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1 Introduction

Quantum foundations is an old field—as old as quantum mechanics itself. Among
the early works stand out the seminal papers by Einstein, Podolski, and Rosen [1] and
Schrödinger [2], who addressed quantum entanglement for the first time, exploring
quantum mechanics within the Hilbert space formulation. Almost at the same time,
Birkhoff and von Neumann [3] looked at the theory in a wider framework allowing
for alternative theories. From that angle, it was natural to ask what is special about
quantummechanics andwhyNature obeys its peculiar laws. The take of Birkhoff and
von Neumann was that quantum theory should be regarded as a new form of logic,
whose laws could be derived from physically motivated axioms. This programme
gave rise to the tradition of quantum logic [4–8], whose ramifications are still the
object of active research [9].

Researchers in quantum logic managed to derive a significant part of the quantum
framework from logical axioms. However, there is a general consensus that the
axioms put forward in this context are not as insightful as one would have hoped.
For both experts and non-experts, it is hard to figure out what is the moral of the
quantum-logic axiomatizations.What is special about quantum theory after all?Why
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should quantum theory be preferred to alternative theories? Not many answers can
be found in the popular accounts of quantum logic (see e.g. the Wikipedia entry
[10]) and even understanding what the axioms are requires delving into a highly
specialized literature.

The ambition to find a more insightful axiomatization reemerged with the rise
of quantum information. The new field showed that the mathematical axioms of
quantum theory imply striking operational consequences, such as quantum key dis-
tribution [11, 12], quantum algorithms [13, 14], no-cloning [15, 16], quantum tele-
portation [17] and dense coding [18]. A natural question is: Can we reverse the
implication and derive the mathematics of quantum theory from some of its opera-
tional consequences? This question is at the core of a research programme launched
by Fuchs [19] and Brassard [20], which can be synthesized by the motto “quantum
foundations in the light of quantum information” [21].1 The ultimate goal of the
programme is to reconstruct the whole structure of quantum theory from few simple
principles of information-theoretic nature.

One may wonder why quantum information theorists should be more successful
than their predecessors in the axiomatic endeavour. A good reason is the following: In
the pre-quantum information era, quantum theory was viewed like an impoverished
version of classical theory, lacking the ability to make deterministic predictions
about the outcomes of experiments. Clearly, this perspective offered no vantage point
for explaining why the world should be quantum. Contrarily, quantum information
provided plenty of positive reasons for preferring quantum theory to its classical
counterpart. Turning some of these reasons into axioms then appeared as a promising
route towards a compelling axiomatization. Pioneering works along this route are
those byHardy [23] andD’Ariano [24, 25].More recently, the programmeflourished,
leading to an explosion of new axiomatizations [26–33].

Here we review the axiomatization of Ref. [26]. In this work, quantum theory
is derived from six principles, formulated in a general framework of theories of
information. The first five principles—Causality, Purity of Composition, Local Dis-
criminability, Perfect State Discrimination, and Ideal Compression—express ordi-
nary properties that are shared by quantum and classical information theory: such
principles define what we call a standard theory of information. Among all standard
theories of information, the sixth principle—Purification—identifies quantum the-
ory uniquely. Purification states that every random preparation can be simulated via
non-random preparation procedure, in which the system is prepared together with an
environment. An agent that has access to both the system and the environment would
then have maximal control of the preparation—maximal in the sense that no other
agent could conceivably have higher control. The moral of our work is that Quan-
tum Theory is the theory that allows maximal control of randomness, giving us—at
least in principle—the power to control all possible preparations and all possible
dynamics.

1This was also the title of one influential conference, held inMay 2000 at the Université deMontréal
[22], which kickstarted the new wave of quantum axiomatizations.
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The chapter is structured as follows: in Sect. 2 we provide an introduction to the
framework of operational-probabilistic theories—general theories of information
arising from the combination of the circuit framework with probability theory. Then,
Sect. 3 presents the background to the reconstruction, discussing the main standing
assumptions—finite-dimensionality, non-determinism, and closure under limits—
and introducing a few basic operational tasks: signalling, collecting side information,
doing state tomography, distinguishing states, compressing information, and simu-
lating preparations. The principles are then analyzed in Sect. 4. Section5 provides a
guided tour through the main results in our reconstruction, showing how the main
features of quantum theory can be derived directly from the principles. Finally, the
conclusions are drawn in Sect. 6.

2 Operational-Probabilistic Theories

In order to reconstruct quantum theory and the features of quantum information, one
needs a framework capable to describe a variety of alternative theories. Different
frameworks have been proposed for this scope, under the broad name of general
probabilistic theories [23–27, 34–39]. Our reconstruction is based on a specific vari-
ant of general probabilistic theories, whichwe call operational-probabilistic theories
(OPTs) [26, 34]. OPTs are an extension of probability theory, in which events can
be connected into circuits. Technically, OPTs arise from the combination of the cate-
gorical framework of Abramsky and Coecke [40–42] with the toolbox of elementary
probability theory. We regard such a combination as the natural mathematical object
describing a “general theory of information”. In the following we present a concise
summary of the OPT framework.

2.1 Operational Structure

2.1.1 Systems

Systems are labels, which determine how different events can be connected to one
another. We denote systems by capital letters, such as A,B,C, and so on. The letter I
will be reserved for the trivial system, representing “nothing”.2 The set of all systems
under consideration will be denoted by Sys.

Every two systems A and B can be considered together as a composite system,
denoted by A ⊗ B. The composition of systems is associative, namely

A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C ∀A,B,C (1)

2More precisely, “nothing that the theory cares to describe”.
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and has the trivial system as identity element, namely

A ⊗ I = I ⊗ A = A ∀A. (2)

The second condition means that considering system A together with “nothing” is
the same as considering system A alone.

2.1.2 Events

An event of type A → B represents the occurrence of a transformation that converts
the input system A into the output system B. An event E of type A → B will be
represented graphically as

A E B .

The set of all events of type A → B will be denoted by Transf(A → B), identifying
events with the corresponding transformations.

When the input and output systems are composite systems, we draw boxes with
multiple wires. For example, the box

A

E
B

C D := A⊗C E B⊗D

represents an event of type (A ⊗ C) → (B ⊗ D).
Some types of events are particularly important and deserve a name of their own.

An event of type I → A is a preparation-event (or simply, a preparation), that is, an
event that makes systemA available to further processing. An event of type A → I is
an observation-event (or simply, an observation), after which system A is no longer
available. Preparation- and observation-events will be represented as

ρ A := I ρ A

and

A m := A m I ,

respectively. We will often use the Dirac-like notation (a| and |ρ) for the observation
a and the preparation ρ, respectively.

Events of type I → I will be called scalars [40]. Scalars will be represented “out
of the box”, as

s := I s I .
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Later, scalars will be associated to probabilities. For the moment, however, they are
just a special type of events.

2.1.3 Composition of Events

Events can be connected into networks through the following operations

1. Sequential composition: an event of type A → B can be connected to an event of
type B → C, yielding an event of type A → C.

2. Parallel composition: an event of type A → A′ can be composed with an event
of type B → B′, yielding an event of type (A ⊗ B) → (A′ ⊗ B′).

Intuitively, the sequential composition represents two events happening at “sub-
sequent time steps”.3 The sequential composition of two events E andF of matching
types is denoted by F ◦ E and is represented graphically as

A E B F C := A F ◦ E C .

This graphical notation is justified by the requirement that sequential composition
be associative, namely

G ◦ (F ◦ E) = (G ◦ F) ◦ E, (3)

for arbitrary events E,F andG ofmatching types. In addition to associativity, sequen-
tial composition is required to have an identity element for every system. The identity
on system A, denoted by IA, is the special event of type A → A identified by the
conditions

A IA A E B = A E B (4)

and

B F A IA A = B F A , (5)

required to be valid for arbitrary systems A,B and arbitrary events E and F of types
A → B and B → A, respectively. The intuitive content of the above equations is
that IA represents the process that “does nothing on the system”. Consistently, we
use the graphical notation

A := A IA A .

3Per se, themathematical formalismdoes not force us to interpret the order of sequential composition
as an order in time. Nevertheless, composition in time is the reference situation that we will have
in mind when phrasing our axioms.
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Mathematically, conditions (3)–(5) impose that the events form a category [43, 44],
in which the systems are the objects and the events are the arrows. For the sequential
composition of a preparation and an observation we will often use the Dirac-like
notation,

(a|ρ) := ρ A a . (6)

Let us consider parallel composition. The parallel composition of two events E
and F is denoted as E ⊗ F and is represented graphically as

A E A′

B F B′ :=
A

E ⊗ F
A′

B B′ .

The graphical notation is justified by the requirement of the following condition

(E ⊗ F) ◦ (G ⊗ H) = (E ◦ G) ⊗ (F ◦ H), (7)

where E,F,G, and H are arbitrary events of matching types. Such condition is
necessary for the graphical notation to make sense, since in graphical notation the
two sides of Eq. (7) look exactly the same. In addition to Eq. (7), parallel composition
is required to satisfy the condition

IA⊗B = IA ⊗ IB. (8)

Mathematically, the presence of parallel composition turns the category of events
into a strict monoidal category, whose key properties are summarized by Eqs. (1),
(2), (7), and (8). We denote such category by Transf.

2.1.4 Reversible Events

An event E of type A → B is reversible iff there exists another event F , of type
B → A, such that

A E B F A = A , (9)

and

B F A E B = B . (10)

When this is the case, we write F = E−1 and we say that systems A and B are
operationally equivalent (or simply equivalent).

We denote by RevTransf(A → B) the set of reversible events of type A → B.
Such set (which may be empty) depends on the specific theory. In general, we require
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the existence of a reversible event that swaps pairs of systems. Given two systems
A and B, the swap of A with B—denoted by SA,B—is a reversible event of type
(A ⊗ B) → (B ⊗ A) satisfying the condition

A

SA,B

B F B′

SB′,A′

A′

B A E A′ B′ =
A E A′

B F B′ , (11)

for arbitrary systems A,B,A′,B′ and arbitrary events E,F , as well as the conditions

A
SA,B

B
SB,A

A

B A B = A

B
(12)

and

A

SA,B⊗C

B

B C

C A
=

A
SA,B

B

B A
SA,C

C

C A
, (13)

The presence of the swap, with the related Eqs. (11)–(13), turns the strict monoidal
category into a strict symmetric monoidal category [45, 46] (strict SMC, for short).

2.1.5 Tests

A test represents a process, which can generally be non-deterministic—i.e. it can
result in multiple alternative events. Specifically, a test of type A → B is collection
of events of type A → B, labelled by outcomes in a suitable outcome set X. The test
E := {Ex }x∈X is represented graphically as

A E B = A {Ex }x∈X B .

When two events/transformations belong to the same test, we say that they are coex-
isting.

The set of tests of typeA → Bwith outcomes inXwill be denoted byTests(A →
B,X). We will restrict our attention to tests with a finite outcome set.

Tests with |X| = 1 are called deterministic, because only one event can take place.
We will often identify a deterministic test {Ex0} with the corresponding event Ex0 ,
saying that Ex0 is a deterministic event (or a deterministic transformation). The deter-
ministic transformations form a strict symmetric monoidal subcategory of Transf,
denoted by DetTransf.

Some types of tests are particularly important and deserve a name of their own.
A test of type I → A is a preparation-test (or an ensemble), which prepares system
A in a non-deterministic way, with the possible preparations labelled by different
outcomes. A test of type A → I is an observation-test, corresponding to a demolition
measurement that absorbs system A while producing an outcome.
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2.1.6 Composition of Tests

Not all collections of events are “tests”. Whether or not a specific collection is a test
is determined by the theory, compatibly with two basic requirements:

1. the set of tests must be closed under sequential and parallel composition
2. the set of tests must contain deterministic tests corresponding to reversible events.

Let us discuss these requirements in more detail:

1. The sequential composition of two tests E = {Ex }x∈X and F =
{
Fy
}
y∈Y of

matching types is defined as

F ◦ E :=
{
Fy ◦ Ex

}
(x,y)∈X×Y .

The test F ◦ E represents a cascade of two (generally non-deterministic) pro-
cesses, wherein each process can result in a number of alternative events. Simi-
larly, the parallel composition of two tests is defined as

E ⊗ F :=
{
Ex ⊗ Fy

}
(x,y)∈X×Y

and represents two non-deterministic processes occurring in parallel. The com-
position of tests induces a composition of their outcome spaces via the Cartesian
product. As a consequence, the set of all outcome spaces must be closed under
this operation. We will denote such a set by Outcomes.

2. If U is a reversible event of type A → B, we require that there exists a determin-
istic test U := {U}. In particular, there must be a deterministic test IA := {IA}
corresponding to the identity on systemA and a deterministic testSA,B := {SA,B}
corresponding to the swap of systems A and B.

Note that all the basic equations valid for events can be lifted to tests: for example,
the identity test acts as identity element with respect to sequential composition, that
is, one has

A IA
A E B = A E B (14)

and

B F A IA
A = B F A , (15)

for arbitrary systems A,B and for arbitrary tests E and F of types A → B and
B → A, respectively. Since events form a strict SMC, also the tests form a strict
SMC, which we denote by Tests.
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2.1.7 Summary About the Operational Structure

Summarizing the ideas introduced so far, an operational structure consists of a triple

Op = (Transf,Outcomes,Tests),

where Transf is a strict symmetric monoidal category, Outcomes is a collection
of sets closed under Cartesian product, and Tests is a strict symmetric monoidal
category, related to Transf and Outcomes as described in the previous paragraph.
Intuitively, the operational structure describes

1. what can be done (connecting tests)
2. what can be observed (outcomes), and
3. what can happen (events).

2.2 Probabilistic Structure

The goal of a physical theory is not only to describe a class of experiments, but also
to make predictions about the outcomes of such experiments. In the following we
show how this can be accomplished by adding a probabilistic structure on top of the
operational structure.

2.2.1 Assigning Probabilities

An experiment consists in sequence of tests that starts from a preparation-test and
ends with an observation-test, leaving no open wires, as in the following example

ρ A T B m . (16)

If we compose all the tests involved in an experiment, we obtain a single test,
which transforms the trivial system into itself. In order to make predictions on the
outcomes of the experiment, we need a rule assigning a probability to the events of
such test. The rule is provided by the probabilistic structure of the theory:

Definition 1 (Probabilistic structure) Let Op be an operational structure. A proba-
bilistic structure for Op is a map Prob : Transf(I → I) → [0, 1], which associates
a given scalar s to a probability Prob(s), in accordance to the following two require-
ments:

1. Consistency:
∑

x∈X Prob(sx ) = 1 for every outcome set X ∈ Outcomes and for
every test s ∈ Tests(I → I,X)

2. Independence: Prob(s ⊗ t) = Prob(s)Prob(t) for every pair of scalars s and t .
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The consistency requirement guarantees that we can interpret Prob(sx ) as the
probability of the outcome x ∈ X. The independence requirement guarantees that
experiments that involve independent tests on two systems give rise to uncorrelated
outcomes. As observed by Hardy [27, 38], independence is equivalent to the require-
ment that probabilities can assigned to the outcomes of an experiment in a way that
is independent of the context in which the experiment is performed. Note that the
map Prob needs not be surjective: for example, in a deterministic theory the range
of Prob are only the values 0 and 1.

We are now ready to give the formal definition of OPT:

Definition 2 An operational-probabilistic theory ! is a pair (Op,Prob) consisting
of an operational structure Op and of a probabilistic structure for Op.

2.2.2 Statistically Equivalent Events

Once probabilities are introduced, it is natural to identify events that give rise to the
same probabilities in all possible circuits. Precisely, we say that two events of type
A → B, say E and E ′, are statistically equivalent iff

Prob
(

ρ
A E B

m
R

)
= Prob

(

ρ
A E ′ B

m
R

)

for every system R, every preparation-event ρ ∈ Transf(I → A ⊗ R) and every
observation-event m ∈ Transf(B⊗R → I). We denote by [E] the equivalence class
of the event E .

Equivalence classes can be composed in sequence and parallel in the obvious way

[F ] ◦ [E] := [F ◦ E], [E] ⊗ [F] := [E ⊗ F]

and it is easily verified that both definitions are well-posed. Furthermore, [IA] and
[SA,B] behave like the identity on A and the swap between A and B, respectively. As
a result, the equivalence classes of events form a strict SMC, which we denote by[
Transf

]
.

Similar considerations apply to tests: the equivalence class of a test E = {Ex }x∈X
is defined as [E] := {[Ex ]}x∈X and the sequential/parallel composition of equivalence
classes of tests are induced by the sequential/parallel composition of events:

[F ] ◦ [E] := [F ◦ E], [E] ⊗ [F ] := [E ⊗ F ].

Again, the equivalence class of [IA] and [SA,B] behave like the identity and the swap.
As a result, the equivalence classes of tests form a strict SMC, which we denote by[
Tests

]
.

dariano@unipv.it



Quantum from Principles 181

2.2.3 The Quotient OPT

The notion of statistical equivalence allowed us to transform the original opera-
tional structure Op = (Transf,Outcomes,Tests) into a new operational structure[
Op
]
:= (

[
Transf

]
,Outcomes,

[
Tests

]
), which we call the quotient operational

structure. The operational structure [Op] comes with an obvious probabilistic struc-
ture [Prob], defined as

[
Prob

]
( [s] ) := Prob(s) ∀s ∈ Transf(I → I).

It is indeed immediate to verify that the consistency and independence conditions in
Definition 1 are satisfied. As a result, the original OPT ! = (Op,Prob) has been
turned into a new OPT [!] := ([Op], [Prob]), which we call the quotient OPT.
Intuitively, the quotient OPT contains all the information that is statistically relevant,
disregarding those distinctions that have no consequences for the purpose of making
probabilistic predictions.

In the following we will focus on quotient OPTs: by default, an OPT will be a
quotient OPT. Accordingly, we will omit the symbol of equivalence class every-
where and write ! = (Op,Prob), assuming that equivalence classes have been
already taken from the start. This is equivalent to requiring the following separation
property [47]:

Definition 3 An OPT satisfies the separation property iff for every pair of systems
A and B and every pair of events E and E ′ of type A → B the condition

Prob

(

ρ

A E B

m
R

)

= Prob

⎛

⎝ ρ

A E ′ B
m

R

⎞

⎠
∀R ∈ Sys
∀ρ ∈ Transf(I → A ⊗ R)
∀m ∈ Transf(B ⊗ R → I)

implies E = E ′.

In a quotient OPT preparation-events (respectively, observation-events) will be
called states (respectively, effects) andwewill use the notationSt(A) := Transf(I →
A) (respectively, Eff(A) := Transf(A → I)).

2.2.4 Vector Space Representation of an OPT

OPTs satisfying the separation property have a convenient representation in terms of
ordered vector spaces and positive maps. The construction proceeds in four steps:

1. The separation property guarantees that a scalar s can be identified with its prob-
ability Prob(s). Hence, from now on we will omit Prob and will identify the set
of scalars Transf(I → I) with a subset of the real interval [0, 1].

2. By the separation property, a state ρ ∈ St(A) can be identifiedwith the real-valued
function ρ̂ : Eff(A) → R defined by
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ρ̂(m) := ρ A m

(indeed, one has ρ = σ if and only if ρ̂ = σ̂). Since real-valued functions form a
vector space, we can define the vector (sub)space spanned by the states of system
A as

StR(A) := SpanR {ρ | ρ ∈ St(A)} .

Limiting ourselves to linear combination with positive coefficients we obtain the
proper cone St+(A), which turns StR(A) into an ordered vector space.

3. Every effect m ∈ Eff(A) defines a linear function m̂ : StR(A) → R, via the
relation

m̂

(
∑

i

ci ρi

)

:=
∑

i

ci ρ A mi , ∀{ci } ⊂ R , ∀{ρi } ⊂ St(A).

It is immediate to see that the definition is well-posed, namely m̂
(∑

i ci ρi
)
=

m̂
(∑

j c
′
j ρ

′
j

)
whenever

∑
i ci ρi =

∑
j c

′
j ρ

′
j . Again, the effect m can be iden-

tified with the linear function m̂ thanks to the separation property. Taking linear
combinations of effects we obtain the vector space

EffR(A) := SpanR {m | m ∈ Eff(A)} ,

while restricting to positive linear combinations we obtain the proper cone
Eff+(A). As a result, also EffR(A) is an ordered vector space.

4. Every event E of type A → B induces a linear map Ê : StR(A) → StR(B), via
the definition

Ê
(
∑

i

ci ρi

)

:=
∑

i

ci (E ◦ ρi ) , ∀{ci } ⊂ R , ∀{ρi } ⊂ St(A).

Again, it is not hard to see that the definition is well-posed, namely that
Ê
(∑

i ci ρi
)
= Ê

(∑
j c

′
j ρ

′
j

)
whenever

∑
i ci ρi =

∑
j c

′
j ρ

′
j . Note that the map

Ê is not only linear, but also positive: indeed, it sends elements of the coneSt+(A)
to elements of the cone St+(B). We call Ê the state change associated to E .

At this point, a few remarks are in order:

1. Linearity versus convexity. Traditionally, the linearity of state changes has been
argued from the assumption that the state space St(A) is convex. However, our
argument shows that such assumption is not needed: the probabilistic structure
alone suffices to define the linear map Ê .

2. Finite versus infinite dimensional systems. For a given system A, we define DA

to be the dimension of the vector space StR(A) and we say that system A is finite
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dimensional if DA is finite. For finite systems, one has the equality EffR(A) =
StR(A)∗, where StR(A)∗ is the vector space of all linear functionals on StR(A).
For infinite dimensional systems, such an equality may not hold.

3. The no-restriction hypothesis. Since effects are identified with positive linear
functions, one has the inclusion Eff+(A) ⊆ St+(A)∗, where St+(A)∗ denotes the
dual cone of St+(A)

St+(A)∗ := {m ∈ StR(A)∗ | m(ρ) ≥ 0 ∀ρ ∈ St+(A)}. (17)

Even for finite dimensional systems, the inclusion Eff+(A) ⊆ St+(A)∗ may not
be an equality. The assumption Eff+(A) = St+(A)∗ is known as No-Restriction
Hypothesis [34]. We stress that such an assumption is not made in our derivation.

4. Transformations versus linear maps. Unlike in the case of states and effects, the
correspondence between the transformation E and the linear map Ê may not be
one-to-one. The reason for this is that the difference between two transformations
E and E ′ may show up when one applies them locally on a part of a composite
system: one can have Ê ⊗ IR ̸= Ê ′ ⊗ IR for some R ∈ Sys even if Ê = Ê ′. This
problemdisappears if one assumes the axiomof Local Tomography, aswewill see
later in this chapter. In the lack of Local Tomography, however, the transformation
E can still be identified with a linear map: for this purpose, one can choose the
linear map Ê⊕ defined by [47]

Ê⊕ :=
⊕

R∈Sys
Ê ⊗ IR. (18)

The map Ê⊕ transforms elements of the (infinite-dimensional) vector space
StR,⊕(A) := ⊕

R∈Sys StR(A ⊗ R) into elements of the (infinite-dimensional)
vector space StR,⊕(B) := ⊕

R∈Sys StR(B ⊗ R). Then, the separation property
guarantees that the correspondence between E and Ê⊕ is one-to-one.

5. The vector space of transformations. So far we have defined the vector spaces
of states and effects. A vector space of transformations can be defined using the
one-to-one correspondence with the linear maps in Eq. (18) and setting

TransfR(A → B) := SpanR{Transf(A → B)}. (19)

Again, a proper cone Transf+(A → B) can be defined by restricting the atten-
tion to linear combinations with positive coefficients. Note that, in general, the
vector space TransfR(A → B) and the cone Transf+(A → B) can be infinite-
dimensional even if both systems A and B are finite dimensional. However, this
is not the case when the theory satisfies the Local Tomography.

dariano@unipv.it



184 G. Chiribella et al.

2.2.5 Closure Under Coarse-Graining

A key notion that comes with the probabilistic structure is the notion of coarse-
graining: given a test T = {Tx }x∈X, one can decide to identify some outcomes, thus
obtaining another, coarse-grained test. Mathematically, a coarse-graining is defined
by partitioning the outcome set X into mutually disjoint subsets {Xy}y∈Y. Relative
to such partition, the coarse-graining of the test T is the test T ′ = {T ′

y }y∈Y defined
by4

T ′
y :=

∑

x∈Xy

Tx , (20)

setting T ′
y = 0 for Xy = ∅, where 0 is the zero element of the vector space

TransfR(A → B). Note that, by calling T ′ a test we have implicitly made two
assumptions, namely that

1. the set Y belongs to Outcomes
2. the collection {T ′

y }y∈Y ⊂ TransfR(A → B) belongs to Tests(A → B,Y).

From now on, wewill require that our OPT is closed under coarse-graining, meaning
that the above conditions are satisfied.

By coarse-graining over all outcomes of a test T ∈ Tests(A → B,X)
one obtains a deterministic test, identified with the deterministic transformation
T := ∑

x∈X Tx ∈ DetTransf(A → B). In particular, when a preparation test
ρ ∈ Tests(I → A,X) satisfies

∑
x∈X ρx = ρ we say that the test ρ is an ensemble

decomposition of ρ.

2.2.6 Summary of the OPT Framework

Let us sum up the main points discussed so far. We defined an OPT as a pair
! = (Op,Prob), consisting of an operational structureOp = (Transf,Outcomes,
Tests) and of a probabilistic structure Prob that assigns probabilities to scalars. We
restricted our attention to OPTs that satisfy the Separation Property (Definition 3),
which implies that one can identify scalars with probabilities, states with elements
of suitable vector spaces, and effects with linear functionals over them. Transforma-
tions with nontrivial input and output induce linear maps on the corresponding state
spaces. Finally, in agreement with the probabilistic interpretation, we demanded that
the theory ! be closed under coarse-graining.

4Note that the summation is well-defined thanks to the vector space structure of TransfR(A → B).
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3 Background of the Quantum Reconstruction

In this section we provide some background that will be useful for our reconstruc-
tion of quantum theory. We start by reviewing three standing assumptions: finite-
dimensionality, non-determinism, and closure under operational limits. We will then
review the operational tasks that motivate our axioms.

3.1 Standing Assumptions

Here we introduce three standing assumptions that will be made in the rest of the
chapter. These assumptions are common to all recent axiomatizations of quantum
theory, and could be even incorporated in theOPT framework.We keep them separate
from the rest, both for clarity of presentation and for the sake of maintaining the OPT
framework as flexible as possible. The assumptions are the following:

1. Finite dimensionality. We restrict our attention to finite systems, i.e. systems with
finite dimensional state spaces. Operationally, this means that the state of every
system can be identified from the statistics of a finite number of finite-outcome
measurements. Of course, the implicit assumption here is that finite systems exist
and form a sub-theory of our theory, meaning that the operational structure Op
contains a non-trivial substructure FiniteOp, consisting of transformations, out-
come sets, and tests involving only finite systems.

2. Non-determinism.While theOPT framework accommodates a variety of theories,
herewe focus onOPTs that are non-deterministic,meaning that there exists at least
one experiment for which the outcome is not determined a priori. Mathematically,
this means that the range of the probability function Prob is not just {0, 1}. Note
that non-determinism is a weaker assumption than convexity of the state spaces:
there exist indeed examples of theories—such as Spekkens’ toy theory [48]—that
are non-deterministic and yet do not have convex state spaces.

3. Closure under operational limits. Suppose that (Tn)n∈N is a sequence of trans-
formations of type A → B and that T is an element of the vector space
TransfR(A → B) such that

lim
n→∞

ρ

A Tn B

m
R

= ρ

A T B

m
R

∀R ∈ Sys
∀ρ ∈ Transf(I → A ⊗ R)
∀m ∈ Transf(B ⊗ R → I),

meaning that the probability of every experiment involving Tn converges to the
probability of an hypothetical experiment involving T . When this is the case, we
assume that T belongs to Transf(A → B). Operationally, one can think of the
sequence (Tn)n∈N as a limit procedure to implement the transformation T .
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3.2 Basic Operational Tasks

We now give a brief list of the operational notions on which our axioms are based.

3.2.1 Signalling

When a number of devices are connected into a network, it is natural to ask whether
one node of the network can signal to another. For example, given the experiment

ρ

A T B

E
C S D

m
R S

(21)

one can ask whether the choice of the test T can influence the outcome of the test S.
Precisely, the question is whether or not the marginal probability distribution for the
outcomes of S (obtained by summing over the outcomes of all the other tests in the
network) depends on T . Denoting the marginal probability distribution by p(x |T ),
x ∈ X, we say that the node occupied by the test T does not signal to the node
occupied by the test S iff

p(x |T 0) = p(x |T 1) ∀x ∈ X,

for every possible choice of tests T 1 and T 2. Similarly, one can ask whether the
node occupied by the testS can signal to the node occupied by the test T . Now, note
that the test S is performed after the test T : if the node occupied by S can signal
to the node occupied by T we say that the circuit of Eq. (21) allows for signalling
from the future to the past.

3.2.2 Collecting Side Information

Suppose that the test T = {Tx }x∈X is obtained from the test T ′ = {Tz}z∈Z via
coarse-graining, namely

Tx =
∑

z∈Zx

T ′
z ∀x ∈ X,

where {Zx }x∈X is a partition of Z into disjoint subsets. In this case we say that T ′

refines T . Now, it is convenient to relabel the outcomes of T ′ as z = (x, y), with
x ∈ X and y ∈ Zx , and to write T ′

x,y in place of T ′
z . In this way, we can think of

the random variable y as a side information, which is not accessible to the agent
Alice performing the test T , but may be accessible to some other agent Eve. This
picture is particularly relevant to cryptographic scenarios, wherein Eve could be
an eavesdropper attempting to collect as much information as possible. In all such
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scenarios, a special role is played by those transformations that do not leak any useful
side information. We call such transformations pure:

Definition 4 We say that a transformation E is pure5 iff for every test T containing
E and for every test T ′ refining T one has

T ′
x0,y = py Tx0 , (22)

where x0 is the outcome such that Tx0 = E and {py} is a probability distribution.

Informally, the purity condition (22) states that the side information possessed by
Eve is uncorrelated with the transformation E taking place in Alice’s laboratory. We
denote the set of pure transformations of type A → B byPurTransf(A → B). In the
special case of transformations with trivial input we will use the notation PurSt(A)
(respectively, PurEff(A)), referring to pure states (respectively, pure effects). An
pure test is a test consisting of pure transformations.

Transformations that are not necessarily pure will be called mixed. Among the
mixed transformations, the ones that are in the interior of the cone Transf+(A → B)
play an important role. They are defined as follows:

Definition 5 A transformation E ∈ Transf(A → B) is called internal iff for every
transformation F ∈ Transf(A → B) there exists a transformation G and a scaling
constant λ > 0 such that

1. E = λF + G
2. λF and G coexist in a test.6

Roughly speaking, an internal transformation is compatible with the occurrence
of any other transformation of the same type. Internal transformations with trivial
input (output) will be called internal states (internal effects).

5In previous works, we used different names for transformations that do not allow for side informa-
tion: in Refs. [26, 34] they were called atomic, while in the popularized version of Ref. [49] they
were called fine-grained. We apologize with our readers for the changes of terminology, due to an
ongoing search for the word that best captures this operational concept. In this chapter, we adopted
the word pure, because (i) this term is the standard one in the case of states and (ii) using the same
term for transformations should hopefully ease the reading. Still, a warning is in order: when the set
of transformations Transf(A → B) is convex, the pure transformations PurTransf(A → B) may
not coincidewith the extremepoints ofTransf(A → B). For example, in quantum theory the identity
effect IA is an extreme point of the set of effects, but is not pure in the sense of our definition because
it can be decomposed e.g. as IA = ∑dA

n=1 Pn , where the effects {Pn = |n⟩⟨n| | n = 1, . . . , dA}
represent a projective measurement on some orthonormal basis {|n⟩ | n = 1, . . . , dA}.
6Note that, in principle, our definition of “internal transformations” may not include all the trans-
formations in the interior of the cone, because the λF and G may fail to coexist in a test. However,
this annoying discrepancy disappears under the mild assumption that the set of transformations is
convex. Later, we will justify this assumption on the basis of the Causality axiom.
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3.2.3 State Tomography

The task of state tomography consists in identifying the state of a system from the
statistics of a restricted set of observations. Suppose that an experimenter is able to
perform a set of observation-tests and let M be the set of all effects appearing in such
tests.

Definition 6 We say that the effects in M are tomographically complete for system
A iff, for every pair of states ρ and ρ′ of system A, one has the implication

ρ A m = ρ′ A m ∀m ∈ M

=⇒ ρ′ A = ρ A .

In the contrapositive: if two states are different, then the difference can be detected
from the statistics of some effect in M.

Let us consider state tomography for composite systems. Suppose that two experi-
menters Alice and Bob performmeasurements on two systemsA and B, respectively,
and that Alice (Bob) is able to perform the set of measurements with effects M (N).
Then, by coordinating their choices of measurements and by communicating the
outcomes to each other, Alice and Bob can observe the statistics of all product mea-
surements. Hence, their set of measurement effects will be

M ⊗ N := {m ⊗ n | m ∈ M , n ∈ N}.

Now the question is: is there a choice of measurement effects M and N such that the
set M ⊗ N tomographically complete? In the affirmative case, we say that system
A ⊗ B allows for local tomography:

Definition 7 System A⊗B allows for local tomography iff, for every pair of states
ρ, ρ′ ∈ St(A ⊗ B), one has the implication

ρ
A a
B b

= ρ′
A a
B b

∀a ∈ Eff(A),

∀b ∈ Eff(B)
(23)

=⇒ ρ
A

B = ρ′
A

B (24)

More generally, we have the following

Definition 8 An K -partite system A = ⊗K
k=1 Ak allows for local tomography iff

for every k ∈ {1, . . . , K } there exists a set of measurement effects Mk on system Ak

such that the set
⊗K

k=1 Mk is tomographically complete.
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For a given OPT, it is easy to see that the following conditions are equivalent:

1. every multipartite system allows for local tomography
2. every bipartite system allows for local tomography.

In other words, the possibility of local tomography for arbitrary composite systems
can be established by just checking bipartite systems.

3.2.4 State Discrimination

The task of state discrimination can be presented as a game featuring a player and a
referee. The referee prepares a physical system A in a state ρx , belonging to some
set {ρx | x ∈ X} known to the player. The player is asked to guess the label x . In
order to do that, she performs a measurement m with outcomes in X: upon finding
the outcome x ′, she will guess that the state was ρx ′ . If the player guesses right all
the times, we say that the states are perfectly distinguishable:

Definition 9 The states {ρx | x ∈ X} are perfectly distinguishable iff there exists a
measurement m such that

(mx |ρx ′) = δx,x ′ ∀x, x ′ ∈ X.

When this is the case, we say that m is a discriminating measurement.

Note that, in order to be perfectly distinguishable, the states must be

1. normalized, namely ∥ρx∥ = 1∀x ∈ X, where ∥ · ∥ is the operational norm [34]
given by ∥ρ∥ = supa∈Eff(A) (a|ρ)

2. non-internal: indeed, if a state ρx ′ is internal, then (mx |ρx ′) = 0 implies mx = 0,
in contradiction with the condition (mx |ρx ) = 1.

Note that a priori an OPT may not have any distinguishable states at all. However,
the existence of distinguishable states is essential if we want our theory to include
classical computation and classical information theory.

3.2.5 Ideal Compression

A preparation-test ρ ∈ Tests(I → A,X) can be thought as describing a source of
information. An interesting question is how well such information can be transferred
from the original system to another physical support, say system B. An encoding
of the preparation-test ρ is a deterministic transformation E ∈ DetTransf(A →
B), which transforms ρ into a new preparation-test ρ′ := {E ◦ ρx }x∈X. The states
{E ◦ ρx | x ∈ X} are called codewords.
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The ideal property of an encoding is to be lossless, in the following sense:

Definition 10 An encoding E ∈ DetTransf(A → B) is lossless for the preparation-
test ρ ∈ Tests(I → A,X) iff there exists a deterministic transformation D ∈
DetTransf(B → A), called the decoding, such that

ρx A E B D A = ρx A ∀x ∈ X. (25)

We say that

• E is a lossless encoding for the state ρ ∈ DetSt(A) iff E is a lossless encoding for
every ensemble decomposition of ρ.

• E a lossless encoding of system A into system B iff E is a lossless encoding for all
states ρ ∈ DetSt(A).

The notion of encoding offers an operational way to compare the size of different
systems: naturally, we can say that system A is no larger than system B iff there
exists a lossless encoding of A into B.

Among all possible encodings, we now consider the compressions:

Definition 11 A compression of system A into system B is an encoding E ∈
DetTransf(A → B) where B is no larger than A.

How much can we compress a given state? The ultimate limit to compression is
when every state of system B is proportional to a codeword, i.e. when every state
σ ∈ St(B) can be written as σ = λ Eρx0 , for some scaling constant λ ≥ 0 and
some state ρx0 belonging to some ensemble decomposition of ρ. When this is the
case, we say that the compression E is maximally efficient. Summing up, we have
the following

Definition 12 A transformation E ∈ DetTransf(A → B) is an ideal compression
of the state ρ ∈ DetSt(A) iff it is lossless and maximally efficient.

3.2.6 Simulating Preparations

A state can be prepared in many different ways. For example, a state ρA could be
prepared by a circuit that involves many auxiliary systems, which interact with A and
are finally discarded.We refer to these systems as the environment and describe them
collectively as a single system E. Assuming that the system and the environment are
initially uncorrelated, the fact that the circuit prepares the state ρA is expressed by
the diagram

ρ0 A

U
A = ρA A

η0 E E e
(26)
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where ρ0 and η0 are the initial states of system and environment, respectively, U
is a transformation representing all the system-environment interaction, and e is a
some effect. By defining the state ρAE := U(ρ0 ⊗ η0) the circuit of Eq. (26) can be
simplified to

ρAE
A

E e
= ρ A .

(27)

To capture the idea that the environment is discarded, we require the effect e to
be deterministic:

Definition 13 A simulation of the preparation ρA is a triple (E, ρAE, e) where E is a
system, ρAE is a state of A ⊗ E, and e is a deterministic effect satisfying Eq. (27). If
the state ρAE is pure, we say that (E, ρAE, e) is a pure simulation—or, more concisely,
a purification—of ρA.

Purifications arise, for example, whenwe start from a pure product stateα0⊗η0 ∈
PurSt(A ⊗ E) and evolve it through a reversible transformation U . A purification
gives the agent maximal control over the process of preparation: indeed, an agent
possessing systems A and E can be sure that no side information can hide outside
her laboratory.

Given the importance of purifications, it is important to ask howmany of them can
be found for a given state. From a purification there are two trivial ways to generate
new ones:

1. by transforming the environment with a reversible transformation UE such that
(e|U = (e|, and

2. by appending a dummy system D to the environment, prepared in a pure deter-
ministic state δD such that ρAE ⊗ δD is pure.

We say that a pure simulation is essentially unique if it is unique up to trivial trans-
formations:

Definition 14 A state ρA has an essentially unique purification iff for every two
purifications (E,!, e) and (E′,! ′, e′) with E = E′ one has

! ′
AE

A

E = !AE

A

E UE
E

(28)

and7

E UE
E e′ = E e . (29)

for some reversible transformation UE.

7It turns out that the second condition is automatically satisfied if the theory satisfies the Causality
axiom—see the next section.
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4 The Principles

We are now ready to state our principles for quantum theory. We divide them into
five Axioms and one Postulate.8 The five axioms are

A1 Causality. No signal can be sent from the future to the past.
A2 Purity of Composition. No side information can hide in the composition of two

pure transformations.
A3 Local Tomography. State tomography can be performed with only local mea-

surements.
A4 Perfect State Discrimination. Every normalized non-internal state can be per-

fectly distinguished from some other state.
A5 Ideal Compression. Every state can be compressed in an ideal way.

The fiveAxioms express generic and rather unsurprising features, which are common
to classical and quantum theory. We regard the theories satisfying these axioms as
standard. The Postulate is

P6 Purification. Every preparation can be simulated via a pure preparation in an
essentially unique way.

Purification brings in a radically non-classical feature: the idea that randomness can
be simulated through the preparation of pure states. We will see that this feature
singles out quantum theory uniquely among all standard OPTs.

4.1 Causality

Causality states that signals cannot be sent from the future to the past. To check
this condition, it is sufficient to look at a special class of circuits, consisting of a
single preparation-test, followed by a single observation-test. Precisely, we have the
following

Proposition 1 An OPT satisfies Causality if and only if for every system A ∈ Sys,
every preparation-test ρ ∈ Tests(I → A,X) and every pair of observation-tests
m0 ∈ Tests(A → I,Y0) and m1 ∈ Tests(A → I,Y1) one has

p(x |m0) = p(x |m1) ∀x ∈ X,

with p(x |mi ) :=
∑

yi∈Yi
(myi |ρx ).

An even simpler condition for causality is given by

8We differentiate the names in order to highlight the different roles of these principles in our
reconstruction. Mathematically, there is no difference between axioms, postulates, background
assumptions, and requirements in the OPT framework (all of them are “axioms”). The point of
using different names is just to provide a more intuitive picture.
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Proposition 2 A theory satisfies Causality if and only if every systemA has a unique
deterministic effect eA ∈ DetEff(A).

In categorical terms, the uniqueness of the deterministic effect can be phrased
as “terminality of the tensor unit” in the category of deterministic transformations
DetTransf. Categories where the tensor unit is terminal have been introduced by
Coecke and Lal [50, 51], who named them causal categories.

Recall that deterministic effects can be used to describe “discarding operations”,
whereby a physical system is eliminated from the description. Now, Causality is
equivalent to the statement that every physical system can be discarded in a unique
way.Thanks toCausality,we candefine themarginals of a bipartite state in a canonical
way.

Definition 15 Let ρAB be a state of system A ⊗ B. The marginal of ρAB on system
A is the state ρA defined as

ρA A :=
ρAB

A

B e

4.1.1 Causality and No-Signalling

An important consequence of Causality is the impossibility to signal without inter-
action: in the lack of any interaction between system A an system B, it is impossible
to influence the probability distribution of a test on system A by performing tests on
system B. The precise statement is the following

Proposition 3 For every pair of systems A and B, for every state ρAB, and every
triple of tests A ∈ Tests(A → A′,X), B0 ∈ Tests(B → B′

0,Y0) and B1 ∈
Tests(B → B′

1,Y1) one has

p (x |B0) = p (x |B1) ∀x ∈ X,

with p(x |Bi ) :=
∑

yi∈Yi
(eBi |Ax ⊗ Bi,yi |ρAB), i ∈ {0, 1}.

4.1.2 Causality and Conditional Tests

We introduced Causality as a negative statement:

C: the choice of tests performed in the future cannot affect the outcome probabilities
of tests performed in the past.

The axiom can be reformulated in a positive, and slightly stronger way:

C′: the outcomes of tests performed in the past can affect the choice of tests per-
formed in the future.

dariano@unipv.it



194 G. Chiribella et al.

Technically, Condition C′ establishes the possibility of performing conditional
tests, defined as follows:

Definition 16 Given a test T ∈ Tests(A → B,X) and a collection of tests {Sx ∈
Tests(B → C,Yx ) | x ∈ X}, the conditional test associated to them is the collection
of transformations

{Sx } ⊙ T :=
{

A Tx
B Sx

yx
C

∣∣∣ x ∈ X , yx ∈ Yx

}
.

Condition C′ states that such collection is actually a test, meaning that

1. the set Z =⋃x∈X {x} × Yx belongs to Outcomes, and
2. the collection {Sx } ⊙ T belongs to Tests(A → C,Z).

The relation between C and C′ is the following:

1. C′ implies C,
2. C implies that the theory can be enlarged to another theory satisfying C′: thanks

to C, all conditional tests can be included without losing the consistency of the
probabilistic structure [34].

Since conditional tests can be included, we will always assume that they are
included, i.e. we will take the validity of C′ as part of the Causality package.

4.1.3 Convexity

The ability to perform conditional tests brings naturally to convexity of the sets of
physical transformations. This result can be obtained in two steps:

1. Under the standing assumptions that the theory is not deterministic and that the
set Transf(I → I) is closed, we obtain that Transf(I → I) is the whole interval
[0, 1]. In other words, every number in the interval [0, 1] can be interpreted as
the probability of some outcome in some test allowed by the theory.

2. Given two transformations T0, T1 ∈ Transf(A → B), the convex combination
p T + (1 − p) T ′ can be generated by

(a) performing a binary test with the outcomes 0 and 1 generated with probabil-
ities p0 = p and p1 = 1 − p

(b) conditionally on the occurrence of the outcome i , performing a test T i con-
taining the transformation Ti

(c) coarse-graining over the appropriate outcomes of the conditional test.

The above observations show that convexity needs not be assumed from the start,
but can be derived from non-determinism and Causality (in the positive formulation
C′), under the standard assumption that the set of probabilities generated by tests in
the theory is closed.
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4.1.4 Rescaling

In addition to convexity, conditional tests guarantee that every state is proportional
to a normalized state. Specifically, given a state ρ of a generic system A, one can
define the normalized state ρ̃ := ρ/(eA|ρ). An approximate way to prepare the state
ρ̃ is to

1. pick a binary test {ρ0, ρ1} such that ρ1 = ρ
2. perform it N times, generating a string of outcomes (x1, x2, . . . , xN )
3. perform a conditional test that discards N − 1 systems, keeping only a system

i such that xi = 1, if such a system exists, or otherwise keeping only the first
system

4. coarse-grain over all outcomes, thus obtaining the deterministic state

ρN := (1 − pN ) ρ̃ + pN ρ̃0 pN = (eA|ρ0)N .

Clearly, the state ρN converges to ρ̃ when N goes to infinity. Hence, the standard
assumption that the set of states is closed guarantees that ρ̃ is a state allowed by the
theory.

4.2 Purity of Composition

Purity of Composition is a very primitive rule about how information propagates in
time. Mathematically, the axiom consists of the implication

A ∈ PurTransf(A → B) , B ∈ PurTransf(B → C)

=⇒ B ◦ A ∈ PurTransf(A → C),

required to be valid for all systems A,B,C ∈ Sys and for all pure transformations
A and B.

Think of a world where this were not the case. In that world, an agent Alice
could perform a test A ∈ Tests(A → B ,X) with such degree of control that,
upon knowing the outcome, she could not possibly know better what happened
to her system. Immediately after, another agent Bob could perform another test
B ∈ Tests(B → C ,Y) also having maximal knowledge of the system’s conditional
evolution. Still, some of the resulting transformations ByAx may not be pure. This
means that ByAx can be simulated by a third party—Charlie—by performing one
test {Cz}z∈Z and joining together the outcomes in a suitable subset Sxy ⊂ Z

A Ax
A By

A =
∑

z∈Sxy

A Cz A . (30)
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Although this scenario is logically conceivable, it rises a puzzling question: What is
the extra information about? Which physical parameters correspond to the outcome
z? Surely the information is not about what happened in the first step, because
Alice already had maximal knowledge about this. Nor it is about what happened in
the second step, because Bob has maximal information about that. The outcome z
has to specify a feature of how the two time steps interacted together—in a sense,
a kind of information that is non-local in time. Quantum theory is non-local, but
not in such an extreme way! Indeed, pure transformations in quantum theory are
described by completely positive maps with a single Kraus operator, i.e. of the form
Ax (·) = Ax · A†

x and By(·) = By · B†
y , and clearly the composition of two pure

transformations is still pure: ByAx (·) = (By Ax ) · (By Ax )
†. Purity of Composition

guarantees this property at the level of first principles.

4.3 Local Tomography

Local Tomography implies that even if a state is entangled, the information it con-
tains can be extracted by local measurements. This fact reconciles the holism of
entanglement and the reductionist idea that the full information about a composite
system can be obtained by studying its parts [25].

Mathematically, Local Tomography states that product effects form a separating
set for the vector space StR(A ⊗ B). Equivalently,9 they form a spanning set for the
dual space StR(A ⊗ B)∗ ≡ EffR(A ⊗ B). Hence, we must have the conditions

EffR(A ⊗ B) = EffR(A) ⊗ EffR(B) and StR(A ⊗ B) = StR(A) ⊗ StR(B), (31)

where ⊗ in the r.h.s. denote the tensor product of finite dimensional vector spaces.
Equation (31) implies that the dimensions of the vector spaces in question satisfy the
product relation [23]

DA⊗B = DA DB. (32)

Moreover, a generic state ρ ∈ St(A ⊗ B) and a generic effect m ∈ Eff(A ⊗ B)
can be expanded as

ρ =
∑

i, j

ρi j
(
vi ⊗ w j

)
and m =

∑

i, j

mi j
(
v∗
i ⊗ w∗

j

)
, (33)

where [ρi j ] and [mi j ] are real matrices, {vi }DA
i=1 and {w j }DB

j=1 are bases for the vector
spaces StR(A) and StR(B), respectively, and {v∗

i }DA
i=1 and {w∗

j }DB
j=1 are the dual bases,

9Recall that we are assuming that the state spaces are finite-dimensional.
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defined by the relations (v∗
i |vk) = δik and (w∗

j |wl) = δ jl , respectively. As a result,
the probability of the effect m on the state ρ can be expressed as

(m|ρ) = Tr[m ρ], (34)

having committed a little abuse of notation in using the letterm (respectively, ρ) both
for the effect (respectively, state) and for the correspondingmatrix [mi j ] (respectively,
[ρi j ]).

Finally, the decomposition in Eq. (33) implies the following

Theorem 1 In a theory satisfying Local Tomography, the correspondence between
a transformation E ∈ Transf(A → B) and the linear map Ê : StR(A) → StR(B) is
invertible.

In other words, Local Tomography guarantees that physical transformations can
be characterized in the simplest possible way: by preparing a set of input states and
performing a set of measurements on the output.

A remarkable example of a theory that does not satisfy Local Tomography is
quantum theory on real Hilbert spaces [52], RQT for short. In this theory, states
and effects are real symmetric matrices, and transformations are represented by
completely positivemapsmapping symmetricmatrices into symmetricmatrices. The
failure of the relation DA⊗B = DA DB was first noted by Araki [53]. More explicitly,
Wootters [54] noted that two different bipartite states can be locally indistinguishable,
as in the following extreme example:

ρ = 1
2
|!+⟩⟨!+| +

1
2
|"−⟩⟨"−| ρ′ = 1

2
|!−⟩⟨!−| +

1
2
|"+⟩⟨"+| (35)

with |!±⟩ := (|0⟩|0⟩ ± |1⟩|1⟩)/
√
2 and |"±⟩ = (|0⟩|1⟩ ± |1⟩|0⟩)/

√
2. Here the

states ρ and ρ′ have orthogonal support and therefore are perfectly distinguishable.
However, it is easy to check that one has

ρ − ρ′ = 1
2

(
0 −1
1 0

)
⊗
(
0 −1
1 0

)
,

and, therefore, Tr[(ρ − ρ′)(PA ⊗ PB)] = 0 for every pair of real symmetric matrices
PA and PB. In other words, ρ and ρ′ give exactly the same statistics for all possible
local measurements.

RQT has another, closely related quirk: two different transformations of systemA
can act in the same way on all states of A. For example, consider the qubit channels
C and C′, whose action on a generic 2 × 2 matrix is defined by

C(M) := 1
2
M + 1

2
YMY and C ′(M) := 1

2
ZMZ + 1

2
XMX,
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X, Y, and Z being the Pauli matrices. When acting on symmetric matrices, the two
channels give exactly the same output: one has C(τ ) = C ′(τ ) = I/2 for every
symmetric matrix τ . On the other hand, one has

(C ⊗ I)(|!+⟩⟨!+) = ρ (C ′ ⊗ I)(|!+⟩⟨!+) = ρ′,

where ρ and ρ′ are the two perfectly distinguishable states defined in Eq. (35). This
means that, in fact, the two transformations C and C ′ are perfectly distinguishable
with the help of a reference system. For a more extensive discussion of tomography
in RQT we refer the reader to subsection V.A of Ref. [34] and to the work of Hardy
and Wootters [55].

4.4 Perfect State Discrimination

Perfect StateDiscrimination is an optimistic statement about the possibility to encode
bits without error. It guarantees that every state that could be part of a set of perfectly
distinguishable states is indeed perfectly distinguishable from some other state.

By virtue of Perfect State Discrimination, every normalized non-internal state ρ0
can be perfectly distinguished from some state ρ1. As a result, the two states ρ0 and ρ1
can be used to encode the value of a bit without errors. It is easy to see that Quantum
theory satisfies the axiom. Indeed, a density matrix is internal if and only if it has
full rank. Hence, a non-internal density matrix ρ0 must have a kernel, so that every
state ρ1 with support in the kernel of ρ0 will be perfectly distinguishable from ρ0.

4.5 Ideal Compression

Ideal Compression expresses the idea that information is fungible, i.e. independent of
the physical support in which it is encoded. The axiom implies non-trivial statements
about the state spaces arising in the theory. For example, suppose that the theory
contains a system whose space of deterministic states is a square. Then, the theory
should contain also a system whose space of deterministic states is a segment—
in other words, the theory should contain a classical bit. Indeed, only in this way
one could encode a side of the square in a lossless and maximally efficient way.
More generally, Ideal Compression imposes that the every face of the convex set of
deterministic states be in one-to-one correspondence with the set of deterministic
states of some smaller physical system.

Ideal Compression is clearly satisfied by quantum theory. Indeed, every density
matrix of rank r can be compressed ideally to a density matrix of an r -dimensional
quantum system. For example, the two-qubit density matrix
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ρ =

⎛

⎜⎜⎝

ρ00,00 0 0 ρ00,11
0 0 0 0
0 0 0 0

ρ11,00 0 0 ρ11,11

⎞

⎟⎟⎠ (36)

can be compressed ideally to the one-qubit density matrix

E(ρ) =
(

ρ00,00 ρ00,11
ρ11,00 ρ11,11

)
(37)

with encoding and decoding channels given by

E(·) := V † (·) V + Tr[(I − V V †) (·) ] |0⟩⟨0| V := |0⟩|0⟩⟨0| + |1⟩|1⟩⟨1|
D(·) := V (·) V †.

Note that Ideal Compression refers to a single-shot, zero error scenario, i.e. a
scenario where the source is used only once and no decoding errors are allowed.
Such a scenario is different from the asymptotic scenario considered in Shannon’s
[56] and Schumacher’s [57] compression,wherein small decoding errors are allowed,
under the condition that they vanish in the asymptotic limit of infinitely many uses
of the same source.

4.6 Purification

While our first five axioms expressed standard requirements for information-
processing, Purification brings in a radically new idea: at least in principle, every state
can be prepared by an agent who has maximal control over all the systems involved
in the preparation process. In short, Purification allows us to harness randomness by
controlling the environment. The idea does not apply only to preparations, but also to
arbitrary deterministic transformations: combining Purification with Causality and
Local Tomography, we can prove the following

Theorem 2 ([34]) For every deterministic transformation T ∈ DetTransf(A →
A′), there exist two systems E and E′, a pure state η ∈ PurSt(E), and a reversible
transformation U ∈ RevTransf(A ⊗ E → A′ ⊗ E′) such that

A T A′ = A

U
A′

η E E′ e
, (38)

where e is the unique deterministic effect of system E′.
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In other words, Purification implies that every irreversible process can be simu-
lated through reversible interactions between the system and its environment, with
the environment initialized in a pure state. This result is a necessary condition for
the formulation of physical theories in which elementary processes are reversible at
the fundamental level.

Purification is known to be satisfied by quantummechanics. For example, consider
a single-qubit mixed state, diagonalized as

ρ = p0|0⟩⟨0| + p1|1⟩⟨1|, (39)

for some suitable orthonormal basis {|0⟩, |1⟩}. A purification of the state ρ can be
obtained by adding a second qubit and by preparing the two qubits in the pure state

|!⟩ := √
p0 |0⟩|0⟩ +

√
p1 |1⟩|1⟩. (40)

Indeed, it is immediate to see that ρ is the marginal of the density matrix |!⟩⟨!|
on the first qubit. In addition, any other purification |! ′⟩—using a single qubit as
the purifying system—must be of the form |!⟩′ = (I ⊗ U ) |!⟩ for some unitary
matrix U .

In the quantum information community, takingpurifications is a standard approach
to quantum communication, cryptography, and quantum error correction. The
approach is familiarly known with the nickname of “going to the Church of the
larger Hilbert space”.10 Purification is known amongmathematicians as theGelfand-
Naimark-Segal construction [59, 60].

Two important remarks are in order:

1. Purification, entanglement, and quantum information. Purification is intimately
linked with the phenomenon of entanglement [2], namely the existence of pure
bipartite states !AB that are not of the product form ψA ⊗ ψB. In the OPT frame-
work, the link is made precise by the following

Proposition 4 Let " be a theory satisfying Causality, Local Tomography, and
Purification. Then, there are only two alternatives: either " is deterministic, or
" exhibits entanglement.

Under our standing assumption that the theory is non-deterministic, entanglement
follows from Purification as a necessary consequence.
Entanglement is a very peculiar feature—far from what we experience in our
everyday life. How can we claim that we know A and B if we do not know A
alone? This puzzling feature had been noted already in the early days of quan-
tum theory, when Schrödinger famously wrote: “Another way of expressing the
peculiar situation is: the best possible knowledge of a whole does not necessarily
include the best possible knowledge of all its parts” [2]. And, in the same paper: “I
would not call that one but rather the characteristic trait of quantummechanics, the

10The expression is due to John Smolin, see e.g. the lecture notes [58].
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one that enforces its entire departure from classical lines of thought”. In a sense,
our reconstruction can be considered as a mathematical proof of Schrödinger’s
intuition11: on the background of five standard axioms satisfied by both classical
theory and quantum theory, Purification is the ingredient that allows to reconstruct
the Hilbert space framework and the distinctive information-theoretic features of
quantum theory. Combined with Causality and Local Tomography, Purification
already reproduces an impressive list of quantum-like features, like no-cloning,
no-programming, information-disturbance tradeoff, no bit commitment, conclu-
sive teleportation and entanglement swapping, the reversible dilation of channels,
the state-transformation isomorphism, the structure of error correction, and the
structure of no-signalling channels [34].

2. Purification and the Many Wolrd Interpretation. Pondering about the meaning
of Purification, one may tempted to conclude that it favours the Many Worlds
Interpretation (MWI) of quantum mechanics [61]. In fact, Purification is feature
of quantum theory, and, as such, it does not favour the MWI more than quantum
theory itself does.Whether or not quantum theory provides any evidence formany
worlds is a debatable point, but the validity of Purification is independent of such
interpretative issue. Furthermore, we stress that we did not phrase Purification
as an ontological statement about “how processes occur in nature”, but rather
an operational statement about the agent’s ability to simulate physical processes
with maximal control. Purification is compatible with the idea that processes are
reversible at the fundamental level, and its validity is a necessary condition for
building up a physical description of nature in terms of pure states and reversible
processes. Still, here we do not make any commitment as to how processes are
realized in nature, because this would unnecessarily limit the range of application
of our results.

5 The Reconstruction of Quantum Theory

Here we provide a summary of the reconstruction of Refs. [26, 34], highlighting
the key theorems and providing a guide to the original papers. The scope of the
reconstruction is not just to derive the Hilbert space framework, but also to rebuild
the key quantum features directly from first principles. Accordingly, we try to derive
as much as possible of quantum theory directly from the axioms, leaving Hilbert
spaces to the very end. We organize our results in six subsections:

1. Elementary facts.
2. Correlation structures.
3. Distinguishability structures.

11It is worth stressing that Schrödinger’s paper was not just about the existence of entangled states,
but also about how entanglement interacted with the reversible dynamics and with the process of
measurement (cf. the notion of steering, which made its first appearance in the very same paper).
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4. Interaction between correlation and distinguishability structures.
5. Qubit features.
6. The density matrix.

5.1 Elementary Facts

5.1.1 From Local Tomography

Local Tomography implies a few useful facts:

1. If α ∈ St(A) and β ∈ St(B) are pure, then also α ⊗ β is pure.
2. Let ρAB be a state of the composite system A ⊗ B and, assuming Causality, let

ρA be its marginal on system A. If ρA is pure, then ρAB is a product state.
3. If ρA ∈ St(A) and ρB ∈ St(B) are internal states, then also ρA ⊗ ρB is an internal

state.
4. Suppose that every system A has a unique invariant state χA, i.e. a unique state

satisfying the condition UχA = χA for every reversible transformation U . Then,
χA⊗B = χA ⊗ χB.

5.1.2 From Purification

Purification has a few immediate consequences. First, all pure states of a given system
are connected to one another through reversible transformations:

Proposition 5 For every system A ∈ Sys and every pair of pure states α,α′ ∈
PurSt(A) there exists a reversible transformation U such that α′ = U α.

To prove this fact, it is enough to pick a system B and pure state β ∈ PurSt(B),
consider the states ! = α⊗β and ! ′ = α′ ⊗β as purifications of β, and invoke the
essential uniqueness of purification [Eq. (28)].Mathematically, the above proposition
expresses the fact that the action of the reversible transformations is transitive on
the set of pure states—a requirement that played an important role in many recent
reconstructions, see e.g. [23, 28, 29]. A byproduct of transitivity is

Proposition 6 Every system A ∈ Sys has a unique invariant state χA.

Finally, combining Ideal Compression and Purification it is easy to see that every
state has a minimal purification, in the following sense

Definition 17 Let ! ∈ PurSt(A ⊗ B) be a pure state with marginals ρA and ρB on
systems A and B, respectively. We say that ! is a minimal purification of ρA iff ρB
is internal.

To construct a minimal purification, it is enough to take an arbitrary purification
and to compress the state of the purifying system.
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5.2 Correlation Structures

5.2.1 Pure Steering

One of the most important consequences of our axioms is that pure bipartite states
enable steering, namely the ability to remotely generate every desired ensemble
decomposition of a marginal state [2, 62]:

Proposition 7 (Pure Steering) Let ! be a pure state of the composite systemA⊗B,
let ρ be the marginal of ! on system A, and let ρ = {ρx }x∈X be an ensemble
decomposition of ρ. Then there exists a measurement b = {bx }x∈X such that

!

A

B bx

= ρx A ∀x ∈ X. (41)

Pure steering is the essential ingredient for a number of major results. The first
result is the existence of pure, tomographically faithful states. A state ρ ∈ St(A⊗B)
is called tomographically faithful for system A iff the implication

ρ
A T C

B
= ρ

A T ′ C

B
=⇒ T = T ′, (42)

holds for every system C and every pair of transformations T and T ′ of type A → C.
Thanks to Pure Steering and Local Tomography, we are able to construct tomograph-
ically faithful pure states:

Proposition 8 Let ρA be an internal state of system A and let ! ∈ PurSt(A ⊗ B)
be a purification of ρA. Then, ! is tomographically faithful for system A.

The result can be improved by choosing a minimal purification: in this way, the
pure state! is faithful on both systems A and B.We call such a state doubly faithful.

5.2.2 Conjugate Systems

A canonical choice of doubly faithful state is obtained by picking a minimal purifi-
cation of the invariant state χA. We denote such purification by " ∈ PurSt(A ⊗A)
and call systemA the conjugate of systemA. The name is motivated by the following
facts:

1. system A is uniquely defined, up to operational equivalence
2. the marginal of " on system A is the invariant state χA (cf. Corollary 46 of [34]),

meaning that we have A = A, up to operational equivalence.
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Summarizing, the state ! satisfies the relations

!
A

A e
= χ A

and !
A e
A = χ A

. (43)

By analogy with quantum theory, we call ! a Bell state.

5.2.3 The State-Transformation Isomorphism

For a given transformation T , we define the (generally unnormalized) state

!T
C

A := !

A T C

A
. (44)

and call the correspondence T !→ !T the state-transformation isomorphism. Since
the Bell state ! is doubly faithful, the correspondence is one-to-one. In quantum
theory, the state-transformation isomorphism coincides with the Choi isomorphism
[63]. By analogy, we call the state !T the Choi state.

A powerful byproduct of the state-transformation isomorphism is that the nor-
malized states completely identify the theory:

Theorem 3 Let " and "′ be two theories with the same set of systems. If the sets
of normalized states of " and "′ coincide for all systems, then the two theories
coincide.

Thanks to this result, deriving the density matrix representation of normalized
states is sufficient to derive the whole of quantum theory.

5.2.4 Conclusive Entanglement Swapping

An important consequence of Pure Steering is the possibility of entanglement swap-
ping, namely the possibility to generate entanglement remotely by performing a joint
measurement. Consider, as a prototype of entangled state, the Bell state !. Then, it
is possible to show that there exists a pure effect E ∈ PurEff(A⊗A) and a non-zero
probability pA > 0 such that

!
A

B1

E
!

B2

C

= pA !

A

A ≡ B2 ,

B1 ≡ C ≡ A.
C

(45)

This diagram represents an instance of conclusive entanglement swapping: condi-
tionally on the occurrence of the effect E , the two systems A and C are prepared in
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the Bell state, consuming the initial entanglement present in the composite systems
A ⊗ B1 and B2 ⊗ C.

The possibility of entanglement swapping follows easily from Pure Steering:
Since the states χA and χA are internal, Local Tomography implies that their product
χA ⊗χA is internal. Hence, there must exist a non-zero probability pA > 0 such that

χA ⊗ χA = pA ! + (1 − pA) τ , (46)

for some state τ . Applying Pure Steering (Proposition 7) to the pure state !⊗! and
to the ensemble {pA ! , (1 − pA) τ } one can find a binary measurement {E, eB1 ⊗
eB2 − E} such that the entanglement swapping condition (45) holds. Using the fact
that the state!⊗! is doubly faithful, it is easy to see that the effect E must be pure.

5.2.5 Conclusive Teleportation

By the state-transformation isomorphism, conclusive entanglement swapping is
equivalent to conclusive teleportation [17], expressed by the diagram

!
A

A

EA
= pA A . (47)

Indeed, the entanglement swapping diagram (45) is equivalent to the condition!T =
!T ′ , with

A T A := !
A

A

EA
and A T ′ A := A pA IA A . (48)

By the state-transformation isomorphism, !T = !T ′ implies T = T ′, which is
nothing but the teleportation condition.

5.2.6 The Teleportation Upper Bound

Combined with Local Tomography, the teleportation diagram allows us to upper
bound the dimension of the state space. The idea is to write the teleportation diagram
in matrix elements, by expanding ! and E as

! =
∑

ik

!ik (vi ⊗ wk) and E =
∑

jl

E jl
(
w∗

j ⊗ v∗
l

)
, (49)
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with suitable bases {vi }DA
i=1 and {w j }DA

j=1. In this representation, Eq. (47) becomes

[! E ]il = pA δil , (50)

and, taking the trace,

Tr[!E] = pA DA. (51)

On the other hand, we have

Tr[!E] = (E |SA,A |!) ≤ 1, (52)

which combined with Eq. (51) leads to bound

DA ≤ 1
pA

. (53)

Clearly, in order to have the best bound we need to find the maximum probability of
teleportation. To discover what the maximum is, we need to move our attention to
the distinguishability structures implied by our axioms.

5.3 Distinguishability Structures

5.3.1 No Disturbance Without Information

Our first move is to derive a simple result about the structure of measurements:
a measurement that extracts no information from a face of the state space can be
implemented without disturbing that face. By face of the state space we mean a
face of the convex set of deterministic states.12 We say that the measurement m ∈
Tests(A → I,X) does not extract information from the face F iff there exists a set
of probabilities {px }x∈X such that

(mx |τ ) = px ∀x ∈ X, ∀τ ∈ F.

Also, we say that a test T ∈ Tests(A → A,X) does not disturb the face F iff∑
x∈X Tx |τ ) = |τ ) for every state τ ∈ F .

12We recall that a face of a convex set C is a convex subset F ⊆ C satisfying the condition that,
for every x ∈ F , if x is a non-trivial convex combination of x1 and x2 with x1, x2 ∈ C , then x1 and
x2 belong to F .
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With this terminology, our result is the following:

Proposition 9 If a measurement m does not extract information from the face F,
then there exists a test T that realizes the measurement—namely (eA|Tx = (mx |,
∀x ∈ X—and does not disturb F.

This result has two important consequences. First, it allows us to establishwhether
or not a set of perfectly distinguishable set can be extended:

Proposition 10 Let S = {ρx | x ∈ X} be a set of perfectly distinguishable states
and let ωS be its barycenter, defined as

ωS := 1
|X|

∑

x∈X
ρx .

Then, the following are equivalent:

1. the set S is maximal, i.e. no other set S′ ⊃ S can consist of perfectly distinguish-
able states

2. the barycenter of S is internal.

Another important consequence is that only the puremaximal sets can have max-
imum cardinality:

Proposition 11 Let S be a maximal set of perfectly distinguishable states of sys-
tem A. If one of the states in S is not pure, then there exists another maximal set
S′ ⊂ St(A), consisting only of pure states and having strictly larger cardinality
|S′| > |S|.

Combining the above points we have that every pure state belongs to some max-
imal set of perfectly distinguishable pure states. For short, we call such sets pure
maximal sets.

5.3.2 Duality Between Pure States and Pure Effects

For a pure maximal set S, we observe that the measurement that distinguishes the
states in S must consist of pure effects. Hence, for every pure state α ∈ PurSt(A)
there exists an pure effect a such that (a|α) = 1. Expanding on this observation,
we establish a one-to-one correspondence between pure normalized states and pure
normalized effects,13 denoted by PurSt1(A) and PurEff1(A), respectively.

Theorem 4 For every systemA ∈ Sys, there exists a one-to-onemap † : PurSt1(A)
→ PurEff1(A), sending pure normalized states to pure normalized effects and sat-
isfying the condition

(α†|α) = 1 ∀α ∈ PurSt1(A).

13We call an effect of system A normalized iff there exists an effect a state ρ such that (a|ρ) = 1.
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The proof is rather elaborate. The two main steps are

1. proving that every pure normalized effect a identifies a pure state α, meaning that
(a|ρ) = 1 if and only if ρ = α.

2. proving that, if two pure effects identify the same state, then they must coincide.

The second step uses Pure Steering in an essential way, suggesting that the distin-
guishability features of quantum theory are deeply connected with its correlation
features.

5.3.3 The Informational Dimension

An easy consequence of the state-effect duality is that every two pure normalized
effects are connected by a reversible transformation, just like the pure states. In turn,
this leads to a useful result.

Proposition 12 For a given system A ∈ Sys, all pure maximal sets have the same
cardinality.

The proof idea is simple: let a = {ax }x∈X be the measurement that distinguishes
among the states in a pure maximal set S = {αx | x ∈ X}. As we already observed, all
the effects in a must be pure. Since every two pure normalized effects are connected
by a reversible transformation, we must have ax = a ◦ Ux ∀x ∈ X, where a is fixed
(but otherwise arbitrary) effect in PurEff1(A) and Ux is a reversible transformation.
Applying the effects to the invariant state χ we then obtain

(ax |χ) = (a|χ) ∀x ∈ X,

and summing over x we get the equality 1 = |X| (a|χ). Hence, the cardinality of the
maximal set S is |S| ≡ |X| = 1/(a|χ). Since S is a generic pure maximal set, we
proved the desired result.

In the following, the cardinality of the pure maximal sets in A will be denoted
by dA. We call it the informational dimension, because it is the number of distinct
classical messages that can be encoded in system A and decoded without error. In
Quantum Theory, dA is the dimension of the Hilbert space associated to system A.

For composite systems, the informational dimension has the product form:

Proposition 13 For every pair of systems A and B one has dA⊗B = dA dB.

The reason is simply that the product of two pure maximal sets for systems A
and B is a pure maximal set for A ⊗ B: it is pure, because the product of two pure
states is pure (by Local Tomography) and it is maximal because the product of two
internal states is internal (again, by Local Tomography)—hence, maximality follows
by Proposition 10.
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5.3.4 The Spectral Theorem

An important consequence of the state-effect duality is the ability to decompose
every state as a mixture of perfectly distinguishable pure states. The crucial step is
to prove such a decomposition for the invariant state:

Lemma 1 For every pure maximal set {αx }dAx=1 ⊂ PurSt(A) one has χ = 1
dA∑dA

x=1 αx .

This result is extremely important, because it helps us to cope with the existence
of different maximal sets of pure states. To begin with, it allows us to prove the
analogue of the spectral theorem:

Theorem 5 (Spectral Decomposition) For every vector v ∈ StR(A) there exists a
pure maximal set {αx }dAx=1 ⊂ PurSt(A) and a set of real coefficients {cx }dAx=1 such
that

v =
dA∑

x=1

cx αx . (54)

Similarly, for every vector w ∈ EffR(A) there exists a pure discriminating measure-
ment {ax }dAx=1 and a set of real coefficients {dx }dAx=1 such that

w =
dA∑

x=1

dx ax . (55)

5.3.5 Orthogonal Faces

Thanks to the spectral theorem, it is easy to retrieve the basic structures of quantum
logic. In general, the faces of a convex setC form a bounded lattice, with partial order
≼ corresponding to set-theoretic inclusion and with meet and join operations defined
as F ∧ G := F ∩ G and F ∨ G := ⋂{H | F ⊆ H , G ⊆ H}, respectively. The
lattice is bounded, with the convex set C being the top element and the empty set ∅
being the bottom element. Hence, the set of deterministic states CA := DetSt(A) in
a convex theory can be seen as a lattice in the above way. However, our axioms imply
much more: according to them, the faces of the state space form an orthomodular
lattice, i.e. a lattice with an operation of orthogonal complement ⊥ satisfying the
orthomodularity condition F ≼ G =⇒ G = F ∨ (G ∧ F⊥).

Let us see why this is the case. For a given face F ⊆ CA we can pick a set
of perfectly distinguishable pure states SF = {αx }dFx=1 ⊂ F that is maximal in F ,
meaning that no other state in F can be distinguished perfectly from the states in SF .
Then, we can define the barycenter of F as
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ωF := 1
dF

dF∑

x=1

αx . (56)

Since the face F can be compressed into the state space of a smaller system, Lemma 1
guarantees that the definition of the state ωF depends only on F , and not on the max-
imal set SF . In other words, Eq. (56) sets up a one-to-one correspondence between
faces and their barycenters.

Now,we can extend the set SF to a puremaximal set for systemA, say {αx }dAx=1. Let
us define the set SF⊥ := {αx }dAx=dF+1 and denote by F⊥ the smallest face containing
SF⊥ . By construction, it is easy to verify that the set SF⊥ is maximal in F⊥ and
therefore

ωF⊥ = 1
dA − dF

dA∑

x=dF+1

αx .

F⊥ can be equivalently characterized as the face containing all the states that are
perfectly distinguishable from F . Moreover, it is not hard to show that

1. F ∨ F⊥ = CA

2. F ∧ F⊥ = ∅
3.
(
F⊥)⊥ ≡ F

4. F ≼ G =⇒ G⊥ ≼ F⊥

5. F ≼ G =⇒ G = F ∨
(
G ∧ F⊥),

where the last two properties are proven by picking a pure maximal set for F , extend-
ing it to a pure maximal set for G, and extending the latter to a pure maximal set for
the whole convex set CA. Properties 1–4 show that the operation ⊥ is an orthogonal
complement, while property 5 is the orthomodularity condition. Hence, we obtained
that the set of faces must be an orthomodular lattice.

5.3.6 Orthogonal Effects

By the state-effect duality, we can associate every face F with an effect aF , defined
as

aF :=
dF∑

x=1

α†
x , (57)

where SF = {αx }dFx=1 is a pure maximal set in F . Again, it is easy to see that the
definition of aF is independent of the choice of maximal set SF . Indeed, by definition
one has aF +aF⊥ = eA for every pure maximal set SF⊥ . Varying SF without varying
SF⊥ shows that the definition of aF depends only on F .

Thanks to the spectral theorem, aF can be operationally characterized the only
effect that happens with unit probability on F and with zero probability on F⊥:
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Proposition 14 aF is the unique effect a ∈ Eff(A) satisfying the conditions

(a|ρ) = 1 ∀ρ ∈ F

(a|σ) = 0 ∀σ ∈ F⊥.

For this reason,we callaF the identifying effect of the face F . The set of identifying
effects inherits the structure of orthomodular lattice from the set of faces, via the
following definitions

1. aF ≼ aG iff F ≼ G,
2. aF ∧ aG := aF∧G ,
3. aF ∨ aG := aF∨G , and
4. a⊥

F := aF⊥ .

In quantum theory, the lattice of identifying effects is the lattice of projectors on
subspaces of the Hilbert space. It is easy to see that the partial order ≼ coincides
with the partial order ≤ induced by the probabilities, namely aF ≼ aG if and only if
(aF |ρ) ≤ (aG |ρ) for every state ρ.

5.3.7 Orthogonal Projections

Faces of the state space can also be associated with physical transformations, in the
following way:

Definition 18 A transformation !F ∈ Transf(A → A) is an orthogonal projection
on the face F ⊆ CA iff the following conditions are satisfied14

ρ A !F
A = ρ A ∀ρ ∈ F (59)

σ A !F
A = 0 ∀σ ∈ F⊥. (60)

14In the original work [26], we also required that projections be pure. However, in the context of our
axioms, purity is implied by the two conditions in the present definition. This follows from the fact
that i) one can construct a pure projection, and ii) it is possible to prove that projections are unique.
A sketch of proof is the following: First, one can prove that for every pure state α ∈ F one must
have (α†|!F = (α†| (this follows from the definition and from Proposition 14). As a consequence,
one also has (aF |!F = (aF |. This implies that, for every state ρ ∈ St(A), the unnormalized state
!F |ρ) is proportional to a state in F . Now, for two projections !F and !′

F one must have

(α†|!F |ρ) = (α†|ρ) = (α†|!′
F |ρ), (58)

for every pure state α ∈ F . Since the states !F |ρ) and !′
F |ρ) are proportional to states in F

and α ∈ F is a generic pure state, Ideal Compression implies !F |ρ) = !′
F |ρ), or equivalently,

!F = !′
F , because the state ρ is generic.
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The definition is non-empty: thanks to Purification and Purity of Composition,
we are able to construct a pure projection !F for every face F . Moreover, it follows
from the definition that the projection !F is unique.

In addition to purity, projections have a number of properties, including

1. (a⊥
F |!F = 0

2. (aG |!F = (aG | whenever G ≼ F
3. for every input state ρ, the normalized output state τ := !F |ρ)/(eA|!F |ρ)

belongs to F
4. !G !F = !F!G = !G whenever G ≼ F .

5.4 Interaction Between Correlation and Distinguishability
Structures

We have seen that our axioms imply peculiar features, both in the way systems
correlate and in the way states can be distinguished. It is time to combine these two
types of features and to explore the consequences.

5.4.1 The Schmidt Bases

Combining Pure Steering and Spectral Decomposition, we are now in position to
give the operational version of the Schmidt bases in quantum theory. The result can
be summarized as follows:

Proposition 15 Let " be a pure state of A ⊗ B and let ρA and ρB be its marginals
on systems A and B, respectively. Then, for every spectral decomposition

ρA =
r∑

x=1

px αx ,

there exists a set of perfectly distinguishable pure states {βx }rx=1 ⊂ PurSt(B) such
that

ρB =
r∑

x=1

px βx . (61)

Moreover, one has

"

A ax
B by

=

⎧
⎨

⎩

px δxy x, y ∈ {1, . . . , r}

0 x, y /∈ {1, . . . , r}
(62)
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for every two measurements a = {ax }kAx=1 and b = {by}kBy=1 satisfying ax = α†
x and

by = β†
y for every x ≤ r and for every y ≤ r .

In particular, applying the result to the Bell state !, we obtain that the invariant
state χA can be decomposed as χA = 1

dA

∑dA
x=1 αx , for a suitable set of perfectly

distinguishable pure states {αx }dAx=1. In particular, this implies that conjugate systems
have the same informational dimension:

Corollary 1 For every system A, one has dA = dA.

Combined with the fact that the informational dimension is multiplicative (Propo-
sition 13), the above result implies that the composite systemA⊗A has informational
dimension

dA⊗A = d2
A.

5.4.2 The Maximum Probability of Conclusive Teleportation

In our construction of conclusive teleportation, the teleportation probability was
equal to the probability of the state ! in an ensemble decomposition of the invariant
state χA ⊗ χA, cf. Eq. (46). Now, since χA ⊗ χA is the invariant state, it can be
decomposed as

χA ⊗ χA = 1
d2
A

d2
A∑

x=1

!x ,

for every pure maximal set {!x }d
2
A
x=1. The maximum probability of the Bell state in a

convex decomposition of χA ⊗ χA is then given by

pmax
A = 1

d2
A

. (63)

Inserting the above equality into the teleportation upper bound (53) we obtain the
relation

DA ≤ d2
A. (64)

In the next paragraph we will see how to obtain the converse inequality.

5.4.3 The Teleportation Lower Bound

Thanks to the state-effect duality, it is possible to establish a lower bound on the state
space dimension. The proof is a little bit laborious and consists of two steps:
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1. show that the effect !† that identifies the Bell state is of the form

A

!†
A =

A U A

SA,A

A

E
A A

where E is the effect achieving maximum teleportation probability, SA,A is the
swap, and U is some reversible transformation.

2. show that, with a suitable choice of basis for the vector space StR(A), every
reversible transformation U is represented by an orthogonal matrix MU .

Once these two results are established, we can expand the Bell state ! and the
teleportation effect E as in Eq. (49), thus obtaining

1 = (!†|!) = Tr[! E MU ] = pmax
A Tr[MU ] ≤ pmax

A DA, (65)

having used the teleportation equality ! E = pmax
A IDA and the fact that the trace

of an orthogonal matrix cannot be larger than the trace of the identity. Hence, we
obtained the teleportation lower bound

DA ≥ 1
pmax
A

. (66)

Combining the teleportation lower bound with Eqs. (63) and (64), we obtain the
equality

DA = d2
A. (67)

5.5 Qubit Structures

So far, we avoided giving a concrete representation of our state spaces: all the quan-
tum features that we have shown followed directly from the principles. We now
proceed to analyze some features that are more closely related to the concrete geo-
metrical shape of the quantum state spaces. We will first see that all two-dimensional
systems in our theory have qubit state spaces. Leveraging on this fact, we will then
derive two features of higher-dimensional systems: (i) an operational version of the
superposition principle, and (ii) the fact that all systems of the same dimension are
operationally equivalent.

5.5.1 Derivation of the Qubit

Showing that the states of a two-dimensional system can be described by density
matrices is quite easy. This can be done geometrically, by showing that the deter-
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ministic states form a 3-dimensional Euclidean ball. The 3-dimensionality is obvi-
ous from the equality DA = d2

A, which for dA = 2 implies that the convex set
CA = DetSt(A) is a three-dimensional manifold.15 Then, we can make a simple
geometrical reasoning:

1. all the pure states are generated from a fixed pure state by application of reversible
transformations, and, by choosing a suitable basis for the state space, such trans-
formations act in the 3-dimensional space as orthogonal matrices.

2. all states on the border of CA are pure—otherwise, Perfect State Discrimination
and Proposition 11 would imply dA > 2. This means that, if we move away from
the invariant state χA in an arbitrary direction, at some point we will hit a pure
state.

In the ordinary 3-dimensional space, the sphere is the only (closed) 3-dimensional
convex set generated by orthogonal matrices and with only pure states on the border.

Once we established that the convex set CA is a sphere, we can represent every
normalized state ρ ∈ CA with a density matrix Sρ. In particular, the pure states will
be of the form

Sα =
(

p
√
p(1 − p) e−iθ

√
p(1 − p) eiθ 1 − p

)
= |α⟩⟨α| (68)

|α⟩ := √
p |0⟩ + eiθ

√
1 − p |1⟩,

for some probability p ∈ [0, 1] and some phase θ ∈ [0, 2π). Once we have chosen
this representation, it is obvious that every effect a ∈ Eff(A)must be described by a
positive semidefinite matrix Ea upper bounded by the identity and that probabilities
are given by the Born rule

(a|ρ) = Tr[Ea Sρ]. (69)

Moreover, the state-effect duality imposes that all such matrices represent valid
effects.

5.5.2 The Superposition Principle

Pure states in quantum theory satisfy the so-called “superposition principle”, which
just means that they are in one-to-one correspondence with the rays of the underlying
Hilbert space. Per se, this statement has hardly any operational meaning. However,
one can formulate an operational version in general OPTs:

15In general, the dimension of the convex set CA is given by DA − 1.
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Definition 19 (Superposition Principle) We say that system A satisfies the super-
position principle iff for every pure maximal set S = {αx | x ∈ X} ⊂ PurSt(A) and
for every probability distribution {px }x∈X there exists one pure state ψ such that

ψ A ax = px ∀x ∈ X, (70)

for every measurement a = {ax }x∈X that perfectly distinguishes among the states in
the maximal set S.

Now, in a theory satisfying our principles we know that the two-dimensional sys-
tems are quantum—and therefore satisfy the superposition principle. Thanks to Ideal
Compression, it is then easy to generalize the result to systems of arbitrary dimen-
sion: given two perfectly distinguishable pure states, one can encode them into a
two-dimensional system, use the Bloch sphere representation to find the superposi-
tion state, and come back with the decoding operation. Iterating this procedure, we
can superpose any number of perfectly distinguishable pure states.

As a simple application of the superposition principle, we obtain the following

Proposition 16 A state ρA with spectral decomposition ρA = ∑r
x=1 px αx has a

purification with purifying system B if and only if dB ≥ r .

The “only if” part was already clear from the Schmidt decomposition. For the “if”
part, it is enough to pick r perfectly distinguishable pure states of B, say {βx }rx=1,
and to superpose the product states {αx ⊗ βx }rx=1 with probabilities {px }rx=1. The
resulting pure state ! ∈ PurSt(A ⊗ B) is the desired purification.

5.5.3 The Superposition Principle for Transformations

The superposition principle allows us to glue distinguishable states in any way we
like. Thanks to the state-transformation isomorphism, we can extend this idea to
transformations. For example, consider a set of pure transformations {Ax | x ∈
X} ⊂ PurTransf(A → B) and suppose that they have orthogonal support, that is,
that there exists a set of orthogonal faces {Fx | x ∈ X} such that

Ax = Ax "Fx ∀x ∈ X. (71)

Then, it is possible to find a pure transformationA ∈ PurTransf(A → B) such that

A"Fx = Ax ∀x ∈ X. (72)

The result follows by noticing that the Choi states {#Ax | x ∈ X} are proportional to
pure and perfectly distinguishable states and by applying the superposition principle
to corresponding the normalized states.
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5.5.4 Equivalence of Pure Maximal Sets up to Reversible
Transformations

Using the superposition principle for transformations we can prove that all pure
maximal sets of the same cardinality are equivalent:

Proposition 17 Let {αx }dAx=1 and {βy}dBy=1be pure maximal sets for systems A and
B, respectively. If dA = dB, then there exists a reversible transformation U ∈
Transf(A → B) such that

αx A U B = βx
B ∀x ∈ X.

The result follows immediately from the application of the superposition principle
to the pure transformations Ax = |βx )(α†

x |. As a corollary, we have that all systems
of the same dimension are operationally equivalent.

5.6 The Density Matrix

We finally reached to the end of the reconstruction. It is now time to enter into the
specific details of the Hilbert space formalism of quantum theory. Our strategy to
reconstruct the Hilbert space formalism is to show that, for every system A, there
exists a one-to-one linear map from the vector space StR(A) to the space of dA × dA
Hermitian matrices, with the property that the convex set of deterministic states is
mapped to the convex set of density matrices (non-negative matrices with unit trace).

Let us see how this can be proven. Since the dimension of the state space satisfies
the relation DA = d2

A, every vector v ∈ StR(A) can be represented as square dA×dA
real matrix Mv . In turn, the matrix Mv can be turned into a complex Hermitian matrix
Sv , applying the linear transformation

Sv: =
(
Mv + MT

v

)
+ i
(
Mv − MT

v

)
, (73)

where MT denotes the transpose of M . The problem is now to find a suitable repre-
sentation in which normalized states ρ ∈ CA correspond to density matrices, that is
Sρ ≥ 0 and Tr [Sρ]. To find such a representation, we follow Hardy’s method [23]:
we pick a pure maximal set {αm}dAm=1 and define the diagonal elements of the matrix
Sρ as

[Sρ]mm := (α†
m |ρ),

In this way, we guarantee the unit-trace condition Tr[Sρ] = 1. To define the off-
diagonal elements, we consider the two-dimensional faces Fmn := {αm} ∨ {αn},
n > m. Projecting the state inside these faces, we obtain the states
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∣∣ρmn) = !Fmn |ρ)
(eA|!Fmn |ρ)

n > m.

Since every state ρmn is belongs to a two-dimensional face, it can be encoded into
a qubit system and can be associated with a density matrix τmn . The off-diagonal
elements [Sρ]mn and [Sρ]nm are defined in term of the qubit density matrix τmn , as

[Sρ]mn := [τmn]01 and [Sρ]nm := [τmn]10.

The matrix Sρ defined in this way is clearly Hermitian and, with a little bit of work,
one can see that the linear map ρ !→ Sρ is one-to-one.

At this point the problem is to guarantee that thematrix Sρ is positive.We consider
first the case of pure states α ∈ PurSt(A), for which one has

[Sα]mn =
√
pm pn eiθmn

where {pm}dAm=1 is a suitable probability distribution and {θmn} are phases satisfying
the conditions θmm = 0 for every m and θnm = −θmn for every n > m. This
expression follows from the fact that each state |αmn) = !Fmn |α)/(eA|!Fmn |α) is
pure and, once encoded into a qubit, it has a density matrix of the form (68). In order
to prove positivity, we need to show that the phases θmn are of the form θmn = γm−γn ,
for some phases {γm}. The strategy is to prove the result first in dimension dA = 3
and then to extend it to arbitrary dimensions.

Oncewe have proven that pure states correspond to rank-one projectors, it remains
to show that all such projectors correspond to pure states. This can be done by
using the superposition principle (both for states and for reversible transformations).
Having proven that the set of pure states is in one-to-one correspondence with the
set of rank-one projectors, it follows by convexity that the set of states is in one-
to-one correspondence with the set of density matrices. In short, all state spaces are
quantum.

To complete our reconstruction, we invoke Theorem 3, which guarantees that
the tests in our theory are in one-to-one correspondence with the tests allowed by
quantum theory.

6 Conclusions

Quantum theory can be rebuilt from bottom to top starting from six basic princi-
ples. The principles do not refer to specific physical systems such as particles or
waves: instead, they are the rules that dictate how information can be processed. The
first five principles—Causality, Purity of Composition, Local Tomography, Perfect
State Discrimination, and Ideal Compression—can be thought of as requirements
for a standard theory of information. On the background of these five principles, the
sixth—Purification—stands out as the quantum principle, which brings in counter-

dariano@unipv.it



Quantum from Principles 219

intuitive features like entanglement, no cloning, and teleportation. Purification gives
the agent the power to harness randomness, by simulating the preparation of every
state through the preparation of a pure bipartite state. When this is done, the agent
has an intrinsic guarantee that no side information can hide outside her control. The
moral of our reconstruction is quantum theory is the standard theory of information
that allows for maximal control of randomness.
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