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1, Introduction

There arc several motivations, both physical and mathematical to pursue the construction of
multi-photon squeezed states. Besides describing many photon processes which are more and more
interesting from the point of view of quantum optics, they lead to non-Gaussian vawepackets which
are of great relevance for other branches of physics as well (for instance the theory of phasc transitions
or the description of certain collective effects in nuclei). Moreover, since in several cases higher
order moments can be independently squeezed, such states depend very often on a larger number of
parameters and a finer tuning of the related probability distributions can be achieved.

The origin of the set of papers ([1], [2], [3], [4], [5], [6], [7], [81, [9], [107) which motivated the
present work, and which are in part bricfly reviewed in it, was the puzzling paper by Fisher, Nicto
and Sandberg [11]. In it the authors, trying to generalize the customary 2-photon squeezed states of
Stoler and Yuen [12][13] to multiphoton states by the simplest possible ansatz, run into unexpected
difficulties conniccted with the non-analyticity of the vacuum. Even though such difficulties could be
partly overcome from the computational point of view (Ref. [14]), the problem is a very deep one.

A non-naive way out of it was found on the basis and in terms of a number of observations : 1)
it is straightforward to check that the conventional squeezed states are generalized coherent states (in
the sense of [15]}), corresponding to the algebra su(1, 1). (In this framework they naturally [it into
the general definition given by Glauber [16]). 17) The generalization proposed leads to an infinite-
dimensional algebra whose coherent states are unknown — indeed they are most probably undelinable
in the usual sense — and which is anyway endowed with a structure not rigid enough for such a fine
effect as squeezing. 1ii) One should have therefore to preserve the two ingredients which appear
to control the whole phenomenon : on the one hand the Weyl-Heisenberg (W.H.) group skeleton,
responsible for the bosonic character of the many photon states, on the other the structure of a group,
compact or non-compact but of finitc rank, to generate squeezing. 1v) The price one should be
ready to pay is the recourse to non-linear realizations of the algebra, which necessarily introduce into
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play infinite power series of bosonic operators (rigid enough though not to break the delicate balance
leading to squeezing). i {

The two main tools to realize the-above program are the Brandt-Greenberg [17] multiphoton
creators and annihilators, and the Holstein-Primakoff (H.P)) [18] realization of the s4(2) and su(1, 1)
algebras, - i ; ¢ Ll
The new set of multiphoton squeezed states thus constructed has several interesting featres.
They promise o be the best candidates as the quantum states in which the light entering the input
ports of devices such as the conventional Mach-Zehnder and Fabry-Perot interferometers, or the active
lossless interferometers of Yurke, McCall and Klauder should be prepared. 1t wasin fact shownin [19]
that such devices can be quite naturally characterized by an action on a Lie group space, respectively
of SU(2) and SU(1, 1), and we expect that the states described here should be able to achieve betier
phase sensitivity than the highest weight vector states the authors in [19] propose.

Moreover they constitute a family of quantum states whercby, with great flexibility one can
achieve an arbitrary reduction of the photon number noise, a variety of diffcrent number of photon
distribution laws, a finer tuning in the control of higher moments squcezing.

Finally they Icad to the notion, discussed in this paper with some detail, of fractional photon
states. These are mixed states, to be realized in terms of suitable density matrices , which describe the
same physical output that one should have were one able to generate photon states corresponding to
a fractional cigenvalue of the number operator ([8]). Indeed they describe synthetically the complex
canonical transformation and projection operation (in Hilbert space of states) one should perform
when describing the observable properties of a k-photon dynamical variable in the [ramework of a
k'-photon state, when & and &' are not multiple of one another. We show here (see Ref. [10]) that
in this description squeezing comresponds to fracioning, a suggestive physical image of this elusive
phenomenon.

The paper is organized as follows. In Sect. 2 we briefly review the algebraic background ne-
cessary for the theory, namely the automorphism of the W.H. algebra realized by the multiphoton
operatorg, and both the H.P. realization and the multiphoton H.E. realization of SU(2) and SU(1, 1),
In Sect. 3 we describe the whole set of new states which can thus be obtained, and discuss the rclated
probability distribution functions, higher order moments and squeezing propertics. There appear a
sct of very interesting scaling properties, which exhibit unexpected universality fecaturcs. In Sect.
4 we introduce the notion of fractional photon states, and discuss the possibility of their physical
realization, A few conclusive commenls are given in Sect. 5.

2. Algebraic background

2.1 Multiphoton operators

The new type of multiphoton squeezing operators is constructed resorting to the generalized Bose
operators of Brandt and Greenberg [17] by and b;rk). The latter satisfy the commutation relations

b, bl =1 @.1)

IN, byl = —kbgy (2:2)
where N = a'a is the usual number opcrator.
Equations (2.1} and (2.2) lead to interpreting b and by, as annihilation and creation operators

of & photons simultaneously, even though it should be noted that by = a, but by & o* for k > 2.
From (2.1) and (2.2) one can derive the normal-erdered representation

bay=Y o alYal® | 2.3)
j=0
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where

i Fl Lig 2
(ky (—Y 1+ ”;“ iy
S s g G- D! (.’,!(E i) ¢ G

In (2.4) [[z]] denotes the maximum integer > «, whereas the phases ¢, m = 0,..., 7 are arbitrary
real numbers.
In the Fock space by and b{Tk] operate as follows:

baylsk +A) = fslsk +X) | (2.50)
bzk}|.sk+,\) =vVes+1l(s+ Dk+1) (2.5

where 0 < X < &k — 1.
One can notice from (2.5) that the Fock space splits into k orthogonal subspaces which arc
invariant under the action of the k-photon operators;

k-1 oo
F=@FP , FP =D span{|sk+3)} | ,
3=0 a=0) (2.6)

bprer® | wl W e r®

The generic Fock state [sk + )} is thus labeled by two quantum numbers s and A, which are the
cigenvalues of the complete sct of commuting operators b[rk]bm and Dyy = a'a — kba,b(k;:

b;rrk)blﬁk}ls":" +A) =slsk+X) (2.7a)

Diplsk +2) = Msk+3) . (2.7b)

In See. 4 we shall equivalently consider a different set of commuting operators, namely f?(;;)
itself together with the canonical operator Q)

. 1 ;
Qo = ﬁ(bm o) . (2.7¢)

2.2 Holstein-Primakoff realizations of Lie algebras

The new set of squeezed states is defined by means of multiboson realizations of Lie al gebras,
In the papers [2-10] almost all simple Lie algebras and the usual solvable Weyl-Heisenberg algebra
defined in (2.1) have been considered.

According Lo the Levi theorem, all these algebras arc essentially the building blocks of every Lie
dlgebra: this means that we can deal with a generic Lie algebra by decomposing itinto its fundamental
blocks. On the other hand in ref. [9] it is proved that the main squeezing properties for higher rank
SU(n) states reduce 1o those of SU(2) and one can recover all the interesting features limiting the
attention to the lowest rank Lic algebras. We thus consider only W. i . (Weyl-Heisenberg), SU7(2) and
SU(L, 1) groups which are the simplest examples of solvable, com pact and non compact respectively,
unitary Lic groups.

Therefore we now briefly summarize their defining commutation relations and their multiboson
H.P. (Holstein-PrimakofT [ 18]) realizations.
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The commutation relations of SU(2) are

[-h-, J =273

[jS,J:L-J=:|:Ji (.&3)

The UIR (unitary irreducible representation) corresponding to the eigenvalue o(o + 1) of the
Casimir operator J2 + 1(J,J_ + J_J,) can be realized on a 20 + 1 dimensional subspace of a fixed

J ;k) sector by means of the following generalized H.P. transformations:

I® = Q0 +1 = bbby = 72T

; (2.9)
(k) _ g
J37" =bgbuy — o
The special case k = 1 corresponding to the usual H.P. transformation has been considered too.
S, 1)
The commutation relations of SU(1, 1) are
[K.,K_]=-2K :
; i (2.10)

|K3, Ki]l=+Ry

The UIR representation corresponding to the eigenvalue o{c — 1) of the Casimir operator K
%(KJL + K_K,) is now infinitc dimensional and can be realized on a whole fixed ;ﬂfk} sector by
means of the H.P. trasformations

1
E® =20 — 1+ bbbl = [EET

Kém = bgk)bfk} o

(2.11)

As for SU(2) also the k& = 1 case has been considered. For the ST7(1, 1) case a bilinear realization of
the algebra is also possible:

s %QT% Vo I
(2.12)

1
Ki= E(Zaﬁa +1) .

There are two UIR acting on the }'(}27‘ and F 1(2) sectors of the & = 2 splitting of the Fock space,
corresponding to o = }1 and o = %; respectively. As we shall see in Sect.3.1, the usual Gaussian states

[121,[13].[201,[21] are related to the & = 1 case,

Weyl-Heisenberg

The 177 H. algebra is the algebra of particle operators (or equivalently of the position and mo-
mentum operators), The commutation relations are given in (2.1) and the UIR is the usual infinite
dimensional Fock representation, realized on a whole fixed }‘_\m sector.

One can notice that both the SU(2) and ST(1, 1) H.P. realizations reduce to the W.H. algebra
-1 the limit ¢ — oo (in Sect.3.1 we shall give an intuitive geometrical interpretation of such limit).

In conclusion we recall that one can relize both the SU(2) and SU(1, 1) UIR using bilincar
products of bose operators corresponding to more than one oscillator mode (sec for example ref.

[22]).
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3. The new states, their distributions and moments 1

3.1 Definition of the states

We focus our analysis on states |w) corresponding to zero-average position and momentum, since
such an average can be arbitrarily changed 1o any desired value by a simple traslation

|2}, = D@)|w) {3.1)

where D(z) is the unitary displaccment operator:

D(z) = exp(za’ — z*a) . (3.2)

a' and o denote the usual creation and annihilation operators [a, af] = 1. In fact, for, say, the position
q= #(a +a'), one has

wiz|d|z), = V2Hez . (3.3a)

Thus, the gencric nth moment is given by

w{2l(@— (@)°]2), = (w]d*w) = xI . (3.30)

Analogous result hold for the momentum operator p = ;;%—(a — gy
The property that |w} is a zero average state is guaranteed if one assumces

lw) = S,l0) (3.4)

where S, is a unitary squeezing operator, which is an analytic function of multiparticle operators.

Furthermore, in view of the comparison we are interested in, between squeczed states and the
customary coherent states {which have a Gaussian distribution for the canonical variables), we con-
struct even distributions using an even number of particle creators, The usual squeezing operator
[12],[20], which gives risc to a gaussian distribution,

o Los so  u
S(Qaauss = eXp [;(Ca —¢ad)| (3.5)

satisfies both the above requirements. Fisher, Nicto, and Sandberg [11] have proposed generalizations
of the operator (3.5) in the form

Sey(€) = exp Ca’™® — ¢*a¥ + hy) (3.6)

where Az = hk is a polynomial in ¢ and o' with powers up to (k£ — 1). The resulting squeezed states
cannot be treated in general by analytic methods. Indeed, for example, the Taylor expansion of the
vacuum expectation value {()[§k|0} leads to a series with zero radius of convergence (see also refl,
[1]) and numerical computations could be performed only resorting 1o Padé approximants [14]. Only
very special cases of operators of the form (3.6) can be analytically handled, i.e., for example, when
Sy is the evolurion operator corresponding to an hamiltonian which is a power of a bilinear operator
[23].

One can easily understand the appearence of the formal analytical divergencies induced by the
operator (3.6) trying to compute its action on the vacuum vector. Doing that requires dealing with the
B.C.H. (Backer-Campbell-Hausdorff) factorization of SA(&J‘: ¢} in the form:
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Suwy(©) = exp [F(Q)aFlexp (Og) (3.7

where f(C) 1s some suitable [unction of ¢ and (g is an operator which stabilizes the vacuum and
gives only a nommalization factor. Adopling this method one needs to compute, for example, itcrated
commutators of the form (m 2= [);

[a},a™] = pla’a)a™ ™ (3.8)

where pl(z) is a polynomial function, If £ > 2 this procedure never ends, and infact explodes into an
infinite dimensional Fock algebra which one is in general unable to handle. On the comtrary il k = 2,
as for the usual Gaussian squcezed states, the finite dimensional Lic algebra (2.12) is obtained, and
the factorization (3.7) can be explicitly written. More precisely one can see that the usual Gaussian
squeezed stales are nothing but the generalized group theoretical coherent states of ST (1, 1) according
to the general definition for an arbitrary Lic group given by Perclomov and Rasciti [15]. (Indeed it
is well known that the usual harmonic-oscillator coherent states themselves are group (heorctical
cohcrent states for 7. H. group).

The last observation suggests that group theoretical coherent states are good candidates for a non
naive generalization of the squeezed states. We recall their general definition.

The set of coherent states for a Lic group G is oblained using a UIR of the group, chosing
a fixed vector [Q) in the representation space, and acting on it by the whole group. It tums out
that the coherent states are labeled by means of the left cosets of the group & with respeet o the
soubgroup leaving |€) invariant up to a phasc factor. Resorting to the above definition we construct
the generalized squeezed states forthe SU(2), SU(1, 1)and W. H. groups using the H.P. realizations
of Sect.2.2:

—ry (3.9a)

SUMD = exp[¢ K2 — P10y (3.9b)

= exp (Bl — Cbpl0) (2e)

[6)5° = expl5¢a™ — ¢"a)0) . (3.90)

For the sake of completeness we have written in (3.9d) also the usual Gaussian squeerzed states which
correspond o the D*(i) discrete series UIR of SU(1,1) and not to the H.P. realization,
By the B.C.H. formula one can rewrite the states (3.9) in the more convenient form :

€k, 0)5® = (1+ €[5 exp[ETM0) (3.10a)
LoD = (1 e expleEMI0) (3.108)

€2 k) H- = o1 exp [£87,110) (3.10¢)
[£1% = (1 = [e)* exp3€a™1[0) . (3.10)
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The relation between the parameter € labeling the states in (3.10) and the parameter £ in (3.9) is
reported in the first column of Table 1.
In the Fock basis the squeezed states read as lollows:

oo 1
7 : 2.—8 Aok T
e T ( ;) £ kn) (3.114)
re=(1
AR 2.0 2-0+n—1\%ﬂ _
6 by o) U = (1 — ()" S . ) £ lkn) (3.115)
n=t

)W.I-f-ze—il'ﬁlzzvg[kn) : (3.11¢)

=t} =

o0 Nl 1 N"

n=0

Equations (3.11) manifestly show that the squeczed states thus constructed are indeed multiphoton
states.
From egs. (3.11) the probability distribution ef the number operator is casily obtained:

N8 ery = (14 |81 ( ) e sl

NSL(] 1)&?}) =1 gH” (25 et ) [ 5 (3.12h)

NWH&M_EMMQ__; (3.12¢)

Nia® = N¢ s @ NG @ =0 s (3.12¢)
p7kn

A,r{(?nu.-w(zn_'_ D=0 . (3.121)

Equations (3.12a)-(3.12&) represent, respectively, the binomial, negalive-binomial and Poisson distri-
butions in the many-photon variable kn.

We want now to compare the statistical propertics inherent in the different siates. The squeezing
parameter £ introduced in ¢qs.(3.10) does not lend itsell to a trasparent physical interpretation and
appears therefore somewhat ambiguous. On the other hand, one can see from Table I that the quantity
describing the number fluctuations,

6= ; (3.13)
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of the number operator is inverscly pmpomonal 1o [£] with a coefficicnt depending only on the group
representation. We adopt therefore 6~' as a good independent variable to compare the squeczing
properties of the different states.

3.2 Squeezing properties of the new states.

In this section we give a detailed analysis of the second moment of the position variable § nor-
malized to the value corresponding to the vacuum state

A - 2
@ _ (wlqlw) — (w|flw) :
(O]%[0) — (0]g[0y \a2a)

by varying the siate |w} in the set (3.11) and in the direction of the maximal squeezing, i.e. for negative
real £.

* Figure 1 reports the second moments ¥@ for various two-photon squeezed states as functions of
61 (the Tatter two in the o = 3 representation). For the sake of comparison, the results for Gaussian
states are also shown. One cannotice that among all staics the Gaussian ones exibit the best squeczing
for a fixed value of § . However, they cannot attain a fluctuation in the observable number of photons
lower than v/2;in other words, the (_rdllbbldn states are photon noisy. Furthermore, as xé‘}u 4y 180
monotonic decreasing function of § =" , the best squeezing corresponds to the lowest £ fluctuation,
On the oter hand, all the other non=Gaussian states give rise to functions x5 1) which are not
monotonic but exibit a local minimum. Among them only the SU(1, 1) states can be completely
squeezed (x@ = 0).

Gaussian

Fig.1 - Squeezing (i.¢., second moment lor negative squeczing parameter) vs the inverse % fuctuation
parameter 61, for various two-photon squeczed states; ST7(2) and SU(1, 1) states correspond to the
g = 3 representation (from refl.[7]).

One can notice as well that, in general, non-Gaussian slates can attain a photon-number fluctua-
tion smaller than those of the Gaussian states. In particular, the W.H. states can have an arbitrarily
small photon noisc, but they arc squeczed limited in that the second moment xﬁ) 5. exibils an ab-
solute minimum qu min = 0.31744 corresponding to 61 = 0.64675. The SU(1, 1) states can be
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SHUELLLU LU A SULANIM LT I CRIT U POLNIALTICE o WG OPUINTA ValluC 0 - = W L0, HICTCIore one
can simultaneously reduce 1o zero both 7i-noise and ¢-noise in the limit ¢ — oo, It is worth pointing
out that whereas for 7. H. states the local minimum is also a global one, for the SU(1, 1) states the
absolute minimum is zero (numerical values of relative mlmmd for large o are given in Refs.[7] and
[4]). Finally, the SU(2) statcs are no longer squeezed s.’x S > 1) for small 4 fluctuations.

Figure 2 shows the reduced absolute fluctuations (An/ k)* vs ! for the same states considered
inFig. 1. It appcars from this figure, comparing it with the previous one, that the better the squeezing
the higher the photon-number fluctuations. In particular, the Gaussian states exibit the highest photon
noise.

1.0 T
Gaussian W.H —
o =
D 7
c
ﬂ —
== k=2
0.5 =
SuU(2) ]
0.0 1 |
4] 1 2 V20 3 4

Fig.2 - Reduced # square variance vs the inverse #-fluctuation parameter § ~! for the same two-photon
squeezed states of Fig. 1 (from ref.[7]).

In the limit of squeezing 1o zero second moment, 8 — /2 for the Gaussian states or § — 1/\,«"
for the SU(1, 1) states, the 7i-variance increascs asymptotically to infinity for both states. (An/ k)w n
grows parabolically with 6!, whercas (Anﬂc)SU@) shows a maximum, and decreascs (o zero as &

tends to infinity, as ~ (6§ )2,

From Figs. 1 and 2, one can then conclude that the local minimum of x® for the non-Gaussian
states can be considered as an optimum situation as it provides the best compromise between the
requisite of maximum squeezing and that of minimum absolute noise in the photon number.

3.3 Probability distributions

In this section we show some numerical results (ref.[5]) concemning the position probability di-

stribution

Q.(0) = [{glw)* (3.15)

and the number distribution

No(m) = [{nfw)]* (3.16)

for some states in the set (3.11).
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Figures 3(a)-3(h) represent @, (g) lor the . H. states for various choices of & and for different
values of ¢ = pe™ (the probability distributions for the SU(2) and SU(1, 1) states arc analogous).

a: g=0
b: » m/2
Cr g

a:gp=0I a =1
B o omf4

c: oo/ 14
1L \/f
[ Sy e

14 \_ 0
T L] b,
. 0
A | H
0
K=4 i
C
a: g=0 p =1 o }
b: v mfq e ll
Ci o mS2 1+ Bl
d: g
IR
L il | d
14 i 0
|
0
b
4]
; 2 |
-6 0 6

Fig.3 - The probability distribution function Q¢ vs the (dimensionless) position ¢, for different
values of & and different choices of ¢ = pe'® (from ref.[5]).

One notices how such distributions exhibit a sensible deviation from the Gaussian behavior. The
[unctions corresponding to even k are symmetric under the exchange g — —g, whereas there is no
symmetry for odd k except for ¢ = 7/2. A characteristic feature of the functions Qqj ¢/(g) is that they
show an increasing number of zeros when p is increased at fixed ¢, for any k. The same effect, i.c.,
a richer structure corresponding to a larger number of nodes, appears when £ is increased keeping ¢
fixed.
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As for the moments of these probability distributions, a general theorem is proven in ref. [8]
concerning the probability distribution of every multiphoton state (i.. a state which is a surposition

of cigenstates |kn} with varying » and fixed k):

For a k-photon staie w) , only the moments x¥) corresponding to 2N > k can be squeczed

forevenk, N > k foroddk .

Gaussisn A)
.8 "' = 0.85

iS5 e o S o e B e e B S e e I i B I £ e o e |

sS5u{z) C)
as 4= 4
s =10
1
[+] 10 20
5U(2) E)
0.5 41=0.65
28 =1
o.o ok Ll I o O T R T T
§ + {
[+] 10 20

sSu(.1) G)
0.5 4-1=0.865
=i
o'o [ e e T I B TV T Y O T T W
I 1 f
(4] 10 20

W. H. 8)
0.3 81 = 0.65
D'D [ e } T 'i PR G T T S N |
0 10 20
su(2) D)
05 V=3
s =10
00 A-—.—l—IJ—I—I—I—.—-‘T
I 1 1
o 10 20
sul1,1} F)
05 4= 2
2 =10

O T T Y T T T T T T e o e |

1
o 10 20

Fig.4 - The probability distribution function A (n) of the % operator for the k = 2 states for different

values of o and [£].

Number probability distribution

Figure 4 shows some A, (n) distributions for all the different types of states and a few valucs of
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o (for the ST/ (2) and ST/(1, 1) cases). Notice how the negative binomial distribution appears as the
slowest decaying one for large m: as |[¢|? and/or ¢ are increased, one obtains a maximum for larger
and larger » and more and more peacked functions, getting as a result smaller 6 .

Restricting our attention to the Poissonian sub-Poissonian shape of the distributions, one can
easily check from Table I that the only sub-Poissonian distribution is the binomial distribution, related
to STU(2) states: all other distributions are super-Poissonian (included that of the Gaussian squeezed

vacuum).

TABLE 1 - Backer-Hausdorff parameter ¢ and its range and photon-number average, variance, and
fluctuation vs £, for the different squeezed states considered (from ref.[7]).

- Squeezed | Range of
state £ = &) €] (n) (An)”
 Gauss § = g tanh([<]) 01 H—ﬁﬂeﬁ Zﬁ'%ﬂw
— Wi = =00 | K b
_5U( ] £ = -; tan( |g| | 0—co 2ko _m_l+iif’ 2kA4 J{1+|£|*}"'
SU(1, 1] b £ = |—§—[ anh(|¢]) _.__D =1 Zk«:r—mfm 2k* J{___%h}z

3.4 Scaling laws

The existence of the two vertical asymptotes for the Gaussian and SU(1, 1) states in Fig. 2,
corresponding to the vanishing of x!?, suggests that we look at the dependence of x® vs (An/k)?.
One expects a scaling relation — that in the limit of large (Am)? should give a generalized uncertainty
relation — in the form

o (An) ™2 (3.17)

107

Gaussian

| | | | | |
-4
E (AnP/ K

Fig.5 - Log-log plot of squeezing vs reduced absolute 4 fluctuation for the same squeczed states of
Figs. 1 and 2 (from ref.[7]).
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Frgure 3 snows Ne 10g-10g plot 06 sqUEeCZITIE VETSUS reduced absolule pnolon-numbper Liucluahion
for all the two- photon states of Fig. 1. One can notice how ~ = % for both the Gaussian and the
SU(1, 1) states; in the latter case  being independent of the value of ¢, provided it is finite, The
proportinality constant depends on both the state [Gaussian or SU(1, 1)] and on the representation
[o]. Thus the parameter ~ can be thought of as a universal scale exponent. One should observe that,
considering the W.H. states as the ¢ — oo limit of SU(L, 1), the universal behavior is broken in the
same limit, and we have y = (.

Scaling laws analogous to (3.17) can be found for higher moments as well. Somewhat unexpec-
tedly, scaling laws for second- and higher-order moments appear as well for all the states correspon-
ding to the local minima of the moments themselves versus §~1.In this case, the parameter whereby
the two uncertainties ¥ and (An)? can be connected is the represcntation label o, which is the only
remaining free variable. Generalized scaling laws of the form

xfii” ~ (A 2R (3.18)

¢an be obtained by eliminating o~ between ¥ and (An)?.

1.0 ! e
N=2
-
0.9— =
—— =3
O.B_ =, |
W.H.
sui2
0.7 BUR) L -
‘-0-.._,___
(2] SU1.1)
X
I
0.6
0.01 0.02 0.03
05 | I[ I 1 | B PO L EI i I
0.4 ““-§H 2) —
0.3_ \\. i "h-..._‘%‘.-' f'::l.:'. =
L -
— 1 S -0\\ =i
S "'-\‘ SuU(1.1)
0.2 B B —
\\ ~ o
i N MN=2
~ ~
\\ -,
N N=3 =
0.1 N, ‘D\ A
= t\":d -
o] ! N e e O | | !

01 1.0
(An)?

Fig.6 - Generalized squeezing for the 2Nth moments vs absolute # fluctuation at the local minimum
(log-log plot): (@) k=4, N=2+4(b) k=2, N =14/ (fromrel[7]).



Figure 6 shows the log-log plots of the optimal moments xf,i‘i? versus the corresponding #i-

variance, which manifestly exhibit a power-law behavior of the form (3.18). It is interesting to point
out how, in this representation, all states [W.H., SU(2), and SU(1, 1)] lic on the same straight lines.
The exponents (N ) are positive numbers less than 1, whose dependence on NV and k is shown in
Fig. 7. Notice that y,(N) is monotonically increasing with N and decreasing with &, (on the contrary
one obtains that the proportionality constant is decreasing with N and increasing with k).

1.0 [ = 1 |
k=2
¥
0.5+ —
k=4
0.0 | /L
(4] 1 2 3 A 5

Fig.7 - The exponent 4 (N) of the scaling laws (3.18), corresponding to plots of Fig. 6, vs N for
k=2, 4 (from ref.[7]).

4, Fractional photons

4.1 The algebraic definiiion

In Sect 2.1 we have defined the transformation Fiyy of (2.3),(2.4):

Fay:a' = Fn@D =8 , Fme) = Feehl (4.1)
for positive integer k only. We note that i y(a’) = a'. and, with a litlle algebra,

Fgy o Fany(a') = Faan(a®)

We may at least formally (Ref. [8]), extend the semigroup of nonlincar trasformations (4.1) to
the Abclian group { Fymrationalk > 0} (one should really think of this group as a group of canonical
transformations acting on pairs of conjugate operators), by defining the inverse trasformation F{k; by

Py ' o Fin(ah = o' = Fay(e)

We may therefore equate F( k; = Fuy i) whence
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Fuy ™' o By = Fiepny = Fin)

where + = &'/k is a positive rational number. It is this extension which allows us to define the notion
of fractional photons.

The above formal structure is equivalent to considering the action of k'-boson operators on a F
sector with & &', Focusing our attention on the particular sector FiP, the k'-boson action is given
by the following matrix clements:

S S [Lem/E k! /£]]! ‘
(J‘CTH—E(E’(H}} [b(.ﬂ:"ﬁ) ikm} =y (lem’fkr ] ﬁ]]‘[lkmf!{k; e 'U-]-JI) ém,m’fa 1

where we have defined s by s = (K'/k)(u — v). When u = v, then s = () and the expectation (2.3)
always has nonzero values (for m = m'). When u # v, the expression (2.3) vanishes unless s is an
integer; that is, (&'/k)(w — v) is an integer.

Note that expression (2.3) depends only on &' and k through their ratio: = k'/k. Here r is the
positive rational fraction of the fractional trasformation Fi,). We may equate expression (2.1) formally
to an expectation involving fractional photons:

{km|(h(k13)"(i}w |km) = (me Julb(r))“|m)

Thus the claim is not that such fractional photon modes really exist, but that physical experiments
involving integral numbers ol photons can be interpreted as behaving in such fractional mode.

4.2 Physical states, their distributions and squeezing properties.

In ref.[10] physical quantum states are constructed which have the same probability distri butions
of fractional photon states.

The definition of the probability distribution for fractional photon states is based on the con-
struction of a complete set of eigenvectors for the two mutually commuting operators Q(k) and Dm
defined in Scct.2.1, The diagonalization procedure is standard, and gives the following result:

QM = Z DIk + X)

=0

po
CHQ) = V/_i{:(@)

where H;(Q)) are the usual Hermite polynomials of degree I One can easily check that:

(4.2)

Q@ M =Q1Q, My
Dip|Q, Mpy =21Q, Ay

[f one considers next a k-photon state in the }—"{, sector:

=]

Wg = Y wmlkm) (4.4)

=

cne can construct the probability distribution of the canonical variable QAW} for the k-photon state
|Ld>[g) k —‘;J k' as
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k-1 oo

PO=3" i@, Mlwhwl* = > wiwnCian@Crm( @b aymy (4.5)
A=)

Lm=0

where ({z)) = = — [[z]] denoles the fractional part of x. Eq. (4.5) shows clearly that the probabi-
lity distribution depends only on ¢ = 1/r = k/k’ and can thus be referred 1o as [ractional photon
probability distribution.

As an example we sclect, as k-photon veelor |w) ). one among the gencralized k-photon states
of ¢q.(3.11), namely the W.H. coherent state:

whw =6 BT
ekl (4.6)

Wy =——
i \/E!- I

and restrict our altention to the special case ¢t = 1/n. In this case the probability distributions are
almost gaussian (sce for example Fig. 8). Morc precisely they approach the vacuum gaussian shape
for t — O (and obviously for [w|> — 0) in agreement with an intuitive physical meaning of vacuum
as zero-fraction photon state. On the other hand il one increases lwa|? at fixed ¢, the gaussian shape
changes to a richer structure, correspond ing to a larger number of local maxima and minima. For
very large |w|? the maxima raise up more and more sharply around the average value, and in the limit
|w|? — oo the distribution merges into a generalized function, as forthe usual integer-k multi-photon
distributions.

1= T T T T T T " 3! e—— T B T T T )

120,250 A) { =0.050 B}
pw=l emd
LY [

=TI
0
“pble M T il . =
1=0.125 I c) t =0.250
g=3 ’ =3
FEA f| Faun ]
i !
i i
o—r_Ja//,ﬂ-/_h o____ﬂ#fﬁyz {
I = T
o 0
1 ;
.I 1=0.500 q{ E)

Fig.8 - The probability distribution P9 vs the canonical variable Q for the . . fractional states, for
some values of p = |w| and L = 1/n.

3186



Squeczing is obtained increasing |w| along the negative real direction as usual, In Fig. 9 the
second moment for the canonical variable Qy, is plotted versus p = |w| for various values of { = 1/n.
One can sce that better squeezing is obtained for larger p and smaller {. One can check [10] that for
increasing values of g the squeczing asymptotically approaches the constant value ¥v@ ~ t. One gets
(hus the nice notion that fractioning photons is equivalent to squeezing photon distributions.

0.5

0.4—

0.1 =

10" 10° 10
Y
Fig.9 - Dependence of the second moment v'@ on the squeezing parameter p = |w| for the W.H.
fractional states for various values of n= 1/t (from re[.[8]).

The probability distribution considered thus far refers Lo the canonical variable Q¢ which does
not have a simple physical meaning. One can inquire whether it is possible to construct a physical
Fock state which has exactly both the probability distribution P and the number distribution V()

h-1 p-1 prt))
¢ = 2 = _iwlz M__._
NN éﬂ, (N, Mw)|” = e g RIS (4.7)

but referred to the usual position § and number # variables. The answer is positive: the physical
fractional photon state is a mixed state defined by a density matrix (ref.[10]); i.e. the fractional photon
is essentially a statistical object.

One can understand the physical features of the fractional states by looking at their number
probability distribution (4.7). In Fig. 10 a few probability distributions are plotted for different ¢ and
various values of p = |w| (for the sake of comparison, the usual coherent state correspondig to ¢ = 1
is included as well). One can sce how the fractional state has decreasing mean number of photons for
decreasing ¢ (it is straightforward to compute that, for large g, (m) ~ t. Furthermore as p is increascd
1 sub-Poissonian distribution is obtained (indeed one can analytically check that (An)* [/ {n) ~ t for

large p whereas (An)/(n) ~ =.
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Fig.10 - Number probability distnbutions for the W.H. fractional states for some values of n = 1/t
and p = |w].

In conclusion, the most intriguing physical feature of the fractional photon state is that ene can
simultaneously obtain complete squeezing, sub-Polssonian number distribution and very small num-
ber fluctuations taking the limit p — oc followed by the limit t — 0.

5. Conclusions

We conclude with two comments related mainly with the problem of physically realizing the
(formal) states described in this paper.

The information most relevant for the realization of a specified quantum state is of course the in-
teraction whereby the state itself is generated as a pure states, stemming out of the appropriate vacuum.
In all the cases described in this paper the resulting interaction — one can think of an Hamiltonian,
roughly proportional 1o the logarithm of the squeezing operator — is very complicated in the regular
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phase space (it is in general described by an infinite power serics of the single photon creation and
annihilation operators), and typically, when expressed in terms of p and g variables does not show
manifestly the structure of kinetic plus anharmonic potential energy one should expect. However,
preliminary numerical analysis has shown that at least locally this in in fact the case (the potential
exhibiting a characteristic double well shape). On the other hand the Hamiltonian should have the
algebra corresponding to the state considered as dynamical (spectrum generating) algebra; namely
there should exist non-manifest symmetries of the dynamical system resulting in the property that the
Hamiltonian is gencrated by commutation relation in a finite rank algebraic structure. This hints to
the existence of a set of action-angle variables in which the form of the interaction should be much
simpler.

This is also supported by the feature — here shown explicitly for the fractional photon states —
that very few single photon states are sufficient to realize the described squeezed states.

Further work along these lines is in progress.

References

(1] G.D’Ariano, M. Rasetti, and M. Vadacchino, J. Phys. 18 A, 1295 (1935)

[2] G.D’Ariano, M. Rasetti, and M. Vadacchino, Phys. Rev. D 32, 1034 (1985)

[3] G. D'Ariano, M. Rasetti, and M. Vadacchino, in Noise in physical systems and 1/f noise 1985
A, D'Amico and P. Mazzetti eds., Elsevier Science Publ. B. V. pag.29 (1986)

[4] J. Katricl, A. Solomon, G. D’ Ariano, and M.Rasetti, Phys. Rev. D 34, 332 (1986)

[5] G.D’Ariano and M. Rasetti, Phys. Rev. D 35, 1239 (1987)

[6] J. Katriel, A. Solomon, G. D’Ariano, and M. Rasetu, J. Opt. Soc. Am. B 4, 1728 (1987)

[7] G. D Ariano, 8. Morosi, M. Rasetti, J. Katriel, and A. Solomon, Phys. Rev. D 36, 2399 (1987)

[8] J. Katriel, M. Rasett, and A. Solomon, Phys. rev. D 35, 1248 (1987)

[9] J. Katriel, M. Rasetti, and A. Selomen, Phys. rev. D 35, 2601 (1987)

[10] G.D’Ariano and N. Sterpi, (in preparation)

[11] R. A. Fisher, M. M. Nieto, and V. D. Sandberg, Phys. Rev. D 29, 110 (1984)

[12] D. Stoler, Phys. Rev. D 1, 3217 (1970)

[13] H.P. Yuen, Phys. Rev. A 13, 2226 (1976)

[14] S.L. Braunstein and R. 1. Mc Lachlan, Phys. Rev. A 35, 1659 (1987)

[15] A. M Perclomov, Commun. Math. Phys. 26, 222 (1972); M. Rasetti, Int. J. Theor. Phys. 13,
425 (1973); 14, 1 (1973)

[16] R.J. Glauber (in this volume)

[17] R. A. Brandt and O. W. Greenberg, J. Math. Phys. 10, 1168 (1969)

[18] T. Holstein and H. Primakolf, Phys. Rey. 58, 1048 (1940)

[19] B. Yurke, S. L. McCall and J. R. Klauder, SU(2) and SU(1, 1) Interferometers, AT & T preprint,
19806

[20] M. M. Nieto and L. M, Simmons Jr., Phys. Rev. D 20,1321 (1979)

[21] I. N. Hollenhorst, Phys. Rev. D 19, 1669 (1979)

[22] G.S. Agarwal (in this volumc)

[23] P Tombesi (in this volume)

319



