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Abstract
Quantum tomography is the process of reconstructing the ensemble average
of an arbitrary operator (observable or not, including the density matrix),
which may not be directly accessible by feasible detection schemes, starting
from the measurement of a complete set of observables i.e. a quorum. The
measurement of a quorum thus represents a complete characterization of the
quantum state. The operator expression in terms of a quorum corresponds to an
expansion on an irreducible set of operators in the Liouville space. We give two
general characterizations of these sets, and show that all the known quantum
tomographies can be described in this framework. New operatorial resolutions
are also given that may be used in novel reconstruction schemes.

PACS numbers: 0530C, 0220, 0367

1. Introduction

In order to characterize a quantum system, one can measure an observable, or a set of
observables, on repeated identical preparations of the system. A question immediately arises:
is this set a quorum, i.e. is it sufficient to give a complete quantum information on the system?
In other words, is it possible to estimate the expectation values of any system operator? This
issue is of a great practical interest for fundamental experiments in quantum measurement
theory, as well as for a potential application as a quantum standard in the new field of quantum
information [1]. Indeed, the measurement of a quorum provides the determination of all the
quantities that may be of interest, including those not directly accessible by feasible detection
schemes.

Different tomographic1 methods have been proposed tailored to different systems, such
as the radiation field [4], trapped ions and molecular vibrational states [2,5], spin systems [6],
and a unified approach is desirable. For sets of operators that exhibit a group symmetry, a
general theory, the so-called ‘group tomography’, has been established [7]. However, not

1 Among the existing tomographic techniques for quantum systems, the so-called quantum homodyne tomography
of a single radiation mode has received much attention in the literature [2, 3]. In this paper, the term ‘tomography’ is
collectively used to denote any kind of state-reconstruction technique.
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all tomographic techniques can be described within a group-theoretical scheme, and the
purpose of this paper is to give a more general framework. As we will see, all the known
quantum tomographic methods can be embodied in the present approach. In addition, the
formalism presented here is useful for the derivation of new operatorial resolutions, which,
if a measurement scheme for the needed quorum is available, can be used for devising novel
tomographic techniques.

The paper is structured as follows. In section 2 we establish the general conditions for
a quorum of observables. Sections 3, 4 and 5 are devoted to examples of the tomographic
method, for the harmonic oscillator, general spin systems, and the free particle, respectively.
Section 6 closes the paper with a summary. We have included appendix A to reformulate the
theory in the familiar Dirac formalism, and appendix B to give a constructive algorithm for
deriving the tomographic basis for a finite-dimensional Hilbert space.

2. Quantum tomographic estimation

The indirect (tomographic) reconstruction of an operator A is possible when there exists a
resolution of the form

Â =
∫

X
dx Tr

[
Â B̂†(x)

]
Ĉ(x) (1)

where x is a (possibly multidimensional) parameter living on a (discrete or continuous)
manifold X . The only hypothesis in (1) is the existence of the trace. The operators Ĉ(x)
are functions of the quorum of observables measured for the reconstruction, whereas the
operators B̂(x) form the dual basis of the set Ĉ(x). The term

E[Â](x) = Tr
[
Â B̂†(x)

]
Ĉ(x) (2)

represents the quantum estimator for the operator Â. Indeed, the expectation value of Â,
namely the quantity of interest, is given by the ensemble average

〈Â〉 .= Tr
[
Â�̂

]
=

∫
X

dx Tr
[
Â B̂†(x)

]
Tr

[
Ĉ(x)�̂

]
≡

∫
X

dx〈E[Â](x)〉 (3)

where �̂ is the density matrix of the quantum system under investigation. The averaged
estimator in equation (3) is the product of two terms: the quantity Tr[Ĉ(x)�̂] depends only
on the quantum state, and it is related to the probability distribution of the measurement
outcomes, whereas the term Tr[Â B̂†(x)] depends only on the quantity to be measured. In
particular, the tomography of the quantum state of a system corresponds to writing equation
(1) for the operators Â = |k〉〈n|, {|n〉} being a given Hilbert space basis. For a given system,
the existence of a set of operators Ĉ(x), together with its dual basis B̂(x) allows universal
quantum estimation, i.e. the reconstruction of any operator.

We now give two characterizations of the sets B̂(x) and Ĉ(x) that are necessary and
sufficient conditions for writing equation (1).

Condition 1: bi-orthogonality. Let us consider a complete orthonormal set |n〉 (n = 0, 1, · · ·).
Formula (1) is equivalent to the bi-orthogonality condition∫

X
dx 〈q|B̂†(x)|p〉 〈m|Ĉ(x)|l〉 = δmpδlq (4)

where δij is the Kronecker delta. Equation (4) can be straightforwardly generalized to a
continuous basis.



Quorum of observables for universal quantum estimation 95

Condition 2: completeness. If the set of operators Ĉ(x) is irreducible, namely if any operator
can be written as a linear combination of the Ĉ(x) as

Â =
∫

X
dx a(x) Ĉ(x) (5)

then equation (1) is also equivalent to the trace condition

Tr
[
B̂†(x) Ĉ(y)

]
= δ(x, y) (6)

where δ(x, y) is a reproducing kernel for the set B̂(x), namely it is a function or a tempered
distribution which satisfies∫

X
dx B̂(x) δ(x, y) = B̂(y). (7)

One can easily see that an analogous identity holds for the set of C(x):∫
X

dx Ĉ(x) δ(x, y) = Ĉ(y). (8)

The proofs are straightforward. The irreducibility condition on the operators Ĉ(x) is essential
for the equivalence of (1) and (6). A simple counterexample is provided by the set of projectors
P̂ (x) = |x〉〈x| over the eigenstates of a self-adjoint operator X̂. In fact, equation (6) is satisfied
by P(x). However, since they do not form an irreducible set, it is not possible to express a
generic operator as Ô 
= ∫

X dx 〈x|Ô|x〉 |x〉〈x|.
If either the set B̂(x) or the set Ĉ(x) satisfy the additional trace condition

Tr
[
B̂†(y) B̂(x)

]
= δ(x, y) (9)

Tr
[
Ĉ†(y) Ĉ(x)

]
= δ(x, y) (10)

then we have Ĉ(x) = B̂(x) (notice that neither B̂(x) nor Ĉ(x) need to be unitary). In this
case, equation (1) may be rewritten as

Â =
∫

X
dx Tr

[
Â Ĉ†(x)

]
Ĉ(x). (11)

In abstract terms a certain number of observables Q̂x constitute a quorum when there
are functions fx(Q̂x) = Ĉ(x) such that C(x) form an irreducible set. Notice that if a set of
observables Q̂x constitutes a quorum, than the set of projectors |q〉xx〈q| over their eigenvectors
provides a quorum too, with the measure dx in equation (1) including the measure dq. Of
course, it is of interest to connect a quorum of observables to a resolution of the form (1),
since only in this case there can be a feasible reconstruction scheme. If a resolution formula is
written in terms of a set of self-adjoint operators, the set itself constitutes the desired quorum.
However, in general, a quorum of observables is functionally connected to the corresponding
resolution formula. If the operators Ĉ(x) are unitary, then they can always be considered as
the exponential of a set of self-adjoint operators, say Q̂x . The quantity Tr[Ĉ(x)�̂] is thus
connected with the moment generating function of the set Q̂x , and hence to the probability
density p(q; x) of the measurement outcomes, which play the role of the Radon transform of
the quantum tomography of the harmonic oscillator [8]. Here, the basic resolution formula
involves the set of displacement operators D̂(α) = exp[αa† − ᾱa], which may be viewed
as the exponential of the field-quadrature operators x̂φ = 1

2 (ae−iφ + a†eiφ). In general, the

operators Ĉ(x) can be any function (neither self-adjoint nor unitary) of observables and, even
more generally, they may be connected to positive operator-valued measures (POVMs) rather
than observables. In subections 3.3 and 3.4 we will see examples of this situation.
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3. Quantum tomography for harmonic systems

The harmonic oscillator (HO) model provides a detailed description of several systems of
interest in quantum mechanics, as the vibrational states of molecules, the motion of an ion
in a Paul trap and a single-mode radiation field. Different proposals have been suggested in
order to reconstruct the quantum state of a harmonic system. As we will see in the following
they can be summarized using the framework of the previous section, which is also useful for
devising novel tomographic techniques.

3.1. Quantum homodyne tomography

Perhaps the most famous tomographic technique is given by the so-called quantum homodyne
tomography [9]. Homodyne tomography applies to a single-mode radiation field as well as
to the vibrational state of a molecule or a trapped ion2, and consists of a set of repeated
measurements of the quadrature operator q̂φ = 1

2 (ae−iφ + a†eiφ) at different values of the
reference phase φ. For homodyne tomography, the relevant operatorial resolution is provided

by the set of (irreducible) displacement operators D̂(α) = exp
(
αa† − ᾱa

)
, α ∈ C. In fact,

for the displacements equations (6) and (10) hold since

Tr[D̂(α)D̂†(β)] = πδ(2)(α − β) (12)

and equation (11) reduces to the Glauber formula

Â =
∫

C

d2α

π
Tr

[
Â D̂†(α)

]
D̂(α). (13)

Changing to polar variables α = (i/2)keiφ , equation (13) becomes [3]

Â =
∫ π

0

dφ

π

∫ +∞

−∞

dk |k|
4

Tr(Â eikq̂φ ) e−ikq̂φ (14)

which shows explicitly the dependence on the quorum q̂φ . After taking the ensemble average
of both members, evaluating this trace over the set of eigenvectors of q̂φ , one obtains

〈Â〉 =
∫ π

0

dφ

π

∫ +∞

−∞
dq p(q;φ) R[Â](q;φ) (15)

where p(q;φ) = φ〈q|�̂|q〉φ is the probability distribution of quadratures outcomes. The
tomographic kernel for the operator Â is given by

R[Â](q;φ) = Tr[Â K(q − q̂φ)] (16)

where the integral kernel K(z) is

K(z) = −1

2
P

1

z2
≡ − lim

ε→0+

1

2
Re

1

(z + iε)2
(17)

where P denotes the Cauchy principal value.
Using our condition (6) one can see that the Glauber formula can be generalized to

Â =
∫

C

d2α

π
Tr

[
Â F̂1D̂(α)F̂2

]
F̂−1

2 D̂†(α)F̂−1
1 (18)

where F̂1 and F̂2 are two generic invertible operators. By choosing F̂†
1 = F̂2 = Ŝ(ζ ) with the

squeezing operator

Ŝ(ζ ) = exp

[
1

2

(
ζ 2a†2 − ζ̄ 2a2

)]
ζ ∈ C (19)

2 For vibrational tomography the quadrature operator is a time-evolved position or momentum.
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we arrive at a different tomographic resolution

〈Â〉 =
∫ π

0

dφ

π

∫ +∞

−∞
dq pζ (q;φ) Tr

[
Â K̂[q − q̂φζ ]

]
(20)

in terms of the probability distribution of the generalized squeezed quadrature operators

q̂φζ = Ŝ†(ζ ) q̂φ Ŝ(ζ ) (21)

= 1

2

[
(µeiφ + νe−iφ)a† + (µe−iφ + ν̄eiφ)a

]
(22)

where µ = cosh |ζ | and ν = sinh |ζ | exp(2i arg[ζ ]). Such a tomographic technique has been
investigated in detail in [11].

3.2. Phase-space tomographic techniques

A different tomographic technique based on the generalized Glauber formula (18) may be

obtained by putting F̂1 = Î , the identity operator, and F̂2 = (−)a†a , the parity operator. In
this case one gets

Â =
∫

C

d2α

π
Tr

[
Â D̂†(α)(−)a†a

]
(−)a†aD̂(α) (23)

and therefore changing variable to α = 2β and using the relation (−)a†aD̂(2β) =
D̂†(β)(−)a†aD̂(β), we get

〈Â〉 =
∫

C

d2β

π
Tr

[
Â 4D̂†(β)(−)a†aD̂(β)

]
Tr

[
D̂(β) �̂ D̂†(β) (−)a†a

]
. (24)

Equation (24) states that it is possible to estimate a HO operator Â by repeated measurement
of the parity operator on displaced versions of the state under investigation. An approximated
implementation of this technique for a single-mode radiation field has been suggested [12,13]
through the measurement of the photon number probability on signals displaced by means
of a beam splitter. A similar schemes has been used for the experimental determination of
the motional quantum state of a trapped atom [14]. The advantage of (24) compared to the
approximated methods is in the possibility of directly obtaining the kernel K[Â](α) for any
operator Â for which the trace exists. For instance, the reconstruction of the density matrix in
the Fock representation may be obtained by averaging the kernel

K[|n〉〈n + d||](α) = 〈n + d|4 D̂†(α)(−)a†aD̂(α)|n〉 (25)

= 4 (−)n+d exp{−2|α|2}
√

n!

(n + d)!
(2α)d Ldn(4|α|2) (26)

without the need of artificial cut-off in the Fock space [14].

3.3. Nonlinear phase tomography

Let us now consider the set of self-adjoint operators given by

B̂(ψ, φ) = V̂ †(ψ) µ(φ) V̂ (ψ) ψ, φ ∈ [0, 2π) (27)

where µ(φ) is the canonical London’ POVM describing the ideal measurement of the HO
phase and V̂ (ψ) describes a nonlinear phase-shift, namely

µ(φ) = |eiφ〉〈eiφ|
V̂ (ψ) = exp

[
i (a†a)2ψ

] (28)



98 G M D’Ariano et al

where |eiφ〉 = ∑
n einφ|n〉 is the Susskind–Glogower vector. For a single-mode radiation field

the action of V̂ (ψ) corresponds to a nonlinear Kerr interaction, whereas for a trapped ion it
could be obtained by laser excitation of vibronic levels [15].

One may argue that the measurement of the operators B̂(ψ, φ) provides a complete
characterization of the state under investigation. This is indeed the case with B(ψ, φ) as
a self-dual basis, as can be easily proved using the bi-orthogonality condition (4)∫ 2π

0

∫ 2π

0

dφ

2π

dψ

2π
〈m|B̂(ψ, φ)|l〉 〈q|B̂(ψ, φ)|p〉 = δp2−q2,m2−l2 δp−q,l−m = δmpδlq . (29)

The kernel for the operator Â is obtained from equation (3)

K[Â](φ, ψ) = Tr
[
Â B̂(φ, ψ)

]
. (30)

In particular, the kernel K[P̂nd ](φ, ψ) for the matrix elements is given by

K[P̂nd ](φ, ψ) = 〈n + d|B̂(φ, ψ)|n〉 = exp
[
iψ(d2 + 2nd) + iφd

]
. (31)

Notice that, for diagonal matrix elements, equation (31) needs a regularization procedure. In
fact, the kernel for the projector P̂nn is given by

Kε[P̂nn](φ, ψ) = exp [i2ψnε + iφε] (32)

with the limit ε → 0 that should be taken after the average over the probability density
p(φ,ψ) = Tr[�̂ B̂(φ, ψ)]. A similar procedure should be employed for the reconstruction of
any operator which is a function of the number operator a†a only.

The nonlinear ‘phase tomography’ presented in this section represents a novel resolution
formula for harmonic oscillator operators. The corresponding reconstruction technique is
based on an ideal phase measurement of the Kerr-displaced state. Hence, in this scheme the
quorum is a POVM.

3.4. A nonunitary resolution formula

In this section we present a resolution formula in term of nonunitary operators and show how its
implementation would correspond to a generalized measurement, i.e. a POVM. The operators
R̂n(φ) with n ∈ Z and φ ∈ [0, 2π) are defined as follows:

R̂n(φ) =

 en+ eia†aφ n � 0

e−n− eia†aφ n � 0

R̂†
n (φ) =


 e−ia†aφ en− n � 0

e−ia†aφ e−n+ n � 0

(33)

where e− = ∑
n |n + 1〉〈n| and e+ = ∑

n |n〉〈n + 1| are the so-called lowering and raising

operators for the harmonic oscillator. The operators R̂n(φ) are not unitary; however, R̂†
n (φ)

plays the role of a dual basis for R̂n(φ). This can be easily seen using condition (6); for
instance, we have

Tr
[
R̂

†
k (ψ) R̂n(φ)

]
n,k>0= Tr

[
e−ia†aψ ek− e

n
+ eia†aφ

]

=
∑
p

eip(φ−ψ) δp+n,p+k = δnk δ(φ − ψ) (34)
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and similarly for the other cases. As a consequence, a generic operator Â may be written as

Â =
∑
n∈Z

∫ π

−π

dφ

2π
Tr

[
Â R̂†

n (φ)
]
R̂n(φ). (35)

For estimating HO operators one needs a recipe to obtain the expectation value of R̂n(φ).
Using a resolution of identity in terms of phase vectors |eiφ〉

Î =
∫ π

−π

dφ

2π
|eiφ〉〈eiφ| (36)

one evaluates the traces as

Tr
[
�̂ R̂q(ψ)

]
=




∫ π

−π

dφ

2π
e−iqφ 〈φ − ψ |�̂|φ〉 q � 0

∫ π

−π

dφ

2π
eiq(φ+ψ) 〈φ|�̂|φ + ψ〉 q � 0.

(37)

Equation (37) implies that the knowledge of 〈R̂n(φ)〉 is equivalent to that of the density matrix
in the phase representation.

4. Quantum tomography in spin systems

The recently born spin tomography [6, 7] allows to reconstruct the quantum state of a spin s
system. It employs measurements of the spin component in different directions, i.e. it uses as
quorum the set of operators S · n, where S is the spin operator and n is a unit vector. Various
different quora may be constructed by exploiting different directions.

The easiest choice is to consider all possible directions. The procedure to derive the
tomographic formulas for this quorum is analogous to the one employed in subsection 3.1 for
homodyne tomography. The reconstruction formula for spin tomography for the estimation of
an arbitrary operator Â, using the measurement outcomes m of the component of the spin in
all directions n

.= (cosϕ sin ϑ, sin ϕ sin ϑ, cosϑ), is

〈Â〉 =
s∑

m=−s

∫
3

dn

4π
p(m,n) R[Â](m,n) (38)

where p(m,n) is the probability of obtaining the eigenvalue m when measuring S · n,
R̂[Â](m,n) is the tomographic kernel for the operator Â, and 3 is the unit sphere. In this
case the operators Ĉ of equation (1) are given by the set of projectors over the eigenstates
|m,n〉 of the operators S · n for all directions n. Notice that this is a set of irreducible
operators in the system Hilbert space H. In order to find the dual basis B̂, one must consider the
unitary operators obtained by exponentiating the quorum, i.e. D̂(ψ,n) = exp(iψS ·n), which
satisfy the bi-orthogonality condition (4). In fact, D̂(ψ,n) constitutes a unitary irreducible
representation of the group SU(2), and the bi-orthogonality condition is just the orthogonality
relations between the matrix elements of the group representation [10], i.e.∫

R

dg D̂jr (g)D̂
†
tk(g) = V

d
δjkδtr (39)

where D̂ is a unitary irreducible representation of dimension d, dg is the group Haar invariant
measure, and V = ∫

R
dg. For SU(2), with the 2s + 1 dimension unitary irreducible
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representation D̂(ψ,n), Haar’s invariant measure is sin2 ψ

2 sin ϑ dϑ dϕ dψ , and V
d

= 4π2

2s+1 .
Thus, the bi-orthogonality condition is

2s + 1

4π2

∫
3

dn

∫ 2π

0
dψ sin2 ψ

2
〈j |eiψn·S |r〉〈t |e−iψn·S |k〉 = δjkδtr . (40)

Using equation (40) and condition 1 (bi-orthogonality), we can immediately write the spin
tomography identity as

Â = 2s + 1

4π2

∫
3

dn

∫ 2π

0
dψ sin2 ψ

2
Tr

[
ÂD̂†(ψ,n)

]
D̂(ψ,n). (41)

Notice the strict analogy between equation (41) and Glauber’s formula (13), which derives from
the group symmetry that underlies both homodyne tomography (Weyl–Heisenberg group) and
spin tomography (SU(2) group). In fact, both these tomographies may be derived in the domain
of group tomography [7]. In order to obtain the reconstruction formula (38), one only has to
take the expectation value of both members of equation (41) and to evaluate the expectation
value trace on the eigenstates |m,n〉 of S · n. Thus, the explicit form of the tomographic
kernel is obtained as

R[Â](m,n) = 2s + 1

π

∫ 2π

0
dψ sin2 ψ

2
Tr

[
Â e−iψ(S·n−m)

]
. (42)

As already anticipated, there are other possible quora for spin tomography. For example,
for spin s = 1

2 systems, a self-dual basis for the operator space is given by the Pauli matrices and

the identity { 1√
2
σ̂x,

1√
2
σ̂y,

1√
2
σ̂z,

1√
2
1̂}. Hence, we would expect to find a tomographic identity

where the above operators constitute a quorum. In fact, from the property σ̂α · σ̂α′ = 1̂δαα′

(α, α′ = x, y, z), it is immediately obvious that both the bi-orthogonality relation (4) and the
trace condition (6) hold. The following reconstruction formula for an arbitrary 2 × 2 matrix
Â derives

〈Â〉 =
1
2∑

m=− 1
2

∑
α=x,y,z

p(m,nα) Tr
[
Âσ̂α

]
m +

1

2
Tr

[
Â

]
. (43)

In the case of generic s spin system, Weigert has shown [6] that it is possible, by
choosing (2s + 1)2 arbitrary directions for n, to obtain (in almost all cases) a quorum of
projectors |s,nj 〉〈s,nj | (j = 1, · · · , (2s + 1)2), where |s,nj 〉 is the eigenstate pertaining to
the maximum eigenvalue s of S ·nj . The search for the co-basis is done numerically, but since
we have a discrete quorum, it is possible to use the procedure derived from the Gram–Schmidt
orthogonalization method, as presented in appendix B.

5. Quantum state of a free particle

Can we infer the state of a moving packet from position measurement in time? The answer is
positive, as can be rigorously proved using our condition (4). The probability density of the
position of a free particle at the time τ is obtained from the self-adjoint operator

R̂(x, τ ) = e−ip̂2τ |x〉〈x| eip̂2τ (44)

where |x〉 are eigenstates of the position operator and p̂ is the momentum operator. We suppose
for simplicity a particle with unit mass and use the normalized unit h̄/2 = 1, such that the free
Hamiltonian is given by ĤF = p̂2. The dual basis is constituted by the set of operator R̂(x, τ )
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themselves, as follows from equation (4) and from the following relations (|j〉, j = a, b, c, d

denote position eigenstates)∫
R

∫
R

dx dτ 〈a|R̂(x, τ )|b〉 〈c|R̂(x, τ )|d〉

=
∫

R

∫
R

dx dτ e−iτ(b2−a2+c2−d2) 〈a|x〉〈x|b〉 〈c|x〉〈x|d〉

=
∫

R

∫
R

dx dτ e−iτ(b2−a2+c2−d2) eix(a−b+c−d)

= δ(a − c) δ(b − d). (45)

Therefore, a generic free particle state can be written as

�̂ =
∫

R

∫
R

dx dτ p(x, τ ) R̂(x, τ ) (46)

where p(x, τ ) = Tr[�̂ R̂(x, τ )] is the probability density of the particle being at position x
at time τ . Equation (46) can be generalized to a particle moving in an arbitrary potential, for
details see [16].

6. Summary

A general framework for describing universal quantum estimation methods has been presented.
Some general conditions that guarantee that a set of observables is sufficient for the estimation
have been given. A constructive algorithm to derive a dual basis, and therefore quantum
estimators, is suggested for the finite-dimensional case. Our framework allows us to describe all
known quantum tomographies for a single-mode radiation field, trapped ions, vibrational states
of molecules and spin systems. Moreover, using our characterizations, some new tomographic
resolutions have been derived. These may be used to implement novel tomographic techniques,
provided the corresponding quorum is measurable directly or through a generalized detection
scheme (i.e. a POVM).
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Appendix A. Liouville space formulation

In this section we reformulate the general scheme of quantum tomography, given in section 2,
by making use of the properties of the linear space of operators acting on the system Hilbert
space H, i.e. the Liouville space L(H). This may result in a more convenient visualization of
of our conditions 1 and 2, since the customary Dirac notation can be used. The Liouville space
is built starting from the set of operators of Hilbert–Schmidt type, which is itself a Hilbert
space, with the scalar product

〈Â|B̂〉 .= Tr
[
Â† B̂

]
. (A.1)

Using Dirac formalism on the operator Hilbert space, we find that kets are the operators of
L(H), i.e. Ô

.= |Ô〉, while bras are obtained with the substitution Tr[ � Ô†]
.= 〈Ô| � . The

space of operators may be extended by considering non-normalizable vectors in L(H). Using
Dirac notation, we can rewrite all the formulas introduced so far. The generalized tomography
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formula (1) corresponds to the expansion of the vector |Â〉 on the non-orthogonal basis |Ĉ(x)〉,
that will be referred to as a ‘spanning set’, and on its dual 〈B̂(x)| (x ∈ X ), i.e.

|Â〉 =
∫

X
dx |Ĉ(x)〉〈B̂(x)|Â〉. (A.2)

In this framework, conditions 1 and 2 represent, respectively, the identity resolution for the
spanning set and the definition of the dual vectors 〈B̂(x)| of the set |Ĉ(x)〉. In fact, we can
readily rewrite equations (4) and (6) as3∫

X
dx |Ĉ(x)〉〈B̂(x)| = ˆ̂1 (A.3)

〈B̂(x)|Ĉ(y)〉 = δ(x, y). (A.4)

The linear structure of the Liouville space provides a necessary and sufficient condition
to verify that a set of operators is a quorum. A set of vectors |Ĉ(x)〉, such that 〈B̂(x)|Ĉ(y)〉 =
δ(x, y) ∀x, is a spanning set (with 〈B̂(x)| as dual set) iff the only operator |Ô〉 ∈ L(H) that is
orthogonal to all |Ĉ(x)〉s is the null operator, i.e. iff the two equivalent conditions

〈Ô|Ĉ(x)〉 = Tr
[
Ô†Ĉ(x)

]
= 0

〈B̂(x)|Ô〉 = Tr
[
B̂†(x)Ô

]
= 0

(A.5)

(for any x ∈ X ) imply that Ô = 0.
In addition to the reconstruction of operators acting on the system Hilbert space H, one

can extend the formalism also to the reconstruction of super-operators acting on the system
operator space. A typical example is the Liouvillian super-operator that evolves the system
density operator into a density operator. In fact, by introducing two resolutions of the identity

in the operator space, one can express any super-operator ˆ̂L in terms of its ‘matrix elements’

〈B̂(x)| ˆ̂L|Ĉ(y)〉 on a basis for L(H), i.e.

ˆ̂L =
∫

X
dx

∫
X

dy |Ĉ(x)〉〈B̂(x)| ˆ̂L|Ĉ(y)〉〈B̂(y)|. (A.6)

By taking a basis {|n〉} of H, equation (A.6) becomes

Lklmp = 〈k| ˆ̂L [|m〉〈l|] |p〉
=

∫
X

dx
∫

X
dy Tr

[
Ĉ(x)|p〉〈k|

]
Tr

[
B̂(y)|m〉〈l|

]
Tr

[
B̂(x)

ˆ̂L[Ĉ(y)]
]
. (A.7)

Appendix B. Orthogonalization procedure

Here we give an algorithmic procedure, usable in the case of finite quora, to construct the set of
dual operators 〈B̂n| of the quorum |Ĉn〉. Using the Gram–Schmidt orthogonalization method,
one obtains a basis |yk〉 from a complete set of vectors |Ck〉 (assume for simplicity that all |Ck〉
3 Equation (A.3) is readily obtained from equation (4) by introducing the identity super-operator, defined as ˆ̂1[Â]

.= Â

for any Â ∈ L(H). In fact, by using the basis {|n〉} for H, we see that

〈k| ˆ̂1 [|m〉〈l|] |p〉 = δmkδlp.
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are non-zero and that in {|Ck〉} there are no couples of proportional vectors):

|y0〉 .= 1

N0
|C0〉

|yk〉 .= 1

Nk

(
|Ck〉 −

k−1∑
j=0

|yj 〉〈yj |Ck〉
) (B.1)

where N0
.=‖ |C0〉 ‖ and Nk

.=‖ |Ck〉 − ∑k−1
j=0 |yj 〉〈yj |Ck〉 ‖. Now, by writing the identity

resolution

1̂ =
∑
k=0

|yk〉〈yk| ≡ |C0〉
N0

〈y0| +
∑
k=1

1

Nk

(
|Ck〉 −

k−1∑
j=0

|yj 〉〈yj |Ck〉
)

〈yk| (B.2)

and using repeatedly equation (B.1) (expressing |yj 〉 of equation (B.2) in terms of the |Cn〉s
and reorganizing the terms) we can find the dual set 〈Bn| as

〈B0| = 〈y0|
N0

− 〈y0|C1〉〈y1|
N0N1

+

(
−〈y0|C2〉
N0N2

+
〈y0|C1〉〈y1|C2〉
N0N1N2

)
〈y2| + · · ·

〈B1| = 〈y1|
N1

− 〈y1|C2〉〈y2|
N1N2

+

(
−〈y1|C3〉
N1N3

+
〈y1|C2〉〈y2|C3〉
N1N2N3

)
〈y3| + · · ·

· · ·

(B.3)

Unfortunately no such a general procedure appears to exist for the case of a continuous
spanning set. Many cases,though, satisfy the conditions (9) and (10), and hence we can

write 〈B̂(x)| =
(
|Ĉ(x)〉

)†
.
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