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Abstract Recent advances on quantum foundations achieved the derivation of free
quantum field theory from general principles, without referring to mechanical notions
and relativistic invariance. From the aforementioned principles a quantum cellular
automata (QCA) theory follows, whose relativistic limit of small wave-vector provides
the free dynamics of quantum field theory. The QCA theory can be regarded as an
extended quantum field theory that describes in a unified way all scales ranging from
an hypothetical discrete Planck scale up to the usual Fermi scale. The present paper
reviews the automaton theory for theWeyl field, and the composite automata for Dirac
and Maxwell fields. We then give a simple analysis of the dynamics in the momentum
space in terms of a dispersive differential equation for narrowband wave-packets.
We then review the phenomenology of the free-field automaton and consider possible
visible effects arising from the discreteness of the framework.We conclude introducing
the consequences of the automaton dispersion relation, leading to a deformed Lorentz
covariance and to possible effects on the thermodynamics of ideal gases.
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1 Introduction

The notion of cellular automaton was introduced by von Neumann in his seminal
paper [2] where he studied the modelling of self-reproducing entity. The idea behind
the concept of a cellular automaton is that the richness of states exhibited by the
evolution of a macroscopic system could emerge from a simple local interaction rule
among its elementary constituents. More precisely, a cellular automaton is a lattice
of cells that can be in a finite number of states, together with a rule for the update
of cell states from time t to time t + 1. The principal requirement for such a rule is
locality: The state of the cell x at step t + 1 depends on the states of a finite number
of neighboring cells at step t . The use of classical cellular automata for the simulation
of quantum mechanics was proposed by ’tHooft [3], followed by other authors [4].

The first author that suggested the introduction of the quantum version of cellu-
lar automata was R. Feynman in the celebrated paper of Ref. [5]. Since then, the
interest in quantum cellular automata (QCAs), has been rapidly growing, especially
in the quantum information community, leading to many results about their general
structure (see e.g Refs.[6–8] and references therein). Special attention is devoted in
the literature to QCAs with linear evolution, known as quantum walks [9–12], which
were applied in the design of quantum algorithms [13–16], providing a speedup for
relevant computational problems.

More recently QCAs have been considered as a new mathematical framework for
quantumfield theory [17–25].Within this approach, each cell of the lattice corresponds
to the evaluation ψ(x) of a quantum field at the site x of a lattice, with the dynamics
updated in discrete time steps by a local unitary evolution. Assuming that the lattice
spacing corresponds to an hypothetical discrete Planck scale,1 the usual quantum field
evolution should emerge as a large scale approximation of the automaton dynamics.
On the other hand, the QCA dynamics will exhibit a different behaviour at a very small
scale, corresponding to ultra-relativistic wave-vectors.

The analysis of this phenomenology is the first step towards an experimental test
of the theory and it provides a valuable insight on the distinctive features of the QCA
theory. Until now the research was mainly focused on linear QCAs that describe the
dynamics of free fields. By means of a Fourier transform the linear dynamics can be
easily integrated and then, as we will show in Sect. 3.1, an approximated model for
the evolution of particle states (i.e. states narrowband in wave-vector) can be obtained.
Moreover, it is also possible to derive an analytical solution of the evolution in terms
of a path sum in the position space, thus giving the QCA analog of the Feynman
propagator [38,39]. In Sect. 4 we will exploit these tools to explore many dynamical
features of theQCAmodels for theWeyl andDirac fields and to compare themwith the
corresponding counterparts emerging from theWeyl and Dirac equations. We will see
that, when consideringmassive Fermionic fields (e.g electrons) the deviations from the
usual field dynamics cannot be reached by present day experiments, contrarily to the
case of the QCA theory of the free electromagnetic field. In Sect. 4.4 we will review
the main phenomenological aspects of the QCA model for free photons (that in this

1 Other approaches to discrete spacetime based on p-adic numbers were studied in Ref. [26].
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framework become composite particles) with special emphasis of the emergence of a
frequency-dependent speed of light, a Planck-scale effect already considered by other
authors in the quantum gravity community [27–31]. In the final section of this paper
we address two issues of the QCA theory that are still under investigation. The first one
concerns the notion of Lorentz covariance: because of its intrinsic discreteness, a QCA
model cannot enjoy a notion of Lorentzian spacetime and the usual Lorentz covariance
must break down at very small distances. One way of addressing the problem of
changing the reference frame is to assume that every inertial observer describes the
same dynamics. Then one can look for a set ofmodifiedLorentz transformationswhich
keep the QCA dispersion relation invariant. The first steps of this analysis are reported
in Sect. 5.1. The second issue, the thermodynamical effects that could emerge from
modified QCA dynamics, will be briefly addressed in Sect. 5.2.

2 Weyl, Dirac and Maxwell Automata

A quantum cellular automaton (QCA) describes the discrete time evolution of a set of
cells, each one containing an array of quantum modes. In this section we review the
QCA models for the free Fermions and for the free electromagnetic field. For a com-
plete presentation of these results we refer to Refs. [19–21]. Within our framework
we will consider Fermionic fields, our choice being motivated by the requirement
that the amount of information in a finite number of cells must be finite. Then,
each cell x of the lattice is associated with the Fermionic algebra generated by the
field operators {ψ(x),ψ†(x)} which obey the canonical anticommutation relation
[ψ(x),ψ†(x′)]+ = δx,x′ and [ψ(x),ψ(x′)]+ = 0.2 With a slight genealization, we
consider the case in which each cell corresponds to more than one Fermionic mode.
Different Fermionic modes will be denoted by an additional label, e.g. ψi (x). The
automaton evolution will be specified by providing the single step update of the Fermi-
onic field operators. This rule defines the primitive physical law, and must then be as
simple and universal as possible. This principle translates into a minimization of the
amount of mathematical parameters specifying the evolution. In particular we con-
strain the automaton to describe a unitary evolution that is linear in the field.We notice
that the linearity of the QCA restricts the scenario to non-interacting field dynamics.
Then we require the evolution to be local, which means that at each step every cell
interacts with a finite number of neighboring cells, and homogeneous, meaning that all
the steps are the same, all the cells are identical systems and the interactions with neig-
bours is the same for each cell (hence also the number of neigbours, and the number
of Fermionic modes in each cell). The neighboring notion naturally defines a graph #

with x as vertices and the neighboring couples as edges. We also assume transitivity,
i.e. that every two cells are connected by a path of neighbors and isotropywhichmeans
that the neighboring relation is symmetric and there exists a group of automorphisms
of the graph under which the automaton is covariant. From these assumptions one can

2 We denote as [A, B]+ the anticommutator AB + BA. The commutator AB − BA will be denoted as
[A, B]−.
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show3 that the graph # is a Cayley graph of a group G. In the following, we consider
the Abelian case G = Z3.

Let S+ denote the set of generators of Z3 corresponding to the Cayley graph # and
let S− be the set of inverse generators. For a given cell x the set of neighboring cells
is given by the set Nx := {x + z | z ∈ S := S+ ∪ S−}, where we used the additive
notation for the group composition. If s is the number of Fermionic modes in each cell,
the single step evolution can then be represented in terms of s × s transition matrices
Az as follows

ψ(x, t + 1) =
∑

z∈S
Azψ(x + z, t). (1)

whereψ(x, t) is the array of field operators at x at step t . Upon introducing the Hilbert
space ℓ2(Z3), the automaton evolution can be described by the unitary matrix A on
ℓ2(Z3) ⊗ Cs given by

A :=
∑

z∈S
Tz ⊗ Az, (2)

where Tx denotes the unitary representation of Z3 on ℓ2(Z3), Ty|x⟩ = |x + y⟩. If
s = 1, i.e. there is only one Fermionic mode in each cell, one can prove that the only
evolution that obeys our set of assumptions is the trivial one (A becomes the identity
matrix). Then we are led to consider the s = 2 case and we denote the two Fermionic
modes as ψL(x, t) and ψR(x, t). Moreover, in the s = 2 case one can show that our
assumptions4 imply that the only lattice which admits a nontrivial evolution is the
body centered cubic (BCC) one. Being Z3 an Abelian group, the Fourier transform is
well defined and the operator A can be block-diagonalized as follows

A =
∫

B
d3k |k⟩⟨k| ⊗ Ak, (3)

where |k⟩ := (2π)−
3
2

∑
x∈Z3 eik·x|x⟩, B is the first Brillouin zone of the BCC lattice

and Ak := ∑
z∈S k e

−ik·zAz is a 2× 2 unitary for every k. We have only two (up to a
local change of basis) non trivial QCAs corresponding to the unitary matrices

A±
k := d±k I + ñ±k · σ = exp[−in±k · σ ], (4)

where σ is the array (σx , σy, σz) of Pauli matrices and we defined

ñ±k :=

⎛

⎝
sxcycz ∓ cx sysz

∓cx sycz − sxcysz
cxcysz ∓ sx sycz

⎞

⎠, n±k := λ±k ñ
±
k

sin λ±k
,

3 This step would require a more precise mathematical characterization (which we omit) of the presented
assumptions. See Ref. [20] for the details.
4 In order to prove this step one needs a stronger isotropy condition than the one presented in the text. See
Ref. [20] for the details.
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d±k := (cxcycz ± sx sysz), λ±k := arccos(d±k ),

cα := cos(kα/
√
3), sα := sin(kα/

√
3), α = x, y, z.

Thematrices A±
k in Eq. (4) describe the evolution of a two-component Fermionic field,

ψ(k, t + 1) = A±
k ψ(k, t), ψ(k, t) :=

(
ψR(k, t)
ψL(k, t)

)
. (5)

The adimensional framework of the automaton corresponds to measure everything in
Planck units. In such a case the limit |k| ≪ 1 corresponds to the relativistic limit,
where on has

n±(k) ∼ k√
3
, A±

k ∼ exp[−i k√
3
· σ ], (6)

corresponding to the Weyl’s evolution, with the rescaling k√
3

→ k. Since the QCAs

A+ and A− reproduce the dynamics of the Weyl equation in the limit |k| ≪ 1, we
refer to them as Weyl automata. For the sake of simplicity, in the following we will
consider only oneWeyl automaton, i.e. we define Ak := A−

k and we similarly drop all
the others± superscripts. This choice is completely painless since all the methods that
we will use can be easily adapted to the choice Ak := A+

k . However the two automata,
beside giving the Weyl equation for small k, exhibit a different behaviour at high k
and we will point out those differences whenever it will be relevant.

The derivation that we sketched previously can be carried on also in the two dimen-
sional case (considering QCA on Cayley graphs of Z2) and in the one dimensional
case (considering QCA on Cayley graphs of Z). In the 2-dimensional case we obtain
a unique (up to a local change of basis) QCA on the square lattice given by

A(2D)
k = I d A

k − iσ · aAk , (7)

where the functions ak and dk are expressed in terms of kx := k1+k2√
2

and ky := k1−k2√
2

as (aA
k )x := sxcy , (aA

k )y := cx sy , (aA
k )z := sx sy , d A

k := cxcy, where ci = cos ki√
2

and si = sin ki√
2
. In the one dimensional case we find

A(1D)
k =

(
e−ik 0
0 eik

)
. (8)

Both in the 2-dimensional and 1-dimensional cases the limit |k| ≪ 1 gives the 2-
dimensional and 1-dimensional Weyl equation respectively (in the 2-dimensional we
need the rescaling k√

2
→ k.). The QCAs in Eqs. (4, 7 and 8) describe the dynamics

of free massless Fermionic fields. If we couple two Weyl automata Ak with a mass
term we obtain a new QCA Uk given by

Uk =
(
nAk im I
im I nA†

k

)
n2 + m2 = 1. (9)
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Clearly this construction can be done in the 1,2 and 3-dimensional cases and the
resulting QCA is always unitary and local. One can easily see that in the limit |k| ≪ 1
and m ≪ 1, Eq. (9) (with the appropriate rescaling of k in 2 and 3 dimensions) gives
the same evolution as the Dirac equation and then we denote the automata of Eq. (9)
Dirac automata.

The 3-dimensional Weyl QCA can also be used as a building block for a QCA
model of free electrodynamics. The basic idea is to interpret the photon as a pair
of Weyl Fermions that are suitably correlated in wave-vector. Then one can show
that, in an appropriate regime, this field obeys the dynamics dictated by the Maxwell
equations and the Bosonic commutation relations are recovered. This approach recalls
the so-called neutrino theory of light of De Broglie [32–36] that suggested that the
photon could be a composite particle made of of a neutrino-antineutrino pair. Within
our framework (we omit the details of this construction that can be found in Ref. [21])
the electric and magnetic field are given by

E := |nk
2
|(FT + F†

T ), B := i |nk
2
|(F†

T − FT ) (10)

2|nk
2
|FT = E+ iB

FT (k) := F(k) −
(

nk
2

|nk
2
| · F(k)

)
nk

2

|nk
2
|

F(k) := (F1(k), F2(k), F3(k))T

F j (k) :=
∫

dq
(2π)3

fk(q)φ
(
k
2 − q

)
σ jψ

(
k
2 + q

)

where
∫ dq

(2π)3 | fk(q)|2 = 1,∀k and φ (k), ψ (k) are two massless Fermionic fields

whose evolution is dictated by the automaton A∗
k and Ak respectively,5 i.e.

φ (k, t) = A∗t
k φ (k) ψ (k, t) = At

kφ (k)

φ (k) =
(

φR (k)
φL (k)

)
ψ (k) =

(
ψR (k)
ψL (k)

)
.

For an appropriate choice of the functions fk(q) (see Ref. [21]), one can prove that
the evolution of the Electric and Magnetic fields defined in Eq. (10) is given by the
following equations6

∂tFT (k, t) = 2nk
2

× FT (k, t)

2nk
2
· FT (k, t) = 0, (11)

5 We denote as A∗ the complex conjugate of A.
6 Since a QCA describes an evolution discrete in time, the derivative with respect to time is not defined in
this context. However we can imagine Atk to be defined for any real value of t and then derive with respect
the continuous variable t . This is the construction underlying Eq. (11).
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which in the limits |k| ≪ 1 and with the rescaling k√
3

→ k become the Fourier
transforms of the usual vacuum Maxwell equations in position space

∇ · E = 0 ∇ · B = 0
∂tE = c∇ × B ∂tB = −c∇ × E .

(12)

Because of this result,we refer to the construcionofEq. (10) as theMaxwell automaton.
This is a slight abuse of notation since Eq. (10) does not introduce any new QCA
model but it defines a field of bilinear operators, each one of them evolving with the
Weyl automaton, that can be interpreted as the electromagnetic field in vacuum. In
this sense the expression “Maxwell automaton” actually means QCA model for the
Maxwell equations (in vacuum).

3 Analysis of the Dynamics

The aim of this section is to analyse the dynamics of the QCAmodels presented in the
previous section. The material of this section can be found in Refs. [19,20,37–39].

In this section we focus on the single particle sector of the QCA. Since the QCAs
we are considering are linear in the fields the single particle sector contains all the
information of the dynamics (it is a free theory).We can then write |ψ(t)⟩ = At |ψ(0)⟩
where |ψ(t)⟩ := ∑

x |ψ(x, t)⟩|x⟩ is a generic one particle state. This model is better
known in the literature under the name quantum walk [9–11,40–42].

3.1 Interpolating Hamiltonian and Differential Equation for Single-Particle
Wave-Packets

Since a QCA (and a Quantum Walk) describes a discrete evolution on a lattice, the
notion of Hamiltonian (like any other differential operators) is completely deprived of
physical meaning. However it is useful to introduce a Hamiltonian operator Hk, that
we call interpolating Hamiltonian, that obeys the following equation

At
k = eit Hk , (13)

where At
k is defined for any real value of t (the automaton Ak can be any of the QCA

models of Sect. 2). It is clear that Hk is the generator of the continuous time evolution
that interpolates the QCA dynamics between the integer steps. The eigenvalues of
Hk are of the form±ω(k) and ω(k) is the dispersion relation of the automaton and it
provides a lot of information about the dynamics. In analogywith quantumfield theory,
states of the dynamics corresponding to the positive eigenvalueω(k) are called particle
states while eigenstate with negative eigenvalue −ω(k) are called antiparticle states.
If we denote with |u⟩k a positive frequency eigenstate of Hk (i.e. Hk|u⟩k = ω(k)|u⟩k)
a generic particle state with positive frequency is given by

|ψ⟩+ =
∫

dk
(2π)n

g(k)|u⟩k|k⟩ (14)
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where n is the dimension of the lattice and g(k) is a normalized probability amplitude.
We remind that for the 2 and 3-dimensional Dirac QCA Hk has dimension 4 and both
the eigenvalues have degeneracy (corresponding to the spin degree of freedom). The
construction of Eq. (14) can be straightforwardly applied also for the definition of
general antiparticle states with negative frequency |ψ⟩−.

One can use the interpolating Hamiltonian Hk in order to rephrase the continuous
evolution in terms of a differential equation, i.e.

i∂t |ψ(k, t)⟩ = Hk|ψ(k, t)⟩, (15)

where |ψ(k, t)⟩ is the wave-vector representation of a one-particle state, i.e. |ψ⟩ =∫ dk
(2π)3 |ψ(k, t)⟩|k⟩ . When the initial state has positive frequency (see Eq. 14) and its

distribution g(k) is smoothly peaked around a given k0, the evolution of Eq. (15) can
be approximated by the following dispersive equation

i∂t g̃(x, t) = ±[v · ∇ + 1
2D · ∇∇]g̃(x, t), (16)

where g̃(x, t) is the Fourier transform of g̃(k, t) := e−ik0·x+iω(k0)tψ(k, t), and v
and D are the drift vector v = (∇kω) (k0) and diffusion tensor D = (∇k∇kω) (k0),
respectively. Intuitively the vector v represent the velocity of the wavepacket and the
tensorD tells us how the wavepacket spreads during the evolution. The accuracy of the
approximation can be analytical evaluated (seeRef. [19]) and comparedwith computer
simulation as in Fig. 1.

4 Phenomenology

This section is devoted to the study of the various phenomenological effects of theQCA
model presented in Sect. 2. The aim of this analysis is to understand the properties of
the QCA dynamics and compare its features to the known results about the dynamics
of free quantumfields. The ultimate goal is to identify experimental situations inwhich
it is possible to falsify the validity of the QCA theory.

4.1 Zitterbewegung

The first feature of the QCA dynamics we are going to explore (for a more complete
presentation see Ref. [37]) is the appearence of a fluctuation of the position in the
particle trajectory, the so called Zitterbewegung.

The Zitterbewegung was first recognized by Schrödinger in 1930 [43] who noticed
that in the Dirac equation describing the free relativistic electron the velocity operator
does not commute with the Dirac Hamiltonian: the evolution of the position operator
exhibits a very fast periodic oscillation around the mean position with frequency 2mc2

and amplitude equal to the Compton wavelength h̄/mc with m the rest mass of the
relativistic particle. Zitterbewegung oscillations cannot be directly observed by current
experimental techniques for an electron since the amplitude is very small ≈ 10−12 m.
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Fig. 1 (Colors online) Test of the approximated evolution of Eq. (16) of the one dimensional Dirac automa-
ton evolution. Left figure here the state is a superposition of Hermite functions (the polynomials Hj (x)
multiplied by the Gaussian) peaked around k0 = 3π/10. Right figure here the initial state is a Gaussian
profile peaked around k0 = 0.1. This figure is published in Ref. [19]

However, it can be seen in a number of solid-state, atomic-physics, photonic-cristal
and optical waveguide simulators [44–48].

Here we focus on the one-dimensional Dirac QCA whose epression, introduced in
Sect. 2, is easily obtained as special case of Eq. (9)7

U =
∫ π

−π
dk|k⟩⟨k| ⊗Uk Uk =

(
ne−ik im
im neik

)
. (17)

The “position” operator X corresponding to the representation |x⟩ (i.e. such that
X |s⟩|x⟩ = x |s⟩|x⟩, x ∈ Z) is defined as follows

X =
∑

x∈Z
x(I ⊗ |x⟩⟨x |), (18)

7 More precisely, Eq. (8) leads to two identical copies of Eq. (17).
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Fig. 2 Zitterbewegung in the one dimensiona Dirac QCA. Top The mass of the particle is m = 0.15. The
amplitudes of the superposition between positive and negative frequency states are c+ = 1/

√
2 c− = i/

√
2

respectively. The wavepacket is peaked around k0 = 0. The shift and oscillation frequency are respectively
⟨ψ |X (0) + ZX (0)|ψ⟩ = 3.2 and ω(0)/π = 0.05. Middle m = 0.15, c+ = 1/

√
2, c− = 1/

√
2, k0 = 0,

σ = 40−1. The shift and oscillation frequency are 0 and 0.13, respectively. Bottom m = 0.13, c+ = √
2/3,

c− = 1/
√
3, k0 = 10−2π , σ = 40−1. In this case the particle and antiparticle contribution are not balanced

and the average position drift velocity is thus ⟨ψ+|V |ψ+⟩+ ⟨ψ−|V |ψ−⟩ = (|c+|2 − |c−|2)v(k0) = 0.08,
corresponding to an average position x+ψ (800) + x−

ψ (800) = 464. Notice that for t → ∞ the term
2ℜ[⟨ψ+|ZX (t)|ψ−⟩, which is responsible of the oscillation, goes to 0. This figure is published in Ref. [37]

and it provides the average location of a wavepacket in terms of ⟨ψ |X |ψ⟩. If we
write the single particle in terms of its positive frequency and negative frequency
components, i.e. |ψ⟩ = c+|ψ⟩+ + c−|ψ⟩−, the time evolution of the mean value of
the position operator ⟨ψ |X (t)|ψ⟩ is given by

xψ (t) := ⟨ψ |X (t)|ψ⟩ = x+ψ (t)+ x−
ψ (t)+ x intψ (t)

x±ψ (t) := ⟨ψ±|X (0)+ V t |ψ±⟩
x intψ (t) := 2ℜ[⟨ψ+|X (0) − ZX (0)+ ZX (t)|ψ−⟩] (19)

where V is a time independent operator corresponding to the group velocity and
ZX (t) is the operator that gives the oscillatory motion (see Ref. [37] for the details).
We notice that the interference between positive and negative frequency is responsible
of the oscillating term x intψ (t)whose magnitude is bounded by 1/m which in the usual
dimensional units corresponds to the Compton wavelength h̄/mc. These results show
that x intψ (t) is the automaton analogue of the Zitterbewegung for a Dirac particle. for
t → ∞ the term 2ℜ[⟨ψ+|ZX (t)|ψ−⟩], which is responsible of the oscillation, goes
to 0 as 1/

√
t and only the additional shift contribution given by 2ℜ[⟨ψ+|X (0) −

ZX (0)|ψ−⟩] survives. In Fig. 2 one can see the simulation of the evolution of states
with particle and antiparticle components smoothly peaked around some k0.

4.2 Scattering Against a Potential Barrier

In this section we study the dynamics of the one dimensional Dirac automaton in the
presence of a potential. In the position representation the one particle evolution of the
one dimensioanal Dirac QCA reads as follows:

U :=
∑

x

(
n|x − 1⟩⟨x | −im|x⟩⟨x |
−im|x⟩⟨x | n|x + 1⟩⟨x |

)
. (20)
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The presence of a potential φ(x) modifies the unitary evolution of Eq. (20) with a
position dependent phase as follows (see also Ref [49,50]):

Uφ :=
∑

x

e−iφ(x)
(
n|x − 1⟩⟨x | −im|x⟩⟨x |
−im|x⟩⟨x | n|x + 1⟩⟨x |

)
.

We now review the analysis (carried on in Ref. [37]) of the case in which φ(x) :=
φ θ(x) (θ(x) is the Heaviside step function) that is a potential step which is 0 for
x < 0 and has a constant value φ ∈ [0, 2π ] for x ≥ 0. Let us consider the situation in
which, for t ≪ 0, the state is a positive frequency wavepacket peaked around k0 that
moves at group velocity v(k0) and hits the barrier form the left. Then one can show
that for t ≫ 0 the state is evolved into a superposition of a reflected and a transmitted
wavepacket as follows (we use the notation of Eq. (14) adapted at the one-dimensional
case):

|ψ(t)⟩ t≫0−−→ β(k0)
∫ dk√

2π
gk0(k)e

−iω(k)t |u⟩−k |k⟩+
+ γ̃ (k0)e−iφt

∫ dk√
2π

g̃k′
0
(k′)e−iω(k′)t |u⟩k′ |k′⟩

where we defined

k′
0 s.t. ω(k′

0) = ω(k0) − φ,

γ̃ (k0) := γ (k0)

√
v(k′

0)

v(k0)
, g̃k′

0
(k′) =

√
v(k′

0)

v(k0)
gk′

0
(k′)

(one can check
∫ dk√

2π
|g̃k′

0
(k′)|2 = 1), whose group velocities are −v(k0) for the

reflected wave packet and v(k′
0) for the transmitted wave packet.

The probability of finding the particle in the reflected wavepacket is then R =
|β(k0)|2 (reflection coefficient) while the probability of finding the particle in the
transmitted wavepacket is T = |γ̃ (k0)|2 (trasmission coefficient). The consistency of
the result can be verified by checking that R+T = 1. Clearlyφ = 0 implies R = 0 and
increasing φ for a fixed k increases the value of R up to R = 1. By further increasing
φ a transmitted wave reappears and the reflection coefficient decreases. This is the so
called “Klein paradox” which is originated by the presence of positive and negative
frequency eigenvalues of the unitary evolution. The width of the R = 1 region is an
increasing function of the mass equal to 2 arccos(n)which is the gap between positive
and negative frequency solutions.

In Fig. 3we plot the reflection R coefficient and the transmittedwave group velocity
v(k′

0) as a function of the potential barrier height φ with the incident wave packet
having k0 = 2 and m = 0.4. From the figure it is clear that after a plateau with
R = 1 the reflection coefficient starts decreasing for higher potentials. In Fig. 4
we show the scattering simulation for four increasing values of the potential, say
φ = 1.42, 1.55, 2, 2.4.
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Fig. 3 Reflection coefficient for m = 0.4 and wave-vector of the incident particle k0 = 2 as a function of
the potential barrier height φ. This Figure is published in Ref. [37]

Fig. 4 Simulations of the one dimensional Dirac automaton evolution with a square potential barrier. Here
the automaton mass is m = 0.2 while the barrier turns on at x = 140. In the simulation the incident state
is a smooth state of the form |ψ(0)⟩ =

∫ dk√
2π

gk0 (k)|+⟩k peaked around the positive frequency eigenstate

|+⟩k0 with k0 = 2 and with gk0 a Gaussian having width σ = 15−1. The incident group velocity is
v(k0) = 0.90. The simulation is run for four increasing values of the potential φ. Top-left Potential barrier
height φ = 1.42, reflection coefficient R = 0.25, velocity of the transmitted particle v(k′

0) = 0.63. Top-
right φ = 1.55, R = 0.75, v(k′

0) = 0.1. Bottom-left φ = 2, R = 0.1, v(k′
0) = 0. Bottom-right φ = 2.4,

R = 0.50, v(k′
0) = 0.33. This Figure is published in Ref. [37]

4.3 Travel-Time and Ultra-High Energy Cosmic Rays

The approximated evolution studied in Sect. 3.1 provides a useful analytic tool for eval-
uating the macroscopic evolution of the automaton. We now consider an elementary
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experiment, based on particle fly-time, that compares the Dirac automaton evolution
with the one given by the Dirac equation.

Consider a proton with mp ≈ 10−19 and wave-vector peaked around kCR ≈ 10−8

in Planck units8 , with a spread σ of the wave-vector. We ask what is the minimal time
tCR for observing a complete spatial separation between the trajectory predicted by the
cellular automaton model and the one described by the usual Dirac equation. Thus we
require the separation between the two trajectories to be greater than σ̂ = σ−1 (σ̂ the
initial proton’s width in the position space). We approximate the state evolution of the
wave-packet of the proton using the differential equation (16) for an initial Gaussian
state. The time required to have a separation σ̂ between the automaton and the Dirac
particle is

tCR ≈ 6
σ̂

m2
p
, (21)

and for σ̂ = 102fm (that is reasonable for a proton wave-packet) the flying time for a
complete separation between the two trajectories is tCR ≈ 6× 1060 Planck times, i.e.
≈ 1017s, a value that is comparable with the age of the universe and then incompatible
with a realistic setup.

4.4 Phenomenology of the QCA Theory of Light

In this section we present an overview of the new phenomenology emerging from
the QCA theory of free electrodynamics presented in Sect. 2. For a more detailed
presentation we refer to Ref. [21].

4.4.1 Frequency Dependent Speed of Light

From Eq. (11) one has that the angular frequency of the electromagnetic waves is
given by the modified dispersion relation

ω(k) = 2|nk
2
|, (22)

and the usual relation ω(k) = |k| is recovered in only the |k| ≪ 1 regime. The
speed of light is the group velocity of the electromagnetic waves, i.e. the gradient of
the dispersion relation. The major consequence of Eq. (22) is that the speed of light
depends on the value of k, as if the vacuum were a dispersive medium.

The phenomenon of a k-dependent speed of light is studied in the quantum gravity
literaturewheremany authors considered the hypothesis that the existence of an invari-
ant length (the Planck scale) could manifest itself in terms of dispersion relations that
differ from the usual relativistic one [27–31]. In these models the k-dependent speed
of light c(k), at the leading order in k := |k|, is expanded as c(k) ≈ 1± ξkα , where

8 As for order of magnitude, we consider numerical values corresponding to ultra high energy cosmic rays
(UHECR) [51].
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Fig. 5 (colors online) Left the graphics shows the vector 2nk
2

(in green), which is orthogonal to the

polarization plane, the wavevector k (in red) and the group velocity ∇ω(k) (in blue) as function of k for
the value |k| = 0.8 and different directions. Right A rectilinear polarized electromagnetic wave. We notice
that the polarization plane (in green) is sligtly tilted with respect the plane orthogonal to k (in gray). This
Figure is published in Ref. [21]

ξ is a numerical factor of order 1, while α is an integer. This is exactly what happens
in our framework, where the intrinsic discreteness of the quantum cellular automata
leads to the dispersion relation of Eq. (22) from which the following k-dependent
speed of light

c(k) ≈ 1± 3
kxkykz
|k|2 ≈ 1± 1√

3
k, (23)

can be obtained by computing the modulus of the group velocity and power expanding
inkwith the assumption kx = ky = kz = 1√

3
k, k = |k|. The± sign inEq. (23) depends

on whether we considered the A+(k) or the A−(k) Weyl QCA. This prediction can
possibly be experimentally tested in the astrophysical domain, where tiny corrections
are magnified by the huge time of flight. For example, observations of the arrival
times of pulses originated at cosmological distances, like in some γ -ray bursts [52–
55], are now approaching a sufficient sensitivity to detect corrections to the relativistic
dispersion relation of the same order as in Eq. (23).

4.4.2 Longitudinal Polarization

A second distinguishing feature of Eq. (11) is that the polarization plane is neither
orthogonal to the wavevector, nor to the group velocity, which means that the electro-
magnetic waves are no longer exactly transverse (see Fig. 5). The angle θ between the
polarization plane and the plane orthogonal tok or∇ω(k) is of the order θ ≈ 10−15rad
for a γ -ray wavelength, a precision which is not reachable by the present technology.
Since for a fixed k the polarization plane is constant, exploiting greater distances and
longer times does not help inmagnifying this deviation from the usual electromagnetic
theory.

4.4.3 Composite Photons and Modified Commuation Relations

Finally, the third phenomenological consequence of the QCA theory of light is the
deviation from the exact Bosonic statistics due to the composite nature of the photon.
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As shown in Ref. [21], the choice of the function fk(q) in Eq. (10) determines the
regime where the composite photon can be approximately treated as a Boson. How-
ever, independently on the details of function fk(q), one can prove that a Fermionic
saturation of the Boson is not visible, e.g. for the most powerful laser [56] one has
approximately an Avogadro number of photons in 10−15cm3, whereas in the same
volume on has around 1090 Fermionic modes. Another test for the composite nature
of photons is provided by the prediction of deviations from the Planck’s distribution
in blackbody radiation experiments. A similar analysis was carried out in Ref. [36],
where the author showed that the predicted deviation from Planck’s law is less than
one part over 10−8, well beyond the sensitivity of present day experiments.

5 Future Perspectives

We conclude this paper with an overview of the future developments of the research
program on QCA for field theory.

5.1 Lorentz Covariance and Deformed Relativity

Because of the intrinsic discreteness of the model, a dynamical evolution described in
terms of a QCA cannot satisfy the usual Lorentz covariance, which must break down
at the Planck scale. Moreover the very notions of spacetime and boosted reference
frame break down at small scales, and need a thoughtful reconsideration. In Ref. [57]
a definition of reference frame was introduced in a background-free scenario, in terms
of labelling of irreducible representations of the group G. The Lorentz symmetry is
then recovered by imposing a generalized relativity principle on possible changes of
reference frame, allowing only those changes that leave the automaton invariant. A
preliminary analysis of the one-dimensional case can be found in Ref. [58], where
only the necessary condition of preserving the dispersion relation was considered.
Focusing on the one dimensional Dirac QCA we have

ω(k) = arccos(
√
1 − m2 cos(k)) (24)

and one can see that in the k ≪ 1,m ≪ 1 limit Eq. (24) reduces to the usual relativistic
dispersion relation ω2 = k2 + m2. It is also immediate to check that the automaton
dispersion relation of Eq. (24) is not invariant under standard Lorentz transformation.
In order to preserve Eq. (24) one needs to introduce a non-linear representation of
the Lorentz transformation in the wave-vector space—as proposed in the so called
deformed special relativity (DSR) models [30,31,59–62].

In Ref. [57] the boosts preserving the three-dimensional Weyl automaton were then
derived in the form of the following non-linear representation of the Lorentz group

LD
β := D−1 ◦ Lβ ◦ D, (25)

where D : R4 → R4 is a non-linear map. The specific form of D gives rise to a
particular frequency/wave-vector Lorentz deformation.
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These ideas can also be applied to the three-dimensional Dirac QCA. In this case
one can show that a change of the rest mass should be involved in the representa-
tion of boosts, in order to obey our generalized relativity principle. Interestingly, this
unexpected feature gives rise to an emergent spacetime with a non-linear de Sitter
symmetry instead of the Lorentz one.

Another challenging line of research is to characterize the emergent spacetime of
the QCA framework. The DSR models provide a complete description of Lorentz
symmetry in frequency/wave-vector space but there are heuristic ways to extend this
framework to the position-time space. Relative locality [63,64], non-commutative
spacetime [65] and Hopf algebra symmetries [66,67] have been considered in order
to give a real space formulation of deformed relativity.

Finally, we would like to stress that spacetime emerges from: (i) the structure of
the group G, (ii) the specific expression of the automaton and (iii) the generalized
relativity principle, while all these concepts do not require any spacetime background.
Thus, outside the limits inwhich the relativistic approximations hold, the very structure
of our usual spacetime breaks down, substituted by other counterintuitive effects. In
particular this is true in all physical situations where the discrete structure of the lattice
G becomes relevant.

5.2 Thermodynamics of Free Ultra-Relativistic Particles and QCA

Most of the analysis that we presented in this paperwas focused on the dynamics of one
particle states and the deviations of this kinematics from the usual relativistic one. On
the other hand, it would be interesting to explore the QCA phenomenology when the
number of particles goes to infinity, namely a thermodynamic limit. Since the QCAs
we are considering describe a non-interacting dynamics, the thermodynamic that will
emerge will describe a gas of free particles. However, since the dispersion relation of
the QCA differs from the relativistic one, the density of states will be different.

In the case of free Fermions this will result in a shift of the Fermi energy that
could become relevant when the number of Fermions becomes very large. One could
for example analyze how the Chandrasekhar limit of white dwarfs is modified in this
context (see Ref. [68,69] for a similar analysis in a different context).

5.3 Interacting QCAs

The theory of linear QCAs naturally leads to free quantum field theories. In order
to introduce interactions, one needs to relax the linearity assumption. This can be
done by splitting the computational step in two stages, the first one acting linearly,
and the second one representing a nonlinear and completely local evolution. This
can be motivated in terms of a time-local gauge symmetry that must preserve some
local degree of freedom, in particular the local number of excitations. This simple
modification of the linear automaton introduces a non-trivial interaction, making the
automaton non-trivially reducible to a quantum walk. Preliminary analysis shows that
this minimal relaxation of linearity is sufficient to give rise to couplings that might
reproduce the phenomenology of quantum electrodynamics.

123



Found Phys (2015) 45:1203–1221 1219

Acknowledgments This work has been supported in part by the Templeton Foundation under the Project
ID# 43796 A Quantum-Digital Universe.

References

1. Bisio, A., D’Ariano, G.M., Perinotti, P., Tosini, A.: Foundations of Physics (2015). (in press)
2. von Neumann, J.: Theory of Self-Reproducing Automata. University of Illinois Press, Urbana (1966)
3. ’tHooft, G.: The Cellular Automaton Interpretation of Quantum Mechanics. A View on the Quantum

Nature of our Universe, Compulsory or Impossible? arXiv:1405.1548
4. Elze, H.-T.: Action principle for cellular automata and the linearity of quantum mechanics. Phys. Rev.

A 89, 012111 (2014)
5. Feynman, R.: Simulating physics with computers. Int. J. Theoret. Phys. 21(6), 467–488 (1982)
6. Schumacher, B., Werner, R.: Reversible quantum cellular automata arXiv:quant-ph/0405174 (2004)
7. Arrighi, P., Nesme, V., Werner, R.: Unitarity plus causality implies localizability. J. Comput. Syst. Sci.

77(2), 372–378 (2011)
8. Gross, D., Nesme, V., Vogts, H., Werner, R.: Index Theory of One Dimensional Quantum Walks and

Cellular Automata Communications in Mathematical Physics, pp. 1–36. McGraw-Hill, New York
(2012)

9. Grossing, G., Zeilinger, A.: Quantum cellular automata. Complex Syst. 2(2), 197–208 (1988)
10. Aharonov, Y., Davidovich, L., Zagury, N.: Quantum randomwalks. Phys. Rev. A 48, 1687–1690 (1993)
11. Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: One-dimensional quantum walks. In:

Proceedings of the Thirty-Third annual ACM Symposium on Theory of Computing, pp. 37–49. ACM,
New York (2001)
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