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The multiphoton squeezed states defined in this paper are generalizations of the conventional coherent (Glauber)
and squeezed (Yuen) states previously discussed by many authors. We define multiphoton generalizations of the
latter by a unified class of states that includes the Holstein-Primakoff realizations of SU(2) and SU(1, 1) as well as
the standard harmonic oscillator coherent states (Weyl-Heisenberg group) and squeezed states in a general
framework that allows also non-Hermitian realizations. We determine the squeezing properties of these states in a
unified formalism and study numerically their dependence on the parameter classifying the states.

1. INTRODUCTION

Customary Glauber coherent states are eigenstates of the
annihilation operator with the property that the uncertainty
product for the position and momentum canonical variables
attains its minimum value when the two standard variances
are equal. Squeezed states are characterized by the proper-
ty that one of the uncertainties is smaller than that in a
coherent state (naturally at the expense of the other, because
of Heisenberg’s principle). Squeezed states may therefore
prove to be useful in low-noise detection experiments. The
original form in which squeezed slates were written by
Stoler,! Yuen,? and others quite naturally identifies them
with generalized coherent states of the group SU(1, 1). A
straightforward generalization of such a form, however, runs
into difficulties, which appear as nonanalyticities of the vac-
uum vector, as pointed out by Fisher ef al.® In order to
overcome this difficulty the simple one-photon coherent
states were first generalized to k-photon states by using the
generalized k-boson operators first defined by Brandt and
Greenberg.! Similarly squeezed stales were generalized by
congidering Holstein—Primakoff representations of a de-
sired Lie group [the generalization was performed not only
for SU(1, 1) but for SU(2) as well] expressed in terms of the
k-boson creation and annihilation operators. It was shown
that in all cases improved squeezing can be obtained.

All this information prompts the question of whether the
various generalizations that have come into play could in-
deed be handled on a common ground and be united in a
common structure from which the various cases could be
obtained by suitable limiting procedures. In the present
paper we discuss this unified treatment of coherent and
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squeezed states, using non-Hermitian realizations of the
generators of the relevant algebras in terms of multiboson
operators. Each realization is labeled by a pair of parame-
ters (besides the photon number) that may be varied in such
a way as to connect all previously defined squeezed states in
a unigue scheme. It is not clear at the present time which of
the states in the scheme may be obtained experimentally.
The new non-Hermitian cases put into play show interesting
features of their own, which also allows us, incidentally, to
cast new light on the appearance of the vacuum singularities
pointed out by Fisher et al.?

The nan-Hermitian realization of the k-boson operators is
introduced in Section 2. In Section 3 such a realization is
utilized to construet general Weyl-Heisenberg-group coher-
ent states. Analogous procedures lead, in Sections 4 and 5,
to the construction of coherent squeezed states for non-
Hermitian SU{2) and SU(1, 1), respectively.

All cases are illustrated by a detailed numerical analysis of
the squeezing properties, which clarifies the connections
among diflerent situations as well as the role of the parame-
ter controlling the non-Hermiticity of the operators. A few
conchuding remarks are made in Section 6.

2. NON-HERMITIAN MULTIBOSON
REALIZATION

The physical properties of photon states are derived from
the algebraic commutation relation for the photon-annihila-
tion and photon-creation operators a, a':

[a.a'] = L (2.1)
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From the work of Brandt and Greenberg* we may define k-
photon operators A,y and Ay, T by

Ap =a'fA),  Ag'=fEhE, (2.2)
fi() = [[A/k] (R — B)YANY2. (2.3)

In Eq. (2.3) the symbol [x]| means the greatest integer less
than or equal to x, & is a positive integer, and functions of the
operators i = a'a are evaluated in eigenstates of 7 as the
funetions of the corresponding eigenvalue. The generalized
boson operators A, A ' satisfy the usual boson commuta-
tion relations

[ALM! A(}ej+] =l (2.4)
We may generalize Egs. (2.2) as follows.
Define
Ag'™ = 2, (A",
Ag' P =d" ey, 1 M(R), (2.5)
where ;
D™ = [ (R)]. (2.6)
The commutation relation [Eq. (2.4)] is preserved:
[A(Fz]hﬂ—: A[k}wH—I =1 (2.7)
Further,
AP = [Ag, 7, (2.8)

However, in general, Ay, # (45,"-)f, and so we no
longer have Hermiticity. For y = '/, we recover the Hermi-
tian realization of Eqs. (2.2). The case n = 0, which is always
non-Hermitian unless £ = 1, is reminiscent of a realization of
SU(2) first considered by Dyson in the context of spin
waves.’

For k = 1 we recover the usual boson operators @ and at for
all n.

3. WEYL-HEISENBERG-GROUP COHERENT
STATES

Conventional coherent states may be defined, up to normal-
ization, by the exponentiated action of the photon creation
operator on the vacuum, thus %0}, Using the non-Hermi-
tian multiphoton operators defined in Seetion 2, we may
attempt to generalize this to

I ko m) = WL exp[fA g 10}, (3.1)

In Eq. (3.1) the factor A~ is a normalization coefficient,
when [{; &, n) iz normalizable. For the conventional coher-
ent states |{: 1, 4} and squeered states! |{; 2, 0 such normal-
ization is possible; naive extensions of the same analysis to
states of this form with k = 3, [ k, 0) fail® because the
vacuum [0) is not an analytical vector of the operator A0+
= (ah)% (k 2 8). (Braunstein and McLachlan® have recently
studied this problem thoroughly by using an accurate Padé
approximant analysis instead of the usual Taylor-series ex-
pansion.)
By using Eqgs. (2.5) we can write Eq. (3.1) as

Toem /-
lr;k.n>=w"3‘-f:r[ﬁt$l] *[km). (3.2)
= ymt L m!
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We evaluate formally the normalization coefficient, indicat-
ing explicitly its dependence on {, k, and », as

o L2
(mh>2

N (k= I

m=0

(3.3)
We note some values of this coefficient:

(1) Conventional coherent states: WNAH{ 1, ») =
exp([¢2).

(2) Generalized coherent states: N2({; k, ') = exp(|H?).

(3) Conventional squeezed states: W2({; 2, 0) = (1 —
4|§-|2)—Je‘2.

The generalized coherent stales mentioned above in Section
2 were derived in Refs. 7-9. The region of convergence of
the normalization coefficient in the (k, ) plane is given in
Fig. 1. This figure illustrates the impossibility of nalve
generalization of the usual squeezed states, referred to by
Fisher et al® Their states lie along the 5 = 0 axis, and the
boundary of convergence occurs for £ = 2. The nonnormali-
zability of the state |i: &, 0) rigorously implies the nennor-
malizability of the state exp[a(at)® — aa®]l0) of Ref. 3. The
Hermitian multiphoton (Brandt-Greenberg) states of Refs.
7 and 8 lie on the n = 5 asymptote and so encounter no
convergence boundary. For values of 5 that are intermedi-
ate between 0 and %, the maximum allowed value of & is
given by [(2 — 29)/(L — 2n)]. We now evaluate the quantum
uncertainties (Ax)? = {(x2) — (x)? and (Ap)? = (p?) — {p)%
where x = (1/y2)(a + at), p = (i/N2)(at — a), and {-) = (G k, 2l
y “’i k‘; ﬂ)-
These uncertainties are given by

(Ax)? = Y + (atay — (at¥ia) + Re[({ah)?) — (ah)?,

(Ap)* =Y, + (a'a) — (a"){a) — Re[((a")*} — (a")7]. (3.4)
The expectations {a”) are nonzero only for k <n. Since k =
1 gives the conventional coherent state for which there is no

squeezing [(Ax)? = (Ap)? = 1/2], we shall treat only the case
in which £ = 2. We obtain the following expectations:

0.5— e

0.0— /

-0.5—
I | | I | R
0 5
k
Fig. 1. Region of convergence {3 = 15 — 1/[2(k — 1))} of the normal-

ization for the non-Hermitian multiboson Weyl-Heizsenberg-group
coherenl states.
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Fig. 2, Momentum uncertainties for the two-boson non-Hermitian
Weyl-Heisenberg-group coherent states (3 = 0 to 0.6 in steps of 0.1,
from a to g).

(@) = wr gz S 5 {Lm* DJ! (2@2}“’2}_” 35)

dort m! (m+1)! m
X\w"‘Zm. r,
b4 g N £ [[20m + DI
{ata) = N~22¢ z ?{ e ) (3.6)
m={

and {a} = 0. The normalization &2 in Egs. (3.5) and (3.6)
above is given by A2({ 2, 5) in Eq. (3.3). We have chosen
the squeezing parameter { to be real; with this choice we
ohtain (Ap)? reduced below the coherent-state value of 1/2.
We have plotted (Ap)? versus { for various values of 5 (Fig.
2). We obtain a finile minimum for » > 0; this was previous-
Iv noted in the case in which 5 = 0.5.78 Most squeezing is
obtained in the conventional n = 0 case in correspondence to
|7l = 1/2. In the notation of Ref. 3 the state is written, for a
real squeezing parameter, in the form exp[Y% tanh r(a%)2][0},
and the optimal squeezing corresponds to the limit agr— =,

4, COHERENT SQUEEZED STATES FOR NON-
HERMITIAN SU(2)

The starting point for the non-Hermitian realizatiom of
SU(2) that we adopt in this section is the Holstein—-Prima-
koff scheme!:
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J_=al2a+1— ),
=204+ 1— )l =1
=Yl J]=n—a (4.1)
The normalized states [N} = (NI)=12 (af)¥0), N =0,1,. . .,
2o form a basis for the (2¢ + 1)-dimensional representation

of SU{2). We may generalize the realization (4.1) to a multi-
boson realization as follows:

J W = akfy, (A)

I = fi )l = [_W]1,
S = [A/k] — o, (4.2)
where
fro = {(25 + 1 [ kg—:ﬂ”"/ k]]]“z. (4.3)

The squeezing properties of these operators were previously
investigated.*!! We now generalize Eqs. (4.2) in the spirit of
Section 2. An appropriate generalization is

J[n}_un = a*®, ,0-(a),
J{I_“(k} = k (7r)[ a ).*e
o™ = [AE] = o, (4.4)
where
By, V() = [f (AP (4.5)

We nole that this is a non-Hermitian realization; in general
i ® = [Ty T = Ju-ma ) unless 5 = 1/2 when we recov-
er E‘qs (4.2). The original D_', son realization of Ref. 5 corre-
sponds to £ = 1 and = 1. In determining the squeezing
properties of these operators, as in Eq. (3.4), that involve
only first- and second-moment calculations, we need consid-
er only the casesof k = 1 and k = 2,

SU(2), k = 1 Realization
Jt?.-)+w = RT[ZO' s u,Ta)”,
Sy M= (25—

3
qu“ =r'a— g

a’a) e,
(4.6)

We define the corresponding group-theoretical coherent
state hy

|§-¥[ = -/v}_l Exp(i' [,:,H,[”)m) (47)
(2:7)'?
2a
—tipesl NPV igR . NTIE ;
Nt Y e i . 48)

m=i

The normalization factor A for this state is given by
Sa

o g (2r.r z

where there is no convergence difficulty, since Eq. (4.9) is a
finite sum. The requisite expectations with respect to the
state described by Eq. (4.8) are given by

( !)l Iy ( )dn(sz —m)",
\m =

2a—1

(@) =N “"(Z

=0

(4.10)
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ot £

2)1 =N, 2 Z

m=0

ifiim Da\2n
{m'}l Zq( )

X [(2a— m)(20 —m = 1)]7, (4.11)
2o 5
o 2 RER e
talay =N, 2 e (m (4.12)

When {is chosen to be real, (Ax)? is squeezed in Eqs. (3.4); it
is convenient to define a squeezing parameter p = (20)75,
since, for large o, [¢)1 behaves like a Glauber coherent state
with parameter p, by inspection of Eqs. (4.6) and (4.7). If n
and o are fixed, then there is an optimally squeezed value of
(Ax)? as p varies; we have plotted this minimal (Ax)? versus
1/a for various values of n in Fig. 3. The value of (Ax)?
minimized with respect to both p and » is shown in Fig. 4(a),
the corresponding optimal value of 7 is shown in Fig. 4(b).
We note from the figures that as ¢ — « the minimum value
(ALY Hnins pmn) of the (Ax)? variance (minimized with re-
spect to both 5 and p) tends to zero. The limitis approached
in a rather singular manner; the numerical results suggest
that
(Ax) 0,2 ~ 03260717,
Doy ~ 0.867 07115,

For fixed », we would obtain the (nonsingular) limit corre-
sponding to a standard coherent state, i.e., (Ax)? = (Ap)?

0.35

0.30
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Fig. 4. One-boson non-Hermitian SU(2) coherent states (log-log

plot): (a) (Ax)2 minimized with respect to both p and 7 (the line
describes the power law (Ax)y? ~ 0.826571); (b) The optimal

value of y

(the line deseribes the power law yyin ~ 0.867a71/%).
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Fig. 3. Positon uncertainty, optimized with respect to the ccher-
ence parameter p, for one-boson non-Hermitian SU{2} coherent
states, (n = 0.2 to 0.8 in steps of (.1, from a to g).

0.5. Note that we obtain the same asymptotic behavior
(Ax)2 ~ ¢ noted in Ref. 11 for single-photon SU(2)
squeezing. Since o gives an upper hound to the number of
photons Ny, available, this asymptotic behavior corresponds
to (Ax)* 2 C Ny~ 1%, where C is some constant of the order of
unity.

SU(2), k = 2 Realization
Joort? = @ {([A/2] + 1)(2 o — [A/2])/
[(R+ 1)@ + 2],
S =1lar2] + 120 — [a2D/[(A + 1)(A + 2)]) a2,
Jtum = la*a/2] — o. (4.13)

As above, we define a coherent state with respect to this
realization by

[0 = V57 expl§ed ), *)l0)

b

N D\ 2= /95 \n
=N D8 ( ) ( ”) lom).  (4.14)
m m
m= i)
The normalization coefficient W5 for this state is given by
25
; skl : Im L=/ 2y \en
N i 2 ) . =
e e
m=1 ¥
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Fig. 5, Momentum uncertainty and optimal value of y for the two-boson non-Hermitian SU(2) coherent states: a, (Ap)?[puin] for 5 = 0.5; b,

[ap)l{ﬂmim "'?minl; €, Nmin Yersus 1/

The expectations with respect to |} required for the evalua-
tion of the variances [Eqs. (3.4)] are as follows:

{ajy =0,
2 1=5 pr —3 Q"_II ‘Zm 2m\1=21/2a\2
e S ()
X (2m + D26 — m)7, (4.16)
2ir
(4.17)

: s = 2 1—25 9 2n
(alay =2, S m|;|m( ;‘) (m) .
m=1

In Fig. 5 the squeezing of (Ap)? is plotted. For n = 0.5 we
recover the result of the conventional Hermitian Holstein—
Primakoff approach!! (Fig. 3); we also show the minimum
value of (Ap)? as a function of both » and 5. For this two-
photon SU(2) case, the asymptotic behavior suggested by
the numerical results is

(Ap)? ~ 0.20 08

and

Thin ™ 0160777,

again implying a bound to the amount of squeezing pbssible
with a finite number of photons (here, too, Npy ~ o).

5. COHERENT (SQUEEZED) STATES FOR
NON-HERMITIAN S§U(1, 1)

Since the conventional squeezing operator,! S() =
exp[lhita)? = %h¢*a?] is an element of the representation of
the group SU(1, 1), it comes as no surprise that realizations
of SU{1, 1) play an important role in squeezing phenomena.
In this section we write a non-Hermitian nonlinear realiza-
tion of SU(1, 1) that is analogous to that given in Section 4
for SU(2). The genesis of this realization lies in the Hol-

stein-Primakoff realization of SU(1, 1), analogous to Eqs.
(4_1),10.11

K, = (20 —1+a'a)'%t,
K =al2e—1+d'0)* =K,
Ky=-Y%[K, K] =a%a+o. (5.1)
The non-Hermitian generalization of Egs. (5.1), analogous
to Bgs. (4.4), 1s
K[rn-*-(k) = ‘f’k__”(”J(ﬁ}(aT]k.
K{“},,[“ & aki’k’d(i_’i)[ﬁ)}

Kiys™ = o+ [/k], (5.2)

where
8, = [F ()], (5.3)
ﬁ:_a(ﬁ) = [(20 — 1 + [[A/R]) [#/R] (2 — k)I/ATY2 (5.4)

As in the SU{2) case, these k-photon operators satisfy
Kr_u)+m = [K(1—.,)—W]T, (5.5)

and so the realization is non-Hermitian unless » = 1/2. In
this latter case (n = 1/2) we obtain the Hermitian realization
previously considered.

For the same reasons as were given in Section 4 we need
consider only the k = 1 and k& = 2 cases when determining the
squeezing properties of the above realization (in first- and
second-moment caleulations).

SU(, 1), k = 1 Realization
KM= 20— 1+ A)%a’ = a'(20 + aY,
KW= (20 + ),
K=o+ 4. {5.6)

The appropriate squeezed state is defined to be
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| | | |
116 1/8 1/4 /2
1/c
Fig. 6. Positon uncertainty at eonstant o = ¢ (2e)7 for the one-
hoson non-Hermitian SU{(2) (solid lines) and S8U(1, 1) (dashed lines)
coherent states. Curves a, b, and ¢ refer to n = 0,25, 0.5, and 0.75
with p = 0.5; curves a’, b’, and ¢’ refer to the same ws with p = 1.

0.5

(Ax)?

0.0l
0.0 0.5 1.0

Fig. 7. Positon uncertainly versus the squeezing parameter { for
ihe two-hoson non-Hermitian SU(1, 1) eoherent state, for e =2 and
a,7=0,b,n=04c1n= 0.5;d,p=0.7.

|y, = N, exp(iK D0 (5.7)
Sy g e 1R ,
=N Z 7(m!)“-”2’-"( i Im). (5.8)

m={

We may formally express the normalization constant N of
this state as
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@

o s S oA
"\'1 = ‘5‘:{]7(?1';'[}1_27’ ( s ) & (O.J)

However, we note that Eq. (5.9) only gives a convergent
series, and hence a normalizable state [Ey 1, forn < 1/2 (all {)
or o = 1/2 (If] < 1). When these convergence criteria are
satisfied, we may evaluate the required expectation values
for the obtention of squeezing as

 Felike (2.; +m— 1)'2»

= 1yi—2n m
m=0 (m!)

@y =M%

*X (20 +m)", (5.10)
o v sues TP f2eFm—=1\
(ézh — ‘Ml 2§2> _~'.7( )
,;,_=6 (ml)] ) e
X [(26 + m) (2o + m + 1)]7, (5.11)
o s [GET Ok = TN :
S B SR )
(@'ay =N > m P ( i ) (5.12)

m=1

We obtain optimal squeezing [in (Ap)?] by choosing { to be
real; as hefore, it is convenient o scale the parameter by
introducing p = (20)7¢. Figure 6 shows the squeezing attain-
able for two values of p (0.5 and 1.0) and three values of 3
(0.25, 0.5, and 0.75) as a function of 1/e. For comparison,

c
(1o e e S
Ly
(=5
<
S b
a
0.1 T S
| | I |
/16 1/8 1/4 1/2

1/o

Fig. 8. Momentum uncertainty versus 1/v, at constant p = { (2o}
= (0.5, for the two-boson non-Hermitian SU{2) (solid lines) and
SU(1, 1) {dashed lines) coherént. states and a, n = 0.25; by =0.5; ¢, n

= (.75,

saje}s pazeanbg
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Fig. 9. Diagrammatic interconnections between states.

the SU(2) values are also shown; note that in both cases the
unsqueezed-coherent-state value 0.5 is approached as ¢ —

5U(1, 1), k = 2 Realization

K™ = @)([n/2] + 1(2e + [a/21)/

X [(7 + DA+ 2)]},
K- = {A72] + D@ o + [A2D/0 + 1) (2 + 2)] ",
K = o+ [A/2]. (5.13)

The state we wish to use is defined by

[Fhy = Nyl exp(iK ;)0

A i 9 = (1/2)=n
MY 5-*”(“"+r:1 1)” (2;1”) l2my.  (5.14)

i
m=tl

We evaluate the normalization coefficient Vs as

W2 Z efem (26 +m— 1)2'1 (Qm)lf'dn' (5.15)
3 . m m
=l
The series in Eq. (5.15) converges for [ < 22 in terms of
the parameter p = (20)7¢, this criterion is p < 15(8a)7. The
relevant expectations for use in Eqgs. (3.4) are

(@) =0,

e T L s
=7 L= 2[_",,-"'."'. =25 -|‘.m
@, = 270 % Y Jetn ()

m={

X (2” = 1)'“ (2m + 120 + m)".  (5.16)
nt

i — om [ 20N1T20 (Bg +m — T\n
fatay, =0 f—2 -2m {517
{atay, = 2N, 2 ml¢l (m) ( ¢ ) (6.17)

m=1

In Fig. 7 the squeezed (Ax)? versus (real) {is plotted for this
SU(IL, 1), k = 2 case. The curve for 1 = 0 corresponds to
conventional SU(1, 1) squeezing, as, for example, in Ref. 3.
The curve for y = 0.5 is the Hermitian nonlinear case treated
previously by us!; note thal in all cases the minimal squeez-
ing goes to zero (this may be shown analytically®), The n =
0.5 and 5 = 0.7 curves show a local minimum; in terms of
physically desirable states, this point exhibits minimal
quantum photon noise* and so may be considered optimal,
[Tt is in this optimal-minimum (local-minimum), and not
global-minimum, sense that Figs. 3 and 4 of Ref. 11 should
be interpreted.] In Fig. 8, the squeezed values of (Ap)®as a
function of 1/¢ (for p = 0.5) are compared with the values
obtained for the SU(2) case. These tend to a common limit
as a — @, The two-boson generalized-coherent-state limit
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and the limiting values (for 5 = 0.25, 0.5, and 0.75) are in
agreement with the value of (Ap)? for ¢ = 0.5 in Fig. 2.

6. CONCLUSIONS

The introduction of non-Hermitian multiboson realizations
of the Wevl-Heisenberg, SU(2), and SU(1, 1) algebras leads
to a comprehensive and unified treatment of the various
facets of the theory of coherent and squeezed states. The
conneclions among the different generalized coherent and
aqueezed staies previously introduced were pointed out here
with the help of a thorough numerical analysis of the second
moments of position or momentum. The difficulties that
these generalizations encounter in the formulation first
studied by Fisher et al* are clarified within the present
unified framework. Previously observed limitations to the
amount of squeezing achievable with a finite number of
photons have now been supplemented by the observation
that a compromise between Lhe desired amount of squeezing
and the amount of photon-number quantum noise tolerated
should in certain instances be considered.?

The various states and the interconnections among them
are presented schematically in Fig. 9. As indicated in the
diagram, both the general SU(2) and the general SU(1, 1)
coherent states reduce to the conventional squeezed states
when & = 2 and # = 0, and they reduce to the generalized
Weyl-Heisenberg group coherent state in the limit ¢ — «
and to the Hermitian counterpart when n = 1.

The standard Glauber coherent state is obtained fork =1,
by either setting y = 0 or hy taking the limit as ¢ —> =,
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