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a b s t r a c t

We present a quantum theory of light based on the recent deriva-
tion of Weyl and Dirac quantum fields from general principles
ruling the interactions of a countable set of abstract quantum
systems, without using space–time and mechanics (D’Ariano and
Perinotti, 2014). In a Planckian interpretation of the discreteness,
the usual quantum field theory corresponds to the so-called rel-
ativistic regime of small wave-vectors. Within the present frame-
work the photon is a composite particle made of an entangled pair
of freeWeyl Fermions, and the usual Bosonic statistics is recovered
in the low photon density limit, whereas the Maxwell equations
describe the relativistic regime. We derive the main phenomeno-
logical features of the theory in the ultra-relativistic regime,
consisting in a dispersive propagation in vacuum, and in the occur-
rence of a small longitudinal polarization, along with a saturation
effect originated by the Fermionic nature of the photon. We then
discuss whether all these effects can be experimentally tested, and
observe that only the dispersive effects are accessible to the current
technology via observations of gamma-ray bursts.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

AQuantumCellular Automaton (QCA) describes an evolution step of a discrete set of abstract quan-
tum systems, each one unitarily interactingwith a bounded number of neighbors. Since the earlywork
of Feynman [1], which introduced QCAs for describing many body physics and quantum field dynam-
ics, QCAs have become increasingly popular in the theoretical physics community, starting from the

∗ Corresponding author at: Dipartimento di Fisica dell’Università di Pavia, via Bassi 6, 27100 Pavia, Italy.
E-mail address: alessandro.bisio@unipv.it (A. Bisio).

http://dx.doi.org/10.1016/j.aop.2016.02.009
0003-4916/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.aop.2016.02.009
http://www.elsevier.com/locate/aop
http://www.elsevier.com/locate/aop
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aop.2016.02.009&domain=pdf
mailto:alessandro.bisio@unipv.it
http://dx.doi.org/10.1016/j.aop.2016.02.009


178 A. Bisio et al. / Annals of Physics 368 (2016) 177–190

early works [2–4], followed by mathematical formalizations [5–8], applications to quantum compu-
tation [9–12] and quantum field theory QFT [13–16], and experimental implementations [17,18].

In the recent work [19] QCAs have been involved in a formulation of QFT starting from general
principles – such as homogeneity, locality, isotropy, and unitarity – ruling the interactions of a
countable set of abstract quantum systems. This theory assumes no mechanics, and as such it has no
space–time background, and is quantum ab initio, needing no quantization procedure. Remarkably,
mechanics and Lorentz covariance emerge from the interactions between the abstract quantum
systems. In the mentioned work, along with Refs. [20,21,19], we also assumed linearity of the
automaton evolution, which makes the automaton equivalent to a quantum walk, and leading to the
free QFT. In these papers the Weyl and Dirac field theories have been derived: the purpose of the
present paper is to complete the picture by including the Maxwell field.

In this paper we will see how the electromagnetic field emerges as the relativistic regime of
two Weyl QCAs of Ref. [19]. In the ultra-relativistic regime, however, the discreteness of the Planck
scale manifests itself in terms of deviations from Maxwell’s equations, most notably a wave-vector
dependent speed of light. Such a feature has already been considered in some approaches to quantum
gravity, and can be in principle experimentally detected in astrophysical observations [22–30]. In the
present approach the photon is an entangled pair of non interacting massless Fermions, a scenario
resembling the neutrino theory of light of De Broglie [31–36]. The latter theory has been discarded
because the composite particle does not obey the exact Bosonic commutation relations [37]. However,
as shown in Ref. [36], the non-Bosonic terms introduce negligible contribution at ordinary energy
densities, and, aswewill see in this paper, in our case the saturation effect originated by the Fermionic
nature of the photon is far beyond the current laser technology.

A quantum walk leading to Maxwell’s equations was constructed in Ref. [13], by a reverse-
engineering technique starting from differential equations. In the present approach we start from
two Weyl automata, and find Maxwell’s equations as the effective evolution of special entangled
pairs, in an appropriate regime. As a consequence, the present model of Maxwell field is not naturally
described by a quantum walk, and as such it is very different form the proposal of Ref. [13]. In the
present framework, free electrodynamics is recovered without any additional assumption as a special
regime of the Weyl QCA, thus emerging from the axioms discussed above. Moreover, this approach
allows us to solve the challenging issue of Bosonic statistics without assuming a Bosonic field in the
first place, as would be required in the approach of Ref. [13].

In Section 2, after recalling some basic notions about the QCA, we review the Weyl automaton of
Ref. [19]. In Section 3 we build a set of Fermionic bilinear operators, which in Section 4 are proved to
evolve according to the Maxwell equations. In Section 5 we will show that the polarization operators
introduced in Section 4 can be considered as Bosonic operators in a low energy density regime. As
a spin-off of this analysis we found a result that completes the proof, given in Ref. [38], that the
amount of entanglement quantifies whether pairs of Fermions can be considered as independent
Bosons. Section 6 presents the phenomenological consequences of the present QCA theory, the most
relevant one being the appearance of a k-dependent speed of light. In the same section we discuss
possible experimental tests of such k-dependence in the astrophysical domain, and we compare our
result with those from Quantum Gravity literature [22–30]. We conclude with Section 7 where we
review the main results and discuss future developments.

2. The Weyl automaton: a review

The basic ingredient of the Maxwell automaton isWeyl’s, which has been derived in Ref. [19] from
first principles. Here, we will briefly review the construction for completeness.

A QCA represents the evolution of a numerable set G of cells g ∈ G, each one containing an array
of Fermionic local modes. The evolution occurs in discrete identical steps, and in each one every cell
interacts with the others. The Weyl automaton is derived from the following principles: unitarity,
linearity, locality, homogeneity, transitivity, and isotropy. Unitarity means just that each step is a
unitary evolution. Linearity means that the unitary evolution is linear in the field. Locality means that
at each step every cell interacts with a finite number of others. We call cells interacting in one step
neighbors. The neighboring notion also naturally defines a graph Γ over the automaton, with g as
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vertices and the neighboring couples as edges. Homogeneity means both that all steps are the same,
all cells are identical systems, and the set of interactions with neighbors is the same for each cell,
hence also the number of neighbors, and the dimension of the cell field array, which we will denote
by s > 0. We will denote by A the matrix representing the linear unitary step. Transitivity means that
every two cells are connected by a path of neighbors. Isotropy means that the neighboring relation is
symmetric, and there exists a group of automorphisms for the graph for which the automaton itself
is covariant. Homogeneity implies that set G has a group structure with the graph Γ being the Cayley
graph of G. Let S+ denote the set of generators of G and let S− be the set of inverse generators. Then,
for a given cell g the set of neighboring cells is given by the set Ng := {sg|s ∈ S := S+ ∪ S−}. Linearity,
locality, and homogeneity imply that each step can be described in terms of s × s transition matrices
Ah ∈ M(C, s) (h ∈ S) as follows:

ψg(t + 1) =


h∈S

Ahψhg(t) (1)

where ψg(t) is the s-array of field operators at g at step t . Therefore, upon denoting by Tg , g ∈ G the
right-regular unitary representation of G on ℓ2(G), Tg |f ⟩ := |fg−1

⟩, for f ∈ G, A is a unitary operator
on ℓ2(G)⊗ Cs of the form

A :=


h∈S

Th ⊗ Ah. (2)

Covariance of the isotropy propertymeans precisely that the group L of automorphisms of the graph is
a transitive permutation group of S+, and there exists a (generally projective) unitary representation
Ull ∈ L of L such that

A =


h∈S

Tlh ⊗ UlAhU
Ď
l , ∀l ∈ L. (3)

In Ref. [19] attention was restricted to groups G that are quasi-isometrically embeddable in an
Euclidean space. This implies that G is virtually Abelian [39], namely it has an Abelian subgroup
G′

⊂ G of finite index, namely with a finite number of cosets. It can be shown the automaton is
equivalent to another one with group G′ and dimension s′ multiple of s. We further assume that the
representation of the isotropy group L induced by the embedding is orthogonal, which implies that
the graph neighborhood is embedded in a sphere. We call such a property orthogonal isotropy.

For s = 1 the automaton is trivial, namely A = I . For s = 2 and for Euclidean space R3 one has
G = Z3, and the Cayley graphs satisfying orthogonal isotropy are the Bravais lattices. The only lattice
that has a nontrivial set of transition matrices giving a unitary automaton is the BCC lattice. We will
label the group element as vectors x ∈ Z3, and use the customary additive notation for the group
composition, whereas the unitary representation of Z3 is expressed as follows

Tz|x⟩ = |z + x⟩. (4)

Being the groupAbelian,we can Fourier transform, and the operatorA can be easily block-diagonalized
in the k representation as follows

A =


B
d3k |k⟩⟨k| ⊗ Ak (5)

with Ak :=


h∈S e
−ik·hAh unitary for every k ∈ B, and the vectors |k⟩ given by

|k⟩ :=
1

|B|
1
2


x∈G

eik·x
|x⟩, (6)

are a Dirac-notation for the direct integral over k, and the domain B is the first Brillouin zone of the
BCC lattice. There are only two QCAs, with unitary matrices

A±

k := d±

k I + ñ±

k · σ = exp[−in±

k · σ], (7)
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where

ñ±

k :=

 sxcycz ∓ cxsysz
∓cxsycz − sxcysz
cxcysz ∓ sxsycz


, n±

k :=
λ±

k ñ
±

k

sin λ±

k
,

d±

k := (cxcycz ± sxsysz), λ±

k := arccos(d±

k ),

cα := cos(kα/
√
3), sα := sin(kα/

√
3), α = x, y, z

and σ denotes the vector of Pauli matrices. The matrices A±

k in Eq. (7) describe the evolution of a two-
component Fermionic field,

ψ(k, t + 1) = A±

k ψ(k, t), ψ(k, t) :=


ψR(k, t)
ψL(k, t)


. (8)

The adimensional framework of the automaton corresponds to measuring everything in Planck units.
In such a case the limit |k| ≪ 1 corresponds to the relativistic limit, where one has

n±(k) ∼
k

√
3
, A±

k ∼ exp[−i k
√
3

· σ], (9)

corresponding to the Weyl’s evolution, with k
√
3
playing the role of momentum.

3. The Maxwell automaton

In order to build theMaxwell dynamics, we need to consider two differentWeyl QCAs the first one
acting on a Fermionic fieldψ(k) bymatrix Ak as in Eq. (8), and the second one acting on the field ϕ(k)
by the complex conjugate matrix A∗

k = σyAkσy, i.e.

ϕ(k, t + 1) = A∗

kϕ(k, t), ϕ(k, t) =


ϕR(k, t)
ϕL(k, t)


. (10)

The matrix Ak can be either one of the Weyl matrices A±

k , and the whole derivation is independent of
the choice.

The Fermionic fields ϕ andψ are independent and obey the following anti-commutation relations

[ψi(k), ψj(k′)]+ = [ϕi(k), ϕj(k′)]+

= [ϕi(k), ψj(k′)]+ = [ϕi(k), ψ
Ď
j (k

′)]+ = 0

[ψi(k), ψ
Ď
j (k

′)]+ = [ϕi(k), ϕ
Ď
j (k

′)]+ = δB(k − k′)δi,j

i, j = R, L k, k′
∈ B, (11)

where δB(k) is the 3d Dirac’s comb delta-distribution (which repeats periodically with R3 tessellated
into Brillouin zones).

Given now two arbitrary fields η(k) and θ(k)we define the following bilinear function

Gµf (η, θ, k) :=


d q
(2π)3

fk(q)η
 k
2 − q


σµθ

 k
2 + q


(12)

where σ 0
:= I , σ 1

:= σ x, σ 2
:= σ y, σ 3

:= σ z , η(k1)σ
µθ(k2) :=


i,j ηi(k1)σ

µ

ij θj(k2), and d q
(2π)3

|fk(q)|2 = 1,∀k. In the following we will also treat the vector part σ := (σ 1, σ 2, σ 3) of the
four-vector σµ separately. This allows us to define the following operators

Fµ(k) := Gµf (ϕ, ψ, k). (13)

In the following sections we study the evolution of the bilinear functions Fµ(k) and their
commutation relations and show that, in the relativistic limit and for small particle densities the
quantum Maxwell equations are recovered for both choices of Ak = A±

k .
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4. The Maxwell dynamics

In the following we will use the short notations

[Zη](k) := Zkη(k), [ZW ]k := ZkWk, (14)

for η a field and Z andW matrices. If the fieldsψ and ϕ evolve according to Eqs. (8) and (10), then the
evolution of the bilinear functions Fµ(k) introduced in Eq. (13) obeys the following equation

Fµ(k, t) = Gµf ([A
∗tϕ], [Atψ], k), (15)

where we used the notation in (14). Now, let us define

F̃µ(k, t) := Gµf ([U
k,t∗ϕ], [Uk,tψ], k), Uk,t

q := A−t
k
2

At
q, (16)

where we remind that [Uk,t∗ϕ](q) := Uk,t
q

∗
ϕ(q). Clearly, one has [Atη] = [At

k
2
Uk,tη]. We now need

the identity

exp(− i
2v · σ)σ exp( i

2v · σ) = Exp(−iv · J)σ,

exp(− i
2v · σ)σ 0 exp( i

2v · σ) = σ 0, (17)

where thematrix Exp(−iv·J) acts on σ regarded as a vector, and J = (Jx, Jy, Jz) is the three dimensional
representation of the generators of the group SO(3). We can then recast Eq. (15) in terms of the
following functions

F(k, t) := (F 1(k, t), F 2(k, t), F 3(k, t))T , (18)

and F̃(k, t) similarly defined, obtaining

F 0(k, t) = F̃ 0(k, t),

F(k, t) = Exp


−2in k
2

· Jt

F̃(k, t). (19)

We now assume that
|q|≥q̄(k)

d q
(2π)3

|fk(q)|2 ≪ 1 for q̄(k) ≪ |k|. (20)

Taking the Taylor expansion of n k
2 +q

with respect to qwe can thus make the approximation

Uk,t
k
2 ±q

≃ exp

in k

2
· σt


exp


−i

n k

2
± lk,q


· σt


≃ exp


±ick,q

n k
2

|n k
2
|
· σt


+ O

 q̄(k)
|n k

2
|


, (21)

where lk,q := Jn
 k
2


q and Jn

 k
2


denotes the Jacobian matrix of the function nk evaluated at k

2 and

ck,q :=

n k
2

|n k
2

|
· lk,q (the proof of Eq. (21) is given in Appendix A). By introducing the transverse field

operators

F̃T (k, t) := F̃(k, t)−


n k

2

|n k
2
|
· F̃(k, t)


n k

2

|n k
2
|

FT (k, t) := F(k, t)−


n k

2

|n k
2
|
· F(k, t)


n k

2

|n k
2
|

(22)
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and using Eq. (21) into Eq. (18) we get (see Appendix B)

F̃T (k, t) = FT (k)+ O
 q̄(k)

|n k
2

|


. (23)

Finally, combining Eq. (23) with Eq. (19) we obtain a closed expression for the time evolution of the
operator FT (k),

FT (k, t) = exp


2n k
2

· J

t

FT (k)+Λ(k, t), (24)

where ∥Λ(k, t)∥ = O
 q̄(k)

|n k
2

|


. Taking the time derivative in Eq. (24) and reminding the definition (22)

we obtain
∂tFT (k, t) = 2n k

2
× FT (k, t)+ ∂tΛ(k, t)

2n k
2

· FT (k, t) = 0,
(25)

where ∥∂tΛ(k, t)∥ = O
 q̄(k)

|n k
2

|


(see Appendix B).

Let now E and B be two Hermitian operators defined by the relation

E := |n k
2
|(FT + FĎT ), B := i|n k

2
|(FĎT − FT ),

2|n k
2
|FT = E + iB. (26)

We now show that in the limit of small wavevectors k and by interpreting E and B as the electric
and magnetic field the usual vacuum Maxwell’s equations can be recovered. For |k| ≪ 1 one has
2n k

2
≃ k/

√
3, and Eq. (25) becomes

∂tFT (k, t) =
k

√
3

× FT (k, t)

k · FT (k, t) = 0.
(27)

As in Ref. [19],we recover physical dimensions from theprevious adimensional equations using Planck
units, taking c := lP/tP , time measured in Planck times t → t ∗ tP , and lengths measured in Planck
lengths as x → x ∗

√
3lP , the

√
3lP corresponding to the distance between neighboring cells. Then Eq.

(27) becomes

∂tFT (x, t) = −ic∇ × FT (x, t)
∇ · FT (x, t) = 0

(28)

which in terms of E and B become the vacuumMaxwell’s equations

∇ · E = 0 ∇ · B = 0
∂tE = c∇ × B ∂tB = −c∇ × E. (29)

Introducing the polarization vectors u1
k and u2

k satisfying

ui
k · nk = u1

k · u2
k = 0, |ui

k| = 1, (u1
k × u2

k) · nk > 0, (30)

we can now interpret the following operators

γ i(k) := ui
k · F(k, 0), i = 1, 2, (31)

as the two polarization operators of the field. In the light of this analysis, one can conclude that the
automaton discrete evolution leads to modified Maxwell’s equations in the form of Eqs. (25), with
the electromagnetic field rotating around n k

2
instead of k. Reminding Eq. (20), we can observe that

a photon with a well-defined wave-vector k corresponds to a state of the two constituent Fermions
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Fig. 1. A rectilinear polarized electromagnetic wave. We notice that the polarization plane (in green) is slightly tilted with
respect to the plane orthogonal to k (in gray). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

with a highwave-vector correlation, with very closewave-vectors k
2 ±q. Notice that correlation in our

model of the photon does not require any binding interaction as in Ref. [34]. This correlation forces
the wave-vector distribution of the Fermions to be very narrow, with a consequently spread position
distribution. In the following we will further discuss the properties of the function fk(q) requiring
specific features that will allow for the correct Bosonic statistics. In particular, it is clear that also for
localized photon states, we will need spread Fermionic states in order to avoid the effects of the Pauli
exclusion principle on the statistics of the emergent photon. This is not in contradictionwith expected
particle behavior of the photon, as long as the dynamical and statistical equations coincide with the
standard ones in the appropriate small wave-vector regime.

Moreover, since in this framework the photon is a composite particle, the internal dynamics of the
constituent Fermions is responsible for an additional termO

 q̄(k)
|n k

2
|


. As a consequence of this distortion,

one can immediately see that the electric and magnetic fields are no longer exactly transverse to the
wave vector but we have the appearance of a longitudinal component of the polarization (see Fig. 1).
In Section 6 we discuss the new phenomenology that emerges from Eqs. (25).

5. Photons as composite Bosons

In the previous section we proved that the operators defined in Eq. (26) dynamically evolve
according to the free Maxwell’s equation. However, in order to interpret E(k) and B(k) as the electric
andmagnetic fields we need to show that they obey the correct commutation relation. The aim of this
paragraph is to show that, in a regime of low energy density, the polarization operators defined in
Eq. (31) actually behave as independent Bosonic modes.

In order to avoid the technicalities of the continuumwenow suppose to confine the system in finite
volume V . The finiteness of the volume introduces a discretization of the momentum space and the
operatorsψ(k), ϕ(k), obey Eq. (11) where the periodic Dirac delta is replaced by the Kronecker delta.
All the integrals over the Brillouin zone are then replaced by sums, and the polarization operators of
Eq. (31) become

γ i(k) :=


q

fk(q)ϕ
 k
2 − q


(ui

k
2

· σ)ψ
 k
2 + q


. (32)
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These operators can be simply expressed in terms of the functions γα,β(k) defined as follows

γα,β(k) :=


q

fk(q)ϕα
 k
2 − q


ψβ
 k
2 + q


,

α, β = R, L. (33)

Since the polarization operators γ i(k) are linear combinations of γα,β(k), it is useful to compute the
commutation relations of the latter. We have

[γα,β(k), γα′,β ′(k′)]− = 0,

[γα,β(k), γ
Ď
α′,β ′(k′)]− = δα,α′δβ,β ′δk,k′ −∆α,α′,β,β ′,k,k′ ,

∆α,α′,β,β ′,k,k′ :=


δα,α′H+

ψ,β ′,β,k′,k + δβ,β ′H−

ϕ,α′,α,k′,k


,

H±

η,α′,α,k′,k :=


q

fk(q)f ∗

k′(
k′

−k
2 + q)ηĎ

α′


2k′

−k
2 ± q


ηα
 k
2 ± q


. (34)

Then the operators γα,β fail to be Bosonic annihilation operators because of the appearance of the
operator ∆α,α′,β,β ′,k,k′ in the commutation relation (34). However, if we restrict attention to states
ρ such that Tr[ρH−

ϕ,β ′,β,k′,k] ≃ 0 and Tr[ρH+

ψ,α′,α,k′,k] ≃ 0, we could make the approximation

[γα,β(k), γ
Ď
α′,β ′(k′)]− ≃ δα,α′δβ,β ′δk,k′ . Let us then consider the modulus of the expectation value

of the operators H±

η,β ′,β,k′,k

|⟨H±

η,β ′,β,k′,k⟩| ≤


q

|fk(q)|
f ∗

k′(
k′

−k
2 + q)

 ηĎβ ′


2k′

−k
2 ± q


ηβ
 k
2 ± q


≤


⟨Γ ±

η,β,k⟩⟨Γ
±

η,β ′,k′⟩, (35)

Γ ±

η,β,k =


q

|fk(q)|2 η
Ď
β

 k
2 ± q


ηβ
 k
2 ± q


, (36)

where we repeatedly applied the Schwartz inequality. The operators Γ −

ϕ,β,k and Γ +

ψ,α,k can be
interpreted as number operators ‘‘shaped’’ by the probability distribution |fk(q)|2.

We then define the set of states

Sε := {ρ | Tr[ρΓ ±

η,β,k] ≤ ε}. (37)

It is easy to check that for states in Sε one has [γα,β(k), γ
Ď
α′,β ′(k′)]− = δα,α′δβ,β ′δk,k′ + O(ε), and for

ε ≪ 1 the commutators are well approximated by the Bosonic ones.
If we suppose |fk(q)|2 to be a constant function over a region Ωk which contains Nk modes,

i.e. |fk(q)|2 =
1
Nk

if q ∈ Ωk and |fk(q)|2 = 0 if q ∉ Ωk, we have
Γ +

ψ,α,k


=

1
Nk


q∈Ωk


ψĎ
α

 k
2 + q


ψα
 k
2 + q


=

Mψ,α,k

Nk

where we denoted with Mψ,α,k the number of ψα Fermions in the regionΩk (clearly the same result
applies to Γ −

ϕ,β,k). In this case the subset Sε contains states ρ such that Mξ,χ,k/Nk ≤ ε for all ξχ and
k. Then, for states in Sε with ε ≪ 1 we can safely assume [γα,β(k), γ

Ď
α′,β ′(k′)]− = δα,α′δβ,β ′δk,k′ in

Eq. (34) which after an easy calculation gives

[γ i(k), γ jĎ(k′)]− = δi,jδk,k′ i = 0, 1, 2, 3. (38)

In Eq. (38), besides the previously defined transverse polarizations γ 1(k) and γ 2(k), we considered
also the ‘‘longitudinal’’ polarization operator γ 3(k) :=


q fk(q)ϕ

 k
2 − q


(e k

2
· σ)ψ

 k
2 + q


, where

ek := nk/|nk|, and the ‘‘timelike’’ polarization operator γ 0(k) :=


q fk(q)ϕ
 k
2 − q


Iψ
 k
2 + q


.
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This result tells us that, as far as we restrict ourselves to states in Sε we are allowed to interpret
the operators γ i(k) as 4 independent Bosonic field modes and then to interpret E and B defined in
Eq. (26) as the electric and the magnetic field operators. This fact together with the evolution given
by Eq. (27) proves that we realized a consistent model of free quantum electrodynamics in which
the photons are composite particles made by correlated Fermions whose evolution is described by a
cellular automaton.

5.1. Composite Bosons and entanglement

The results that we had in this section are in agreement with the recent works [40–43] which
studied the conditions under which a pair of Fermionic fields can be considered as a Boson. In Refs.
[44,38] it was shown that a sufficient condition is that the two Fermionic fields ψ, φ are sufficiently
entangled. More precisely, for a composite Boson c :=


i f (i)ψiφi,


i |f (i)|

2
= 1 one has

[c, cĎ] = 1 − (Γψ + Γφ), (39)

where

Γψ =


i

|f (i)|2ψĎ
i ψi, Γφ =


i

|f (i)|2φĎ
i φi, (40)

and in Ref. [38] it was shown that the following bound holds

∀N ≥ 1, NP ≥ ⟨N|Γψ |N⟩ ≥ P, (41)

and the same holds forΓφ , where P =
N

i=1 |f (i)|4 is the purity of the reduced state of a single particle
and |N⟩ =

1
√
N!
χN(cĎ)N |0⟩ (χN is a normalization constant). From this result, the authors of Ref. [38]

concluded that, as far as P,NP ≈ 0, c and cĎ can be safely considered as a Bosonic annihilation/creation
pair. Our criterion of Eq. (37), applied to states ρ = |N⟩⟨N| reduces to the criterion in Refs. [44,38].
Moreover it is interesting to show that the technique applied in the derivation of Eq. (35) can be used
to answer an open question raised in Ref. [38]. There the authors conjecture that, given two different
composite Bosons c1 =


i f1(i)ψiφi and c2 =


i f2(i)ψiφi such that


i f1(i)f2(i)

∗
= 0, the commu-

tation relation [c1, c
Ď
2 ] should vanish as the two purities P1 and P2 (Pa =

N
i=1 |fa(i)|4) decrease. Since

[c1, c
Ď
2 ] = −


i f1(i)f2(i)

∗(ψ
Ď
i ψi + φ

Ď
i φi)we have

|⟨[c1, c
Ď
2 ]⟩| ≤


x


⟨Γ

(1)
x ⟩⟨Γ

(2)
x ⟩, (42)

by the same reasoning that we followed in the derivation of Eq. (35). Combining this last in-
equality with the condition ⟨N|Γ

(i)
x |N⟩ ≤ NP we have |⟨N|[c1, c

Ď
2 ]|N⟩| ≤ 2NP which proves the

conjecture.

6. Phenomenological analysis

We now investigate the new phenomenology predicted from the modified Maxwell equations
(25) and the modified commutation relations (34), with a particular focus on practically testable
effects. A natural assumption in the following discussion is to set the discrete scales of the QCA to
the corresponding Planck units, e.g. taking the lattice step of the order of the Planck length.

Let us first have a closer look at the dynamics described by Eq. (24). If u+ and u− are the two

eigenvectors of the matrix Exp[(2n k
2

· J)t], corresponding to eigenvalues e
∓i2|n k

2
|t
, Eq. (24) can be

written as

FT (k, t) = e
−i2|n k

2
|t
γ+(k)u+ + e

i2|n k
2

|t
γ−(k)u− (43)
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Fig. 2. The graphics shows the vector 2n k
2

(in green), which is orthogonal to the polarization plane, the wavevector k (in

red) and the group velocity ∇ω(k) (in blue) as function of k for the value |k| = 0.8 and different directions. Notice that the
three vectors are not parallel and the angles between them depend on k. Such anisotropic behavior can be traced back to the
anisotropy of the dispersion relation of theWeyl automaton. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

where the corresponding polarization operators γ±(k) are defined according to Eq. (31). According
to Eq. (43) the angular frequency of the electromagnetic waves is given by the modified dispersion
relation

ω(k) = 2|n k
2
|. (44)

The usual relation ω(k) = |k| is recovered in the |k| ≪ 1 regime. The speed of light is the
group velocity of the electromagnetic waves, i.e. the gradient of the dispersion relation. The major
consequence of Eq. (44) is that the speed of light depends on the value of k, as forMaxwell’s equations
in a dispersive medium.

The phenomenon of a k-dependent speed of light was already analyzed in the context of quantum
gravity where many authors considered the hypothesis that the existence of an invariant length
(the Planck scale) could manifest itself in terms of modified dispersion relations [22–24,26,28]. In
these models the k-dependent speed of light c(k), at the leading order in k := |k|, is expanded
as c(k) ≈ 1 ± ξkα , where ξ is a numerical factor of order 1, while α is an integer. This is exactly
what happens in our framework, where the intrinsic discreteness of the quantum cellular automata
A± leads to the dispersion relation of Eq. (44) from which the following k-dependent speed of
light

c∓(k) ≈ 1 ± 3
kxkykz
|k|2

≈ 1 ±
1

√
3
k, (45)

can be obtained by computing the modulus of the group velocity and power expanding in k with
the assumption kx = ky = kz =

1
√
3
k, (k = |k|). It is interesting to observe that depending on the

automaton A+(k) of A−(k) in Eq. (7) we obtain corrections to the speed of light with opposite sign.
Moreover the correction is not isotropic and can be superluminal, though uniformly bounded for all
k as shown for the Weyl automaton in Ref. [19].

Models leading to modified dispersion relations recently received attention because they allow
one to derive falsifiable predictions of the Planck scale hypothesis. These can be experimentally
tested in the astrophysical domain, where the tiny corrections to the usual relativistic dynamics can
be magnified by the huge time of flight. For example, observations of the arrival times of pulses
originated at cosmological distances, like in some γ -ray bursts [25,45–47], are now approaching a
sufficient sensitivity to detect corrections to the relativistic dispersion relation of the same order as in
Eq. (45).

A second distinguishing feature of Eq. (25) is that the polarization plane is neither orthogonal to
the wavevector, nor to the group velocity, which means that the electromagnetic waves are no longer
exactly transverse (see Figs. 1 and 2). However the angle θ between the polarization plane and the
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plane orthogonal to k or ∇ω(k) is of the order θ ≈ 2k, which gives 10−15rad for a γ -ray wavelength,
a precisionwhich is not reachable by the present technology. Since for a fixed k the polarization plane
is constant, exploiting greater distances and longer times does not help in magnifying this deviation
from standard electrodynamics.

Finally, the third phenomenological consequence of our modeling is that, since the photon is
described as a composite Boson, deviations from the usual Bosonic statistics are in order. Aswe proved
in Section 5, the choice of the function fk(q) determines the regime where the composite photon can
be approximately treated as a Boson. However, independent of the details of function fk(q) one can
easily see that a Fermionic saturation of the Boson is not visible, e.g. for the most powerful laser [48]
one has approximately an Avogadro number of photons in 10−15 cm3, whereas in the same volume
on has around 1090 Fermionic modes.

Another test for the composite nature of photons is provided by the prediction of deviations from
the Planck’s distribution in Blackbody radiation experiments. A similar analysis was carried out in
Ref. [36], where the author showed that the predicted deviation from Planck’s law is less than one
part over 10−8, well beyond the sensitivity of present day experiments.

7. Conclusions

In this paper we complete the derivation from principles of the free quantum field theory initiated
in [19] for the Weyl and Dirac fields, deriving the quantum automaton theory of the Maxwell
field. Within the present framework the electromagnetic field emerges from two entangled free
massless Fermionic fields whose evolution is given by the Weyl automaton. Then the electric and
magnetic fields are described in terms of bilinear operators of the two constituent Fermionic fields.
The automaton evolution leads to a set of modified Maxwell’s equations whose dynamics differs
from the usual one for ultra-high wavevectors. This model predicts a longitudinal component of the
polarization and a k-dependent speed of light. This last effect could be observed by measuring the
arrival times of light originated at cosmological distances, like in some γ -ray bursts, exploiting the
huge distance scale to magnify the tiny corrective terms to the relativistic kinematics. This prediction
agreeswith the onepresented inRef. [25]whereγ -ray burstswere for the first time considered as tests
for physical models with non-Lorentzian dispersion relations. Within this perspective, our quantum
cellular automaton singles out a specificmodified dispersion relation as emergent from a Planck-scale
microscopic dynamics.

Another major feature of the proposed model, is the composite nature of the photon which leads
to a modification of the Bosonic commutation relations. Because of the Fermionic structure of the
photon we expect that the Pauli exclusion principle could cause saturation effects when a critical
energy density is achieved. However, an order of magnitude estimation shows that the effect is very
far from being detectable with the current laser technology.

As a spin-off of the analysis of the composite nature of the photons, we proved a result that
strengthens the thesis that the amount of entanglement quantifies whether a pair of Fermions can be
treated as a Boson [44,38]. Indeed we showed that, even in the case of several composite Bosons, the
amount of entanglement for each pair is a good measure of how much the different pair of Fermions
can be treated as independent Bosons. This question was proposed as an open problem in Ref. [38].

The results of this work leave room for future investigation. Themajor question is the study of how
symmetry transformations can be represented in the model. The scenario we considered is restricted
to a fixed reference frame and in order to properly recover the standard theory we should discuss
how the Poincarè group acts on our physical model. This analysis could be done following the lines
of Ref. [49] where it is shown how a QCA dynamical model is compatible with a deformed relativity
model [50,28] which exhibits a non-linear action of the Poincarè group.
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Appendix A. Proof of Eq. (21)

Given two vectors a, a′
∈ R3, we define

U = R−aRa+a′ (A.1)
R−a = exp(ia · σ t)

Ra+a′ exp(−i

a + a′


· σ t).

By explicit computation Ra+a′ can be written as

Ra+a′ = exp(−i(a + a′) · σ t)

= exp(−it|a + a′
|ea+a′ · σ)

= I cos(|a + a′
|t)− i sin


|

a + a′


|t

ea+a′ · σ (A.2)

where we introduced ea =
a
|a| and ea+a′ =

a+a′

|a+a′|
. For |a′

| ≪ |a| we have

|a + a′
| =


|a|2 + |a′|2 + 2a · a′

= |a| +
a · a′

|a|2
+ O


|a′

|
2

|a|2


(A.3)

and

|ea+a′ − ea| =

 a+a′

|a+a′|
−

a
|a|

 =

 a(−|a+a′
|+|a|)+a′

|a|
|a+a′||a|


≤

|a′
|

|a+a′|
+ 1 −

|a|
|a+a′|

= O


|a′
|

|a|


. (A.4)

Then, for |a′
| ≪ |a| we obtain

Ra+a′ = I cos


|a| +
a·a′

|a|


t


+ −i sin


|a| +
a·a′

|a|


t

ea · σ +Λ′(a, a′)+Θ ′(a, a′)

= exp

−it


|a| +

a·a′

|a|


ea · σ


+Λ′(a, a′)+Θ ′(a, a′, t)

whereΛ′(a, a′) +Θ ′(a, a′, t) are a couple of operators such that

|Λ′(a, a′)| = O


|a′
|

|a|


, |Θ ′(a, a′)| = O


|a′

|
2

|a|2 t


from which we finally get

U = exp


−it
a · a′

|a|
ea · σ


+Λ(a, a′)+Θ(a, a′, t)

|Λ(a, a′)| = O


|a′
|

|a|


, |Θ(a, a′)| = O


|a′

|
2

|a|2 t


(A.5)

which leads to Eq. (21) if we identify a = nk, a′
= lk,q.

Appendix B. Proof of Eq. (22)

Let us introduce the vectors u1
k,u

2
k ∈ R3 such that

u1
k · nk = 0 u2

k := ek × u1
k ek := |n k

2
|
−1n k

2
. (B.1)

The transverse field F̃T (k, t) defined in Eq. (22) can then be written in the basis {ui
k} as

F̃T (k, t) =

u1
k
2

· F̃u1(k, t)

u2
k
2

· F̃u2(k, t)

 . (B.2)
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Reminding the definition (18) we have

ui
k
2

· F̃(k, t) =


d q
(2π)3

fk(q)ϕ
 k
2 − q


Q iψ

 k
2 + q


Q i(k, q, t) := (Uk,t

k
2 −q

)Ďui
k
2

· σUk,t
k
2 +q

. (B.3)

If we insert Eq. (21), which can be written as

Uk,t
k
2 ±q

= R±ξe + O
 q̄(k)

|n k
2

|


(B.4)

R±ξe := exp(±iξe · σ) ξ := ck,qt, (B.5)

inside Eq. (B.3) we have

Q i(k, q, t) = R−ξeui
k
2

· σR−ξe + O
 q̄(k)

|n k
2

|


= ui

k
2

· σ + O
 q̄(k)

|n k
2

|


= Q i(k, q, 0)+ O

 q̄(k)
|n k

2
|


, (B.6)

where we used the identity

(a · σ)(b · σ)(a · σ) = −b · σ (B.7)

holding for a · b = 0, |a| = |b| = 1, which implies

exp(iξe · σ)ui
k
2

· σ exp(iξe · σ) = ui
k
2

· σ ∀ξ ∈ R. (B.8)

Inserting Eq. (B.6) in Eq. (B.3) we have

ui
k
2

· F̃(k, t) = ui
k
2

· F̃(k, 0)+ O
 q̄(k)

|n k
2

|


i = 1, 2

which then implies

F̃T (k, t) = F̃T (k, 0)+ O
 q̄(k)

|n k
2

|


= FT (k)+ O

 q̄(k)
|n k

2
|


.
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