaton is
describedby the full expansion. Taking the difference between thedrift coefficient in the two cases one
can evaluate the time required to have a separation �̂ between the automaton and the Dirac particle
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Fig. 4. Test of the approximation (42) of the Dirac automaton evolution of Eq. (19) in one space dimension. Left figure: here the
state (36) is a superposition ofHermite functions (the polynomialsHj(x)multiplied by theGaussian) peaked aroundmomentum
k0 = 3⇡/10, specifically | (x, 0)i = Aeik0x

P
j2N cje�x2/4�̂ 2Hj(x/2�̂ )|+ik0 where �̂ = ��1 = 20 is the position variance

corresponding to the momentum variance � , and the nonvanishing terms are c0 = p
1/3, c2 = p

4/9, c7 = p
2/9. The

automaton mass is m = 0.6. The momentum and mass parameters are in the Planckian ultrarelativistic regime. In the picture
we show a comparison at three different times t = 0, t = 200 and t = 600 between the automaton probability distribution
| (x, t)|2 (in red) and the solution of the differential equation (39) | ̃(x, t)|2 (in blue). The drift and diffusion coefficients are
respectively v = 0.73 and D = 0.31. The mean position moves at the group velocity given by the drift coefficient v. The
approximation remains accurate even for position spread �̂ = 20 Planck lengths. According to Eq. (43) one has significant
deviations for t ⇡ � � 3, which is t = 600 in the present case. However, a reasonable spread �̂ in a typical particle physics
scenario is the Fermi length �̂ ⇡ 1020, that would need a time t comparable to many universe life-times to introduce a
significant error. The ✏ error in Eq. (43) can be taken very small by considering n� instead of � in Eq. (37). For Gaussian states
it is enough to consider 3� to get ✏ ⇡ 10�3. Right figure: The same three time comparison for the automatonm = 0.4, and an
initial Gaussian state having width �̂ = ��1 = 10 and peaked around the momentum k0 = 0.1. In this case the drift velocity
and the diffusion coefficient are respectively v = 0.22 and D = 2.30. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

t ⇡ �̂

�����
6
p

(k2 + m2)3

m2k2(2m2 + k)

����� , (46)

that, since it ismp/kCR ⌧ 1, further simplifies as follows

tCR ⇡ 6
�̂

m2
p
. (47)

Furthermore, if we want the separation �̂ to be visible, the broadening �̂br(t) of the two packets must
be much smaller than �̂ . Using Eq. (44) one has
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�̂br(t) = �̂

0

@

s

1 +
✓

D
2�̂ 2 t

◆2

+
s

1 +
✓

DD

2�̂ 2 t
◆2

� 2

1

A ⇡ 2�̂

 s

1 + m4
p

4�̂ 4k6CR
t2 � 1

!

where DD = m2(k2 + m2)�3/2 and we usedmp/kCR ⌧ 1. From Eq. (47) we see that �̂ � �̂br when

�̂ � (kCR)�3 = 1022 Planck lengths = 102 fm. (48)

With �̂ = 102 fm (that is reasonable for a proton wave-packet) the flying time request for complete
separation between the two trajectories is

tCR ⇡ 6 ⇥ 1060 Planck times ⇡ 1017 s, (49)

that is comparable with the age of the universe and then incompatible with a realistic setup. We no-
tice that UHECR, despite being very energetic, are very rare events and it is not possible to consider
experiments involving more that one cosmic ray. Alternatively one could consider experiments in-
volving many less energetic particles, reducing the minimal time for the discrimination according to
the theoretical optimal result of Eq. (33), or experiments based on quantum interferometry and/or
ultra-cold atoms as in Refs. [12,69–71].

5. Conclusions

In this paper we have considered the evolution of a quantum field in one dimension via a QCA.
The automaton provides the one-step evolution of the fields located at the sites x 2 Z of the lattice,
inducing a discrete causal network of points (x, t). The Dirac automaton proposed in Ref. [17] is here
derived as the minimum-dimension QCA holding the symmetries of the causal network, namely the
parity and the time reversal invariance. The present one dimensional automaton is different from the
coined-quantum walk, also known as generalized Hadamard walk, which is usually considered in the
QWs literature.

The Dirac automaton, which depends on one parameter m 2 [0, 1] and has a band-limited wave-
vector space k 2 [0,⇡], is shown to recover the Dirac equation in the limit of small k and m, which
are then interpreted as the momentum and the mass of the Dirac field. We proved this result by
considering the problem of discriminating between the Dirac QCA and the usual Dirac evolution for
initial states with limited momentum and number of particles. We derived an exact lower bound for
the probability of error in the discrimination, which is an explicit function of the mass of the field, the
number and the momentum of the particles, and the duration of the evolution. We observe that for
values of these parameters compatible with current experiments of particle physics the probability of
error approaches 1/2 (i.e. the two evolutions are indistinguishable). We stress that this analysis has
not been obtained by taking the continuous limit of the lattice, namely taking the limit of a sequence
of automata with smaller and smaller lattice spacing.

We have then derived an analytical approximation of the automaton evolution in terms of a
dispersive differential equation. The approximation works for quantum states smoothly peaked
around some momentum eigenvectors of the automaton with the drift and diffusion coefficients
corresponding to the usual Dirac ones for small masses and momenta, in accordance to the above
rigorous Dirac limit of the automaton.

In the paper [63], which is subsequent to the present one, the derivation of the Dirac QCA has been
developed in the 2 + 1 and in 3 + 1 dimensional cases. One could extend the analysis of this paper
to the automata of Ref. [63] considering the discrimination with their usual Dirac counterparts and
evaluating the corresponding dispersive differential equation.

Up to nowwehave only considered the free field evolution. However, the physical interpretation of
the automaton dispersion relation andwave-vector as energy andmomentumneeds the development
of an interacting model. Moreover, as we stressed in the introduction, the analysis of this paper
considers a fixed reference frame and a major point of the forthcoming research will be the study
of relative reference frames within the QCA framework and of the analysis of the emerging notion of
spacetime.
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Appendix A. Derivation of the Dirac automaton

In this appendix we present in detail the derivation of the Dirac automaton (19), here reported in
the momentum representation (see also Eq. (20))

U(k) =
X

x2{�1,0,1}
Uxe�ikx, (A.1)

U1 =
✓
n 0
0 0

◆
, U�1 =

✓
0 0
0 n

◆
, U0 =

✓
0 im
im 0

◆
, n,m 2 R+, n2 + m2 = 1, (A.2)

starting from the assumptions (i)–(v) of Section 2. According to assumption (v) we show that for the
internal dimension ⇤ = 1 there are not admissible non trivial (non-identical) automata. Then we
show that for ⇤ = 2 there exist non trivial solutions and that they are all unitarily equivalent to
the one given in Eq. (19). Here, for convenience of the reader, we report the unitarity conditions (see
Eq. (16))

U1UÑ
1 + U�1UÑ

�1 + U0UÑ
0 = I, (A.3)

U0UÑ
1 + U�1UÑ

0 = 0, (A.4)

U�1UÑ
1 = 0, (A.5)

and the parity and time reversal covariance condition (see Eqs. (17) and (18))

PU±1PÑ = U⌥1, PU0PÑ = U0, (A.6)

TU±1TÑ = UÑ
⌥1, TU0TÑ = UÑ

0, (A.7)

for some unitary P and anti-unitary T operators.9

A.1. ⇤ = 1

For⇤ = 1, the transition matrices are just complex numbers, say

U1 = ei✓ , U�1 = ei✓
0
, U0 = ei✓

00
. (A.8)

In this case the unitarity constraints Eqs. (A.3), (A.4), and (A.5) lead to only three possible solutions

U1 = ei✓ ,U0 = U�1 = 0, U�1 = ei✓ ,U0 = U1 = 0, U0 = ei✓ ,U1 = U�1 = 0, (A.9)
with ✓ 2 [0, 2⇡ ]. Modulo a global phase, the above solutions correspond respectively to the right-
shift (U = S1), the left-shift (U = S�1) and the identical (U = I) automaton. Since in the right- and the
left-shift solutions only one of the two transition matrices U1, U�1 is not null, parity covariance (A.7)
cannot be satisfied and we are left with the trivial solution corresponding to the identical automaton.

9 Any anti-unitary operator T is given by T = CU, where U is a unitary operator and C is the complex conjugation operator
(given a basis {|↵ii} of a Hilbert space H and an arbitrary vector |↵i = P

ci|↵ii it is C(Pi ci|↵ii) = P
i c

⇤
i |↵ii). Here we briefly

recall the reason why the time reversal symmetry T, interchanging the forward and backward light-cones (t, x) ! (�t, x),
cannot be represented by a unitary but by an anti-unitary operator. Take an eigenstate of the automaton |sik , with U(k)|sik =
eiH(k)|sik = e�is!|sik , and consider the two states | i1 = Te�is!t |sik and | i2 = eis!tT|sik . In the first case the state is evolved
forward in time and then the time reversal is applied, in the second case we first act with the time-reversal operator and then
evolve backward in time the state. If T is a symmetry of the Dirac theory the two operations must commute and one gets
| i1 = | i2 ) Te�is!t |sik = eis!tT|sik , which shows the non-linear action of the T operator.



A. Bisio et al. / Annals of Physics 354 (2015) 244–264 259

A.2. ⇤ = 2

For⇤ = 2 the three transition matrices can be generally parametrized as follows

U1 =
✓
a b
c d

◆
, U�1 =

✓
a0 b0
c 0 d0

◆
, U0 =

✓
x y
z w

◆
, (A.10)

with all entries arbitrary complex numbers.
Now we can fix the basis where P and T in Eqs. (A.6) and (A.7) are represented as

P =
✓
0 1
1 0

◆
, T = C

✓
0 1
1 0

◆
, (A.11)

where C is the anti-unitary operator denoting complex conjugation in the given representation.
Indeed without loss of generality we can fix the representation (which fix a basis) for one of the two
symmetries, say parity. Once parity is givenwe have to represent time reversal in the same basis, with
different choices leading in general to non unitary equivalent solutions. However, assuming [P, T] = 0
as it is in the usual QFT (we do not consider the more general scenario where the two operators do
not commute), and discarding the trivial case where T / I , we are left with the representation of
Eq. (A.11).

In the representation (A.11) the parity covariance (A.6) of the automaton gives

U1 =
✓
a b
c d

◆
, U�1 =

✓
d c
b a

◆
, U0 =

✓
x y
y x

◆
, (A.12)

while from the time time-reversal covariance (A.7) it follows

U1 =
✓
a b
b d

◆
, U�1 =

✓
d b
b a

◆
, U0 =

✓
x y
y x

◆
. (A.13)

Eq. (A.6) shows that U1 and U�1 are unitarily equivalent (they are related by conjugation with the
unitary operator P), and from the condition U�1UÑ

1 = 0 in (A.5) it follows that they are both rank one.
Accordingly, without loss of generality, we can always write the two transition matrices as follows

U1 =
✓

a b
⌘a ⌘b

◆
, U�1 =

✓
⌘b ⌘a
b a

◆
, (A.14)

for some ⌘ 2 C. Now we consider separately the two cases ⌘ = 0, and ⌘ 6= 0.
(⌘ = 0) From the time reversal invariance (18), more precisely from TU1TÑ = UÑ

�1, it follows
b = 0. Using this result the unitarity condition (A.4) gives the two equalities xa⇤ = ax⇤ = 0 and
ya⇤ +ay⇤ = 0. Since the case a = 0 is trivial (U1 = U�1 = 0) it follows x = 0 and<(ay⇤) = 0. Finally,
using the unitarity condition (16) we get |a|2 + |y|2 = 1 that, up to a global phase, gives the unique
solution

U(k) =
✓
neik �im
�im ne�ik

◆
, n,m 2 R, n2 + m2 = 1. (A.15)

The constants n and m in the last equation can be chosen positive since a change in the relative sign
is obtained by a unitary conjugation with the matrix

⇣
0 �i
i 0

⌘
.

(⌘ 6= 0) Noticing that for Eq. (A.13) it must be ⌘a = b we have

U1 =
✓
b/⌘ b
b ⌘b

◆
, U�1 =

✓
⌘b b
b b/⌘

◆
, (A.16)

and using again the condition U�1UÑ
1 = 0 in (16), with U±1 as in Eq. (A.16), we get the constraints

|b|2(⌘/⌘⇤ + 1) = |b|2(⌘ + ⌘⇤) = 0. (A.17)



260 A. Bisio et al. / Annals of Physics 354 (2015) 244–264

Since the case b = 0 is trivial, we take b 6= 0 in which case (A.17) implies <(⌘) = 0, say

U1 =
✓�ib/⇠ b

b i⇠b

◆
, U�1 =

✓
i⇠b b
b �ib/⇠

◆
, (A.18)

for some ⇠ 2 R and with ⇠ 6= 0. Using the unitarity conditions (A.3) and (A.4) we get respectively the
equalities

|x|2 + |y|2 + |b|2(1 + ⇠ 2 + 1/⇠ 2) = 1, (A.19)

xy⇤ + yx⇤ = 0, (A.20)

and

yb⇤ � by⇤ = yb⇤ + by⇤ = 0 (A.21)

xb⇤ + bx⇤ = xb⇤ + ⇠ 2bx⇤ = 0. (A.22)

Since Eq. (A.21) implies both y = pb and y = iqb for some p, q 2 R, and b 6= 0 by hypothesis, it must
be y = 0. Moreover, due to Eq. (A.20) which gives x = iry for some r 2 R, we get x = 0 proving that
the transition matrix U0 is the null matrix. Using Eq. (A.19) we find

(⇠ 2 + 1)2

⇠ 2
|b|2 = 1 ) b = ei✓

⇠

⇠ 2 + 1
(A.23)

with ✓ 2 R and the general solution for ⌘ 6= 0, up to a global phase, is finally given by

U(k) =

0

BB@

i
⇠ 2

⇠ 2 + 1
eik � i

1
⇠ 2 + 1

e�ik ⇠

⇠ 2 + 1
(eik + e�ik)

⇠

⇠ 2 + 1
(eik + e�ik) i

⇠ 2

⇠ 2 + 1
e�ik � i

1
⇠ 2 + 1

eik

1

CCA . (A.24)

Now we observe that the dispersion relation of the solutions (A.15) and Eq. (A.24), corresponding
respectively to the cases ⌘ = 0 and ⌘ 6= 0, are given by

!⌘=0(k) = arccos(n cos(k)), !⌘ 6=0(k) = arccos
⇣
⇠2�1
⇠2+1 cos(k)

⌘
, (A.25)

which coincide upon the identification n = ⇠2�1
⇠2+1 (this is always possible because both n and ⇠2�1

⇠2+1 are
real numbers smaller or equal to one). Since the automata in Eqs. (A.15) and (A.24) have the same
dispersion relation they have the same eigenvalues e±i! and are then unitarily equivalent.

Appendix B. Proof of the bound (30)

In this appendix we detail the proof of the bound (30) in Section 3 which provides the probability
of optimal error probability in discriminating the Dirac automaton and the usual Dirac evolution. The
discrimination experiment can have a generic duration t and the unitary operators to be discriminated
are explicitly given by

Ut(k) = exp(�iH(k)t) =
0

B@
cos(!t) + i

sin(!t)
!

a �ib
sin(!t)
!

�ib
sin(!t)
!

cos(!t) � i
sin(!t)
!

a

1

CA

a := !

sin(!)
n sin(k) b := !

sin(!)
m

(B.1)

Ut
D(k) = exp(�iHD(k)t) =

0

B@
cos(�t) + i

sin(�t)
�

k �im
sin(�t)
�

�im
sin(�t)
�

cos(�t) � i
sin(�t)
�

k

1

CA , (B.2)
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as can be easily verified by direct computation using the Hamiltonians in Eqs. (21) and (25). The proof
of the bound (30) goes through the following three lemmas.

Lemma 1. Let Ut
D(k) and Ut(k) be defined according to Eqs. (B.1), (B.2) and let us define V(k, t) =

Ut
D(k)UtÑ(k). Let eiµ(k,m,t) be an eigenvalue of V(k, t). Then the following bound holds:

cos(µ(k,m, t)) � cos(↵t) � � (B.3)

where

↵(k,m) := !D � !

�(k,m) := 1
2

✓
1 � vvD �

q
(1 � v2)(1 � v2

D)

◆
.

(B.4)

Proof. Since bothUt
D(k) andUtÑ(k) are SU(2)matrices, we have that V(k, t) is an SU(2)matrix and its

eigenvalues must be of the form eiµ(k,m,t) and e�iµ(k,m,t). This implies the equality cos(µ(k,m, t)) =
1
2Tr[V(k, t)] which by direct computation gives

cos(µ(k,m, t)) =
✓
1 � �

2

◆
cos(↵t) + �

2
cos(� t) (B.5)

where ↵ and � are defined accordingly with Eq. (B.4) and � := !+!D. Finally, from Eq. (B.5) one has
the bound cos(µ(k,m, t)) � cos(↵t) � � . ⌅

The second lemma shows the monotonicity of the two functions ↵,� in Lemma 1:

Lemma 2. Let ↵(k,m) and �(k,m) be defined as in Eq. (B.4) and 0  k̄ < ⇡ . Then we have

↵̄ := max
k2[�k̄,k̄]

|↵| = max
k2{0,k̄}

|↵|
�̄ := max

k2[�k̄,k̄]
|�| = max

k2{0,k̄}
|�| 8m 2 [0, 1]. (B.6)

Proof. Since both ! and !D are even functions of k, from Eq. (B.4) we have that also ↵ and � are even
function of k. For this reason we can restrict to k 2 [0, k̄]. The equality (B.6) can be proved by showing
that ↵ and � are nondecreasing functions of k for k 2 [0, k̄].

Since @k↵ = vD � v, clearly v2
D � v2 � 0 for k 2 [0,⇡) implies @k↵ � 0 in the same interval. By

direct computation one can verify that

(vD)
2 � (v)2 = x(k,m)

y(k,m)
(B.7)

x(k,m) := k2 � sin2(k)(1 � m2) (B.8)

y(k,m) := (k2 + m2)(sin2(k) + m2 cos2(k)). (B.9)

Clearly we have y(k,m) � 0 and since k � sin(k) for 0  k < ⇡ , the thesis is proved.
Again the monotonicity of � for k 2 [0,⇡) follows from @k� � 0 in the same interval. By elemen-

tary computation we have

@k� = x(k,m)y(k,m)z(k,m) (B.10)

x(k,m) := m2

!D sin2(!)
(B.11)

y(k,m) := (n sin(k) � k) (B.12)

z(k,m) := n cos(k)
sin2(!)

� 1
!2

D
. (B.13)
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Clearly x(k,m)y(k,m)  0 for k 2 [0,⇡) and we just have to verify that z(k,m)  0 in that interval,
namely

m2 cos2(k) + sin2(k) � n cos(k)!2
D � 0. (B.14)

The last equation is clearly satisfied for k 2 [⇡/2,⇡] therefore we restrict to k 2 [0,⇡/2]. This allows
to divide the left side of Eq. (B.14) by cos(k) achieving

m2 cos(k) + sin2(k)
cos(k)

� n!2
D � 0 (B.15)

which is satisfied if

w(k,m) := m2 cos(k) + sin2(k) � n!2
D � 0. (B.16)

It is easy to see that, for any m 2 [0, 1], we have
⇣
@

(i)
k w(k,m)

⌘

k=0
= 0 for i = 0, 1, while

@
(2)
k f (k,m) � 0 for any k 2 [0,⇡/2], which gives the monotonicity of � . ⌅

Lemma 3. Let 0  k̄ < ⇡ , N̄ be a positive integer number, and ↵̄, �̄ be defined as in Eq. (B.6). If �̄ 
1 � cos( ⇡2N̄ ) and t  f (k̄,m, N̄) where

f (k̄,m, N̄) :=
arccos

⇣
cos

⇣
⇡
2N̄

⌘
+ �̄

⌘

↵̄
(B.17)

then

N̄µ(k,m, t)  g(k̄,m, N̄, t)  ⇡

2
(B.18)

where g(k̄,m, N̄, t) := N̄ arccos
�
cos(↵̄t) � �̄

�
.

Proof. The conditions t  f (k̄,m, N̄) and �̄  1 � cos( ⇡2N̄ ) imply

0  ↵̄t  arccos
✓
cos

✓
⇡

2N̄

◆
+ �̄

◆
) 1 � cos(↵̄t) � �̄ � cos

✓
⇡

2N̄

◆

) cos(↵t) � � � cos(↵̄t) � �̄ � cos
✓
⇡

2N̄

◆
. (B.19)

By exploiting the bound (B.3) into Eq. (B.19) we have

cos(µ(k,m, t)) � cos(↵̄t) � �̄ � cos
✓
⇡

2N̄

◆
) N̄µ(k,m, t)

 N̄ arccos
�
cos(↵̄t) � �̄

�  ⇡

2
. ⌅ (B.20)

We are now ready to prove the bound (30).

Proposition 1. Let Ut and Ut
D be the unitary evolutions given by the Dirac QCA and by the Dirac equation

respectively. If the hypothesis of Lemma 3 holds we have

sup
⇢2Tk̄,N̄

k(Ut⇢UtÑ � Ut
D⇢U

tÑ
D )k1 

q
1 � cos2(g(k̄,m, N̄, t)). (B.21)
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Proof. First we notice that thanks to the convexity of the trace distance we can without loss
of generality consider ⇢ to be pure. If ⇢ is a pure state |�ih� | the trace distance becomesq
1 � |h� |UtUtÑ

D |�i|2 = p
1 � |h� |V (t)|�i|2. If we expand |�i on a basis of eigenstates of V , i.e.

|�i = P
N,k,s

ppN,k,s|N, k, si, we have

|h� |V (t)|�i| =
�����
X

N,k,s
pN,k,s exp

 

i
NX

j=0

sjµ(kj,m, t)

!�����

�
�����
X

N,k,s
pN,k,s cos

 
NX

j=0

sjµ(kj,m, t)

!����� . (B.22)

By exploiting the bound (B.18) into Eq. (B.22) we have
�����
X

N,k,s
pN,k,s cos

 
NX

j=0

sjµ(kj,m, t)

!�����

2

� cos2(g(k̄,m, N̄, t))

which finally implies
p
1 � |h� |V (t)|�i|2 

q
1 � cos2(g(k̄,m, N̄, t)). ⌅

Inserting the bound (B.21) into Eq. (28) we finally have the bound (30).

Appendix C. Derivation of Eq. (43)

Here we evaluate the overlap between the exact automaton evolution | (t)i and the dispersive
differential equation approximation | ̃(t)i

|h ̃(t)| (t)i| =
����

Z ⇡

�⇡
dk
2⇡

e�i(!(3)
k0

k3+O(k4))t |g(k, 0)|2
����

�
����
1
2⇡

Z k0+�

k0��
dk e�i(!(3)

k0
k3+O(k4))t |g(k, 0)|2

����

�
����
1
2⇡

Z

|k�k0|��
dk e�i(!(3)

k0
k3+O(k4))t |g(k, 0)|2

����

�
�����1 � it

!
(3)
k0 �

3

2⇡

Z k0+�

k0��
dk |g(k, 0)|2 � O(� 5)t

������ ✏

� 1 � ✏ � � � 3t � O(� 5)t

with the constant � = !
(3)
k0
2⇡

R k0+�
k0�� dk |g(k, 0)|2.
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